To see the other types of publications on this topic, follow the link: Primate cortical movement area.

Journal articles on the topic 'Primate cortical movement area'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Primate cortical movement area.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lemon, Roger N. "The Cortical “Upper Motoneuron” in Health and Disease." Brain Sciences 11, no. 5 (May 12, 2021): 619. http://dx.doi.org/10.3390/brainsci11050619.

Full text
Abstract:
Upper motoneurons (UMNs) in motor areas of the cerebral cortex influence spinal and cranial motor mechanisms through the corticospinal tract (CST) and through projections to brainstem motor pathways. The primate corticospinal system has a diverse cortical origin and a wide spectrum of fibre diameters, including large diameter fibres which are unique to humans and other large primates. Direct cortico-motoneuronal (CM) projections from the motor cortex to arm and hand motoneurons are a late evolutionary feature only present in dexterous primates and best developed in humans. CM projections are derived from a more restricted cortical territory (‘new’ M1, area 3a) and arise not only from corticospinal neurons with large, fast axons but also from those with relatively slow-conducting axons. During movement, corticospinal neurons are organised and recruited quite differently from ‘lower’ motoneurons. Accumulating evidence strongly implicates the corticospinal system in the early stages of ALS, with particular involvement of CM projections to distal limb muscles, but also to other muscle groups influenced by the CM system. There are important species differences in the organisation and function of the corticospinal system, and appropriate animal models are needed to understand disorders involving the human corticospinal system.
APA, Harvard, Vancouver, ISO, and other styles
2

Prud'homme, M. J., D. A. Cohen, and J. F. Kalaska. "Tactile activity in primate primary somatosensory cortex during active arm movements: cytoarchitectonic distribution." Journal of Neurophysiology 71, no. 1 (January 1, 1994): 173–81. http://dx.doi.org/10.1152/jn.1994.71.1.173.

Full text
Abstract:
1. Cells were recorded in areas 3b and 1 of the primary somatosensory cortex (SI) of three monkeys during active arm movements. Successful reconstructions were made of 46 microelectrode penetrations, and 298 cells with tactile receptive fields (RFs) were located as to cytoarchitectonic area, lamina, or both. 2. Area 3b contained a greater proportion of cells with slowly adapting responses to tactile stimuli and fewer cells with deep modality inputs than did area 1. Area 3b also showed a greater level of movement-related modulation in tactile activity than area 1. Other cell properties were equally distributed in the two areas. 3. The distribution of cells with low-threshold tactile RFs that also responded to lateral stretch of the skin or to passive arm movements was skewed toward deeper laminae than for tactile cells that did not respond to those manipulations. 4. The variation of activity of tactile neurons during arm movements in different directions was weaker in the superficial laminae than in deeper cortical laminae. 5. Cells with only increases in activity during arm movements were preferentially but not exclusively located in middle and superficial layers. Cells with reciprocal responses were found mainly in laminae III and V, whereas cells with only decreases in activity were concentrated in lamina V. 6. Overall, active arm movements evoke directionally tuned tactile and “deep” activity in areas 3b and 1, in particular in the deeper cortical laminae that are the source of the descending output pathways from SI.
APA, Harvard, Vancouver, ISO, and other styles
3

Martin, Ruth E., Pentti Kemppainen, Yuji Masuda, Dongyuan Yao, Gregory M. Murray, and Barry J. Sessle. "Features of Cortically Evoked Swallowing in the Awake Primate (Macaca fascicularis)." Journal of Neurophysiology 82, no. 3 (September 1, 1999): 1529–41. http://dx.doi.org/10.1152/jn.1999.82.3.1529.

