Academic literature on the topic 'Primeval galaxies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Primeval galaxies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Primeval galaxies"
Miley, George. "Primeval galaxies." Physics World 2, no. 10 (October 1989): 35–38. http://dx.doi.org/10.1088/2058-7058/2/10/22.
Full textCowen, Ron. "Found: Primeval Galaxies." Science News 149, no. 8 (February 24, 1996): 120. http://dx.doi.org/10.2307/3979806.
Full textOZERNOY, LEONID M. "Primeval and "Rejuvenated" Galaxies." Annals of the New York Academy of Sciences 571, no. 1 Texas Symposi (December 1989): 219–27. http://dx.doi.org/10.1111/j.1749-6632.1989.tb50509.x.
Full textCollins, C. A. "Searches for primeval galaxies." Contemporary Physics 40, no. 1 (January 1999): 1–10. http://dx.doi.org/10.1080/001075199181675.
Full textWada, Keiichi, and Asao Habe. "Primeval starburst and bulge formation." Symposium - International Astronomical Union 153 (1993): 397–98. http://dx.doi.org/10.1017/s0074180900123769.
Full textPritchet, C. J. "The search for primeval galaxies." Publications of the Astronomical Society of the Pacific 106 (October 1994): 1052. http://dx.doi.org/10.1086/133479.
Full textMori, Masao, and Masayuki Umemura. "Galactic winds from primeval galaxies." Astrophysics and Space Science 311, no. 1-3 (June 8, 2007): 111–15. http://dx.doi.org/10.1007/s10509-007-9533-5.
Full textBaron, E., and Simon D. M. White. "The appearance of primeval galaxies." Astrophysical Journal 322 (November 1987): 585. http://dx.doi.org/10.1086/165754.
Full textCollins, C. A., and R. D. Joseph. "An infrared search for primeval galaxies." Monthly Notices of the Royal Astronomical Society 235, no. 1 (November 1, 1988): 209–20. http://dx.doi.org/10.1093/mnras/235.1.209.
Full textDerobertis, M. M., and Marshall L. McCall. "A Continuum Search for Primeval Galaxies." Astronomical Journal 109 (May 1995): 1947. http://dx.doi.org/10.1086/117420.
Full textDissertations / Theses on the topic "Primeval galaxies"
Thompson, David Djorgovski S. G. "Surveys for primeval galaxies /." Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-10242007-142316.
Full textLecroq, Marie. "Modelling primeval galaxies in the JWST era." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS154.
Full textThe James Webb Space Telescope, launched in December 2021, is heralded as the major observatory of the coming decade. While it will explore all phases of cosmic history, one of its main scientific goals is to reveal the first stars and galaxies formed in the darkness of the early Universe, which led to its reionisation before evolving into the population of galaxies observable today. To interpret the spectroscopic data collected by JWST, it is necessary to develop models which can effectively constrain the physics of primeval-galaxy emission. This approach can be guided by observations of nearby galaxies with properties similar to those expected of primeval galaxies, i.e. extremely metal-poor and actively star-forming. Such galaxies in the local Universe exhibit surprisingly hard radiation fields, resulting notably in intense high-ionization emission lines, which cannot be fully explained by any existing model. Recent studies point to the essential role that massive binary stars could play in this emission.The aim of this thesis is to open up a new gap in the modelling of the emission from primeval galaxies, by exploring the spectral signatures of massive binary stars. To this end, I study the nebular emission of populations of young stars generated using the new GALSEVN model, combining the population synthesis code SEVN, which includes interactions between stars in binary systems, with the spectral evolution code GALAXEV. This approach confirms that interactions between stars in binary systems strongly influence the emission properties of young galaxies. In particular, I show that GALSEVN is able to account for the high HeII/Hb intensity ratios commonly observed in metal-poor galaxies with active stellar formation, which are difficult to reproduce with current models. I also demonstrate how successive bursts of star formation can improve agreement with observations, while the most extreme HeII spectral features can be reproduced by stellar populations dominated by massive stars. GALSEVN also makes it possible to evaluate the emission from accretion discs of X-ray binaries and radiative shocks from stellar winds and supernovae in an innovative way, using a self-consistent approach built from the characteristics of the modelled stellar populations. This work shows that these contributions likely have little effect on ratios such as HeII/Hb, contrary to predictions from other models, which appear to overestimate the X-ray luminosities of nearby galaxies relative to the observed mean luminosity function of X-ray binaries. GALSEVN can also predict the emission of extremely metal-poor stellar populations, representative of the first generations of stars in our Universe. A study of different parameters characterising the emission of these stars supports the view that the first stars may have played a major role in the reionization of the Universe and the subsequent formation of the structures observed today. Overall, the results presented in this thesis provide a solid basis for further investigation of the properties of early galaxies. By building a grid of models spanning a wide range of stellar and nebular properties, it is possible to apply statistical methods to interpret data collected by JWST in terms of constraints on the physical properties of the observed galaxies. In conclusion, this thesis has led to the development and publication of new models enabling a novel interpretation of the physical properties of galaxies whose emission is dominated by young stellar populations
Caruana, Joseph. "Spectroscopic analysis of primeval galaxy candidates." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:1c354597-28a3-4d7f-9b52-9e809655318b.