Full text
Abstract:
Although the cerebral cortex has been implicated in the control of swallowing, the output organization of the cortical swallowing representation, and features of cortically evoked swallowing, remain unclear. The present study defined the output features of the primate “cortical swallowing representation” with intracortical microstimulation (ICMS) applied within the lateral sensorimotor cortex. In four hemispheres of two awake monkeys, microelectrode penetrations were made at ≤1-mm intervals, initially within the face primary motor cortex (face-MI), and subsequently within the cortical regions immediately rostral, lateral, and caudal to MI. Two ICMS pulse trains [35-ms train, 0.2-ms pulses at 333 Hz, ≤30 μA (short train stimulus, T/S); 3- to 4-s train, 0.2-ms pulses at 50 Hz, ≤60 μA (continuous stimulus, C/S)] were applied at ≤500-μm intervals along each microelectrode penetration to a depth of 8–10 mm, and electromyographic (EMG) activity was recorded simultaneously from various orofacial and laryngeal muscles. Evoked orofacial movements, including swallowing, were verified by EMG analysis, and T/S and C/S movement thresholds were determined. Effects of varying ICMS intensity on swallow-related EMG properties were examined by applying suprathreshold C/S at selected intracortical sites. EMG patterns of swallows evoked from various cortical regions were compared with those of natural swallows recorded as the monkeys swallowed liquid and solid material. Results indicated that swallowing was evoked by C/S at ∼20% of 1,569 intracortical sites where ICMS elicited an orofacial motor response in both hemispheres of the two monkeys, typically at C/S intensities ≤30 μA. In contrast, swallowing was not evoked by T/S in either monkey. Swallowing was evoked from four cortical regions: the ICMS-defined face-MI, the face primary somatosensory cortex (face-SI), the region lateral and anterior to face-MI corresponding to the cortical masticatory area (CMA), and an area >5 mm deep to the cortical surface corresponding to both the white matter underlying the CMA and the frontal operculum; EMG patterns of swallows elicited from these four cortical regions showed some statistically significant differences. Whereas swallowing only was evoked at some sites, particularly within the deep cortical area, swallowing was more frequently evoked together with other orofacial responses including rhythmic jaw movements. Increasing ICMS intensity increased the magnitude, and decreased the latency, of the swallow-related EMG burst in the genioglossus muscle at some sites. These findings suggest that a number of distinct cortical foci may participate in the initiation and modulation of the swallowing synergy as well as in integrating the swallow within the masticatory sequence.
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Daeyeol, Nicholas L. Port, Wolfgang Kruse, and Apostolos P. Georgopoulos. "Neuronal Clusters in the Primate Motor Cortex during Interceptin of Moving Targets." Journal of Cognitive Neuroscience 13, no. 3 (April 1, 2001): 319–31. http://dx.doi.org/10.1162/08989290151137377.

Full text
Abstract:
Two rhesus monkeys were trained to intercept a moving target at a fixed location with a feedback cursor controlled bya 2-D manipulandum. The direction from which the target appeared, the time from the target onset to its arrival at the interception point, and the target acceleration were randomized for each trial, thus requiring the animal to adjust its movement according to the visual input on a trail-by-trail basis. The two animals adopted different strategies, similar to those identified previously in human subjects. Single-cell activity was recorded from the arm area of the primary motor cortex in these two animals, and the neurons were classified based on the temporal patterns in their activity, using a nonhierarchical cluster analysis. Results of this analysis revealed differences in the complexity and diversity of motor cortical activity between the two animals that paralleled those of behavioral strategies. Most clusters displayed activity closedly related to the kinematics of hand movements. In addition, some clusters displayed patterns of activation that conveyed additional information necessary for successful performance of the task, such as the initial target velocity and the interval between successive submovements, suggesting that such information is represented in selective subpopulations of neurons in the primary motor cortex. These results also suggest that conversion of information about target motion into movement-related signals takes place in a broad network of cortical areas including the primary motor cortex.
APA, Harvard, Vancouver, ISO, and other styles
5

Tsujimoto, Toru, Hideki Shimazu, and Yoshikazu Isomura. "Direct Recording of Theta Oscillations in Primate Prefrontal and Anterior Cingulate Cortices." Journal of Neurophysiology 95, no. 5 (May 2006): 2987–3000. http://dx.doi.org/10.1152/jn.00730.2005.

Full text
Abstract:
Recent evidence has suggested that theta-frequency (4–7 Hz) oscillations around the human anterior cingulate cortex (ACC) and frontal cortex—that is, frontal midline theta (Fm theta) oscillations—may be involved in attentional processes in the brain. However, little is known about the physiological basis of Fm theta oscillations because invasive study in the human is allowed in only limited cases. In the present study, we developed a monkey model for Fm theta oscillations and located the generators of theta waves using electrodes implanted in various cortical areas. Monkeys were engaged in a self-initiated hand-movement task with a waiting period. The theta power in area 9 (the medial prefrontal cortex) and area 32 (the rostral ACC) was gradually increased from a few seconds before the movement and reached a peak immediately after the movement. When the movement was rewarded, the theta power attained a second peak, whereas it swiftly decreased in the unrewarded trials. Theta oscillations in areas 9 and 32 were coherent and phase locked together. This theta activity may be associated with “executive attention” including self-control, internal timing, and assessment of reward. It is probably a homologue of human Fm theta oscillations, as judged from the similar localization, corresponding frequency, and dependency on attentional processes. The monkey model would be useful for studying executive functions in the frontal cortex.
APA, Harvard, Vancouver, ISO, and other styles
6

Wild, Benedict, and Stefan Treue. "Primate extrastriate cortical area MST: a gateway between sensation and cognition." Journal of Neurophysiology 125, no. 5 (May 1, 2021): 1851–82. http://dx.doi.org/10.1152/jn.00384.2020.

Full text
Abstract:
Primate visual cortex consists of dozens of distinct brain areas, each providing a highly specialized component to the sophisticated task of encoding the incoming sensory information and creating a representation of our visual environment that underlies our perception and action. One such area is the medial superior temporal cortex (MST), a motion-sensitive, direction-selective part of the primate visual cortex. It receives most of its input from the middle temporal (MT) area, but MST cells have larger receptive fields and respond to more complex motion patterns. The finding that MST cells are tuned for optic flow patterns has led to the suggestion that the area plays an important role in the perception of self-motion. This hypothesis has received further support from studies showing that some MST cells also respond selectively to vestibular cues. Furthermore, the area is part of a network that controls the planning and execution of smooth pursuit eye movements and its activity is modulated by cognitive factors, such as attention and working memory. This review of more than 90 studies focuses on providing clarity of the heterogeneous findings on MST in the macaque cortex and its putative homolog in the human cortex. From this analysis of the unique anatomical and functional position in the hierarchy of areas and processing steps in primate visual cortex, MST emerges as a gateway between perception, cognition, and action planning. Given this pivotal role, this area represents an ideal model system for the transition from sensation to cognition.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Spencer C., John W. Morley, and Samuel G. Solomon. "Spatial precision of population activity in primate area MT." Journal of Neurophysiology 114, no. 2 (August 2015): 869–78. http://dx.doi.org/10.1152/jn.00152.2015.

Full text
Abstract:
The middle temporal (MT) area is a cortical area integral to the “where” pathway of primate visual processing, signaling the movement and position of objects in the visual world. The receptive field of a single MT neuron is sensitive to the direction of object motion but is too large to signal precise spatial position. Here, we asked if the activity of MT neurons could be combined to support the high spatial precision required in the where pathway. With the use of multielectrode arrays, we recorded simultaneously neural activity at 24–65 sites in area MT of anesthetized marmoset monkeys. We found that although individual receptive fields span more than 5° of the visual field, the combined population response can support fine spatial discriminations (<0.2°). This is because receptive fields at neighboring sites overlapped substantially, and changes in spatial position are therefore projected onto neural activity in a large ensemble of neurons. This fine spatial discrimination is supported primarily by neurons with receptive fields flanking the target locations. Population performance is degraded (by 13–22%) when correlations in neural activity are ignored, further reflecting the contribution of population neural interactions. Our results show that population signals can provide high spatial precision despite large receptive fields, allowing area MT to represent both the motion and the position of objects in the visual world.
APA, Harvard, Vancouver, ISO, and other styles
8

Flaherty, A. W., and A. M. Graybiel. "Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations." Journal of Neurophysiology 66, no. 4 (October 1, 1991): 1249–63. http://dx.doi.org/10.1152/jn.1991.66.4.1249.