Full textLipman, Keith. "Chemical abundances of primeval galaxies from QSO absorption lines." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363292.
Full textVidal, García Alba. "Modeling and interpretation of the ultraviolet spectral energy distributions of primeval galaxies." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066667/document.
Full textI combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. I start by assessing the reliability of the stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large-Magellanic-Cloud clusters. In doing so, I find that neglecting stochastic sampling of the stellar initial mass function in these young low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, I develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. My model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. I use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. I find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. I also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM
Gutkin, Julia. "Constraints on the physical properties and chemical evolution of star-forming gas in primeval galaxies." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066255/document.
Full textI present a new model of nebular emission from star-forming galaxies, which I have developed by combining updated stellar population synthesis models with a standard photoionization code. I detail the main features of this new model, such as the recent advances in the theories of stellar interiors and atmospheres it incorporates to interpret the ionizing radiation from star-forming galaxies, and the careful treatment of individual abundances and depletion onto dust grains, which allows one to properly explore the signatures of non-solar metal abundance ratios, and then the properties of chemically young galaxies out to the reionization epoch. I present the public comprehensive grid of photoionization models I have computed, including full ranges of stellar and interstellar parameters. I describe the ability of the models to account simultaneously for observational trends followed by star-forming galaxies in several ultraviolet and optical diagnostic line-ratio diagrams, and I explore the influence of the various adjustable model parameters on predicted line-luminosity ratios. I also describe how the combination of this model with calculations of narrow-line emitting regions from active galactic nuclei computed using the same photoionization code allows one to define new ultraviolet and optical emission-line diagnostics to discriminate between star formation and nuclear activity in galaxies. Finally, I show how the new model presented in this thesis has already been used successfully to interpret the rest-frame ultraviolet and optical line emission of different types of high-redshift star-forming galaxies, mainly lensed dwarf star-forming galaxies at redshift between 2-7
Thompson, David. "Surveys for primeval galaxies." Thesis, 1995. https://thesis.library.caltech.edu/4239/1/Thompson_dj_1995.pdf.
Full textBooks on the topic "Primeval galaxies"
IAP Workshop (3rd 1987 Paris, France). High redshift and primeval galaxies. Gif sur Yvette, France: Editions Frontières, 1987.
Find full textRossi, Luis Sebastián. Kittler en la galaxia Turing. Teseo, 2021. http://dx.doi.org/10.55778/ts877233124.
Full textBook chapters on the topic "Primeval galaxies"
Djorgovski, S., and D. J. Thompson. "Searches for Primeval Galaxies." In The Stellar Populations of Galaxies, 337–47. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2434-8_44.
Full textMannucci, F., S. V. W. Beckwith, and M. J. Mccaughrean. "An Infrared Search for Primeval Galaxies." In Infrared Astronomy with Arrays, 503–4. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1070-9_149.
Full textMcCall, Marshall L., and Michael M. Derobertis. "Searching the Continuum for Primeval Galaxies." In New Light on Galaxy Evolution, 417. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0229-9_129.
Full textThommes, E., and K. Meisenheimer. "Number Density Predictions for Primeval Galaxies." In New Light on Galaxy Evolution, 454. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0229-9_165.
Full textKoo, David C. "Quests for Primeval Galaxies: A Review of Optical Surveys." In Spectral Evolution of Galaxies, 419–38. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4598-2_33.
Full textHeckman, Timothy M. "Primeval Galaxies, the IGM, and the QSO-protogalaxy Connection." In Astrophysics and Space Science Library, 155–58. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1882-8_11.
Full textMeisenheimer, K., S. Beckwith, R. Fockenbrock, J. Fried, H. Hippelein, U. Hopp, Ch Leinert, H. J. Röser, E. Thommes, and C. Wolf. "The Calar Alto Deep Imaging Survey for Primeval Galaxies." In The Early Universe with the VLT, 165–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-540-49709-7_19.
Full textSchaerer, Daniel. "Expected Properties of Primeval Galaxies and Confrontation with Observations." In Multiwavelength Cosmology, 219–22. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/0-306-48570-2_46.
Full textMuradian, R. M. "The Primeval Hadron: Origin of Rotation and Magnetic Fields in the Universe." In Observational Evidence of Activity in Galaxies, 341–45. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3851-9_51.
Full textPritchet, C. J., and F. D. A. Hartwick. "New Limits on the Surface Density of Z = 5 Primeval Galaxies." In Astrophysics and Space Science Library, 213–16. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2919-7_26.
Full textConference papers on the topic "Primeval galaxies"
Schaerer, Daniel, and Anne Verhamme. "Modeling the Emission Line and Ionizing Properties of Primeval Galaxies." In FIRST STARS III: First Stars II Conference. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2905542.
Full text