Full text
Abstract:
1. The basal ganglia of primates receive somatosensory input carried largely by corticostriatal fibers. To determine whether map-transformations occur in this corticostriatal system, we investigated how electrophysiologically defined regions of the primary somatosensory cortex (SI) project to the striatum in the squirrel monkey (Saimiri sciureus). Receptive fields in the hand, mouth, and foot representations of cortical areas 3a, 3b, and 1 were mapped by multiunit recording; and small volumes of distinguishable anterograde tracers were injected into different body-part representations in single SI areas. 2. Analysis of labeled projections established that at least four types of systematic remapping occur in the primate corticostriatal system. 1) An area of cortex representing a single body part sends fibers that diverge to innervate multiple regions in the putamen, forming branching, patchy fields that are densest in the lateral putamen. The fields do not form elongated cylindrical forms; rather, they are nearly as extended mediolaterally as they are rostrocaudally. 2) Cortical regions representing hand, mouth, and foot send globally somatotopic, nonoverlapping projections to the putamen, but regions with closely related representations (such as those of the thumb and 5th finger in area 3b) send convergent, overlapping corticostriatal projections. The overlap is fairly precise in the caudal putamen, but in the rostral putamen the densest zones of the projections do not overlap. 3) Regions representing homologous body parts in different SI cortical areas send projections that converge in the putamen. This was true of paired projections from areas 3a and 3b, and from areas 3b and 1. Thus corticostriatal inputs representing distinct somatosensory submodalities can project to the same local regions within the striatum. Convergence is not always complete, however: in the rostral putamen of two cases comparing projections from areas 3a and 1, the densest zones of the projections did not overlap. 4) All projections from SI avoid striosomes and innervate discrete zones within the matrix. 3. These experiments demonstrate that the somatosensory representations of the body are reorganized as they are projected from SI to the somatosensory sector of the primate putamen. This remapping suggests that the striatal representation of the body may be functionally distinct from that of each area of SI. The patchy projections may provide a basis for redistribution of somatosensory information to discrete output systems in the basal ganglia. Transformations in the corticostriatal system could thus be designed for modulating different movement-related programs.
APA, Harvard, Vancouver, ISO, and other styles
9

Georgopoulos, Apostolos P. "Spatial coding of visually guided arm movements in primate motor cortex." Canadian Journal of Physiology and Pharmacology 66, no. 4 (April 1, 1988): 518–26. http://dx.doi.org/10.1139/y88-081.

Full text
Abstract:
Previous studies of the motor cortex in behaving animals were focused on the relations between the activity of single cells, usually pyramidal tract neurons, and parameters of isometric contraction (e.g., intensity of force) or parameters of movement along one axis (e.g., flexion–extension) of a single joint (e.g., elbow or wrist). However, the commonly meaningful behavioral parameter is the trajectory of the hand in extrapersonal space, which is realized by simultaneous motions about two or three joints (e.g., elbow, shoulder, wrist) and concurrent engagement of several muscles. The spatial parameters of a straight trajectory are its direction and extent. We hypothesized that a major function of the motor cortex, among other possible roles, is the specification and control of the direction of the movement trajectory in space. This reference of motor cortical function to the control of spatial aspects of the trajectory differentiated our approach from the other approaches outlined above. We investigated the directional selectivity cells in the arm area of the motor cortex by recording their activity while monkeys moved their hands in various directions in space towards visual targets. There were two salient findings of these studies. First, the intensity of the discharge of single cells varies in an orderly fashion with the direction of movement in space, so that the discharge rate is highest with movements in a preferred direction, and decreases progressively with movements made in directions more and more away from the preferred one. Thus single cells are broadly tuned around a preferred direction which differs among different cells. The second finding of our studies is a code by which this neuronal population can represent uniquely the direction of the trajectory in space. The outcome of this population code can be visualized as a vector in space that points in the direction of the movement well before the movement begins, and even in the absence of immediate movement. These results establish the motor cortex as a nodal point in the construction of motor signals controlling the direction of hand trajectory in space. Moreover, the population coding of direction may be of more general significance concerning the representation of information in neuronal ensembles and has been applied successfully to other areas of neurophysiological research.
APA, Harvard, Vancouver, ISO, and other styles
10

Mundinano, Inaki-Carril, Dylan M. Fox, William C. Kwan, Diego Vidaurre, Leon Teo, Jihane Homman-Ludiye, Melvyn A. Goodale, David A. Leopold, and James A. Bourne. "Transient visual pathway critical for normal development of primate grasping behavior." Proceedings of the National Academy of Sciences 115, no. 6 (January 3, 2018): 1364–69. http://dx.doi.org/10.1073/pnas.1717016115.

Full text
Abstract:
An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino–pulvinar–MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.
APA, Harvard, Vancouver, ISO, and other styles
11

Boussaoud, D. "Primate premotor cortex: modulation of preparatory neuronal activity by gaze angle." Journal of Neurophysiology 73, no. 2 (February 1, 1995): 886–90. http://dx.doi.org/10.1152/jn.1995.73.2.886.

Full text
Abstract:
1. This study investigated whether the neuronal activity of a cortical area devoted to the control of limb movements is affected by variations in eye position within the orbit. Two rhesus monkeys were trained to perform a conditional visuomotor task with an instructed delay period while maintaining gaze on a fixation point. 2. The experimental design required each monkey to put its hand on a metal touch pad located at arm's length and fixate a small spot of light presented on a computer screen. Then a visual cue came on, at the fixation point or elsewhere, the color of which instructed the monkey to move its limb to one of two touch pads according to a conditional rule. A red cue meant a movement to the left, whereas a green one instructed a movement to the right. The cue lasted for a variable delay period (1-3 s), and the monkey had to wait for its offset, the go signal, before performing the correct response. The fixation point and the cues were presented at various screen locations in a combination that allowed examination of whether eye position and/or target position modulate the neuronal activity. Because the monkeys' heads were fixed, all changes in eye position reflected movements in a craniocentric, head-centered, coordinate space. 3. The activity of single neurons was recorded from dorsal premotor cortex (PMd). For most neurons (79%), the activity during the instructed delay period (set-related activity) reflects the direction of the upcoming limb movement but varies significantly with eye position.(ABSTRACT TRUNCATED AT 250 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
12

Gallivan, Jason P., Craig S. Chapman, Daniel J. Gale, J. Randall Flanagan, and Jody C. Culham. "Selective Modulation of Early Visual Cortical Activity by Movement Intention." Cerebral Cortex 29, no. 11 (January 21, 2019): 4662–78. http://dx.doi.org/10.1093/cercor/bhy345.

Full text
Abstract:
Abstract The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded—prior to movement—from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.
APA, Harvard, Vancouver, ISO, and other styles
13

van Donkelaar, P., J. F. Stein, R. E. Passingham, and R. C. Miall. "Temporary Inactivation in the Primate Motor Thalamus During Visually Triggered and Internally Generated Limb Movements." Journal of Neurophysiology 83, no. 5 (May 1, 2000): 2780–90. http://dx.doi.org/10.1152/jn.2000.83.5.2780.

Full text
Abstract:
To better understand the contribution of cerebellar- and basal ganglia-receiving areas of the thalamus [ventral posterolateral nucleus, pars oralis (VPLo), area X, ventral lateral nucleus, pars oralis (VLo), or ventral anterior nucleus, pars parvicellularis (VApc)] to movements based on external versus internal cues, we temporarily inactivated these individual nuclei in two monkeys trained to make visually triggered (VT) and internally generated (IG) limb movements. Infusions of lignocaine centered within VPLo caused hemiplegia during which movements of the contralateral arm rarely were performed in either task for a short period of time (∼5–30 min). When VT responses were produced, they had prolonged reaction times and movement times and a higher incidence of trajectory abnormalities compared with responses produced during the preinfusion baseline period. In contrast, those IG responses that were produced remained relatively normal. Infusions centered within area X never caused hemiplegia. The only deficits observed were an increase in reaction time and movement amplitude variability and a higher incidence of trajectory abnormalities during VT trials. Every other aspect of both the VT and IG movements remained unchanged. Infusions centered within VLo reduced the number of movements attempted during each block of trials. This did not appear to be due to hemiplegia, however, as voluntary movements easily could be elicited outside of the trained tasks. The other main deficit resulting from inactivation of VLo was an increased reaction time in the VT task. Finally, infusions centered within VApc caused IG movements to become slower and smaller in amplitude, whereas VT movements remained unchanged. Control infusions with saline did not cause any consistent deficits. This pattern of results implies that VPLo and VLo play a role in the production of movements in general regardless of the context under which they are performed. They also suggest that VPLo contributes more specifically to the execution of movements that are visually triggered and guided, whereas area X contributes specifically to the initiation of such movements. In contrast, VApc appears to play a role in the execution of movements based on internal cues. These results are consistent with the hypothesis that specific subcircuits within the cerebello- and basal ganglio-thalamo-cortical systems preferentially contribute to movements based on external versus internal cues.
APA, Harvard, Vancouver, ISO, and other styles
14

Ghahremani, Maryam, Kevin D. Johnston, Liya Ma, Lauren K. Hayrynen, and Stefan Everling. "Electrical microstimulation evokes saccades in posterior parietal cortex of common marmosets." Journal of Neurophysiology 122, no. 4 (October 1, 2019): 1765–76. http://dx.doi.org/10.1152/jn.00417.2019.

Full text
Abstract:
The common marmoset ( Callithrix jacchus) is a small-bodied New World primate increasing in prominence as a model animal for neuroscience research. The lissencephalic cortex of this primate species provides substantial advantages for the application of electrophysiological techniques such as high-density and laminar recordings, which have the capacity to advance our understanding of local and laminar cortical circuits and their roles in cognitive and motor functions. This is particularly the case with respect to the oculomotor system, as critical cortical areas of this network such as the frontal eye fields (FEF) and lateral intraparietal area (LIP) lie deep within sulci in macaques. Studies of cytoarchitecture and connectivity have established putative homologies between cortical oculomotor fields in marmoset and macaque, but physiological investigations of these areas, particularly in awake marmosets, have yet to be carried out. Here we addressed this gap by probing the function of posterior parietal cortex of the common marmoset with electrical microstimulation. We implanted two animals with 32-channel Utah arrays at the location of the putative area LIP and applied microstimulation while they viewed a video display and made untrained eye movements. Similar to previous studies in macaques, stimulation evoked fixed-vector and goal-directed saccades, staircase saccades, and eyeblinks. These data demonstrate that area LIP of the marmoset plays a role in the regulation of eye movements, provide additional evidence that this area is homologous with that of the macaque, and further establish the marmoset as a valuable model for neurophysiological investigations of oculomotor and cognitive control. NEW & NOTEWORTHY The macaque monkey has been the preeminent model for investigations of oculomotor control, but studies of cortical areas are limited, as many of these areas are buried within sulci in this species. Here we applied electrical microstimulation to the putative area LIP of the lissencephalic cortex of awake marmosets. Similar to the macaque, microstimulation evoked contralateral saccades from this area, supporting the marmoset as a valuable model for studies of oculomotor control.
APA, Harvard, Vancouver, ISO, and other styles
15

Mayer, Andrei, Gabriela Lewenfus, Ruben Ernesto Bittencourt-Navarrete, Francisco Clasca, and João Guedes da Franca. "Thalamic Inputs to Posterior Parietal Cortical Areas Involved in Skilled Forelimb Movement and Tool Use in the Capuchin Monkey." Cerebral Cortex 29, no. 12 (March 19, 2019): 5098–115. http://dx.doi.org/10.1093/cercor/bhz051.

Full text
Abstract:
Abstract The posterior parietal cortex (PPC) is a central hub for the primate forebrain networks that control skilled manual behavior, including tool use. Here, we quantified and compared the sources of thalamic input to electrophysiologically-identified hand/forearm-related regions of several PPC areas, namely areas 5v, AIP, PFG, and PF, of the capuchin monkey (Sapajus sp). We found that these areas receive most of their thalamic connections from the Anterior Pulvinar (PuA), Lateral Posterior (LP) and Medial Pulvinar (PuM) nuclei. Each PPC area receives a specific combination of projections from these nuclei, and fewer additional projections from other nuclei. Moreover, retrograde labeling of the cells innervating different PPC areas revealed substantial intermingling of these cells within the thalamus. Differences in thalamic input may contribute to the different functional properties displayed by the PPC areas. Furthermore, the observed innervation of functionally-related PPC domains from partly intermingled thalamic cell populations accords with the notion that higher-order thalamic inputs may dynamically regulate functional connectivity between cortical areas.
APA, Harvard, Vancouver, ISO, and other styles
16

Zhou, Xin, Xue-Lian Qi, Kristy Douglas, Kathini Palaninathan, Hyun Sug Kang, Jerry J. Buccafusco, David T. Blake, and Christos Constantinidis. "Cholinergic modulation of working memory activity in primate prefrontal cortex." Journal of Neurophysiology 106, no. 5 (November 2011): 2180–88. http://dx.doi.org/10.1152/jn.00148.2011.

Full text
Abstract:
The prefrontal cortex, a cortical area essential for working memory and higher cognitive functions, is modulated by a number of neurotransmitter systems, including acetylcholine; however, the impact of cholinergic transmission on prefrontal activity is not well understood. We relied on systemic administration of a muscarinic receptor antagonist, scopolamine, to investigate the role of acetylcholine on primate prefrontal neuronal activity during execution of working memory tasks and recorded neuronal activity with chronic electrode arrays and single electrodes. Our results indicated a dose-dependent decrease in behavioral performance after scopolamine administration in all the working memory tasks we tested. The effect could not be accounted for by deficits in visual processing, eye movement responses, or attention, because the animals performed a visually guided saccade task virtually error free, and errors to distracting stimuli were not increased. Performance degradation under scopolamine was accompanied by decreased firing rate of the same cortical sites during the delay period of the task and decreased selectivity for the spatial location of the stimuli. These results demonstrate that muscarinic blockade impairs performance in working memory tasks and prefrontal activity mediating working memory.
APA, Harvard, Vancouver, ISO, and other styles
17

Shima, K., K. Aya, H. Mushiake, M. Inase, H. Aizawa, and J. Tanji. "Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements." Journal of Neurophysiology 65, no. 2 (February 1, 1991): 188–202. http://dx.doi.org/10.1152/jn.1991.65.2.188.

Full text
Abstract:
1. Single-unit activity in the cingulate cortex of the monkey was recorded during the performance of sensorially (visual, auditory, or tactile) triggered or self-paced forelimb key press movements. 2. Microelectrodes were inserted into the broad rostrocaudal expanse of the cingulate cortex, including the upper and lower banks of the cingulate sulcus and the hemispheric medial wall of the cingulate gyrus. 3. A total of 1,042 task-related neurons were examined, the majority of which were related to the execution of the key press movements. In greater than 60% of them, the movement-related activity preceded the activity in the distal flexor muscles. 4. The movement-related neurons were distributed, in two foci, in the posterior and anterior parts of the cingulate cortex, both including the upper and lower banks of the cingulate sulcus. The posterior focus was found to largely overlap the area projecting to the forelimb area of the primary motor cortex by the use of the horseradish peroxidase (HRP) method. 5. About 40% of the cingulate cortical neurons showed equimagnitude responses during the signal-triggered and self-paced movements. The neurons exhibiting a selective or differential response to the self-paced motor task were more frequently observed in the anterior than in the posterior cingulate cortex. 6. The long-lead type of changes in activity, ranging from 500 ms to 2 s, were observed mainly before the self-paced and, much less frequently, before the triggered movements. They were particularly abundant in the anterior cingulate cortex. 7. Only a few of the neurons showed activity time-locked to the onset of the sensory signals. 8. These observations indicate that the anterior and posterior parts of the cingulate cortex are distinct entities participating in the performance of limb movements, even if the movements are simple, such as those in this study.
APA, Harvard, Vancouver, ISO, and other styles
18

Murphy, J. T., Y. C. Wong, and H. C. Kwan. "Sequential activation of neurons in primate motor cortex during unrestrained forelimb movement." Journal of Neurophysiology 53, no. 2 (February 1, 1985): 435–45. http://dx.doi.org/10.1152/jn.1985.53.2.435.

Full text
Abstract:
We trained monkeys to perform an unrestrained, reaching movement of the arm. Electromyogram (EMG) recordings of forelimb muscles revealed sequential activation, proximal to distal, of muscle groups involved in the task. The delay in onset of EMG activity between proximal (shoulder and elbow) and distal (wrist and finger) muscles was approximately 60 ms. We identified the neurons in the forelimb area of the contralateral motor cortex as controlling particular joints by previously defined criteria involving responses to somatosensory stimulation and effects of intracortical microstimulation. Many cells discharged prior to the onset of EMG activity acting on the appropriate joint, whereas others began firing at a later phase of the movement. The population of all proximal cells altered discharge patterns approximately 60 ms earlier than the population of distal cells. A small percentage of cells showed an initial inhibitory change in discharge frequency, and this inhibition typically occurred prior to the excitatory changes seen in the majority of cells. The results are discussed in terms of the "nested-zone" model of the forelimb motor cortex. The data support one of the predictions of this model, namely that discharges of identified cells within the cortical zones are causally related to voluntary movement at appropriate forelimb joints.
APA, Harvard, Vancouver, ISO, and other styles
19

Gardner, Esther P. "Somatosensory cortical mechanisms of feature detection in tactile and kinesthetic discrimination." Canadian Journal of Physiology and Pharmacology 66, no. 4 (April 1, 1988): 439–54. http://dx.doi.org/10.1139/y88-074.

Full text
Abstract:
Neurons in somatosensory cortex of primates process sensory information from the hand by integrating information from large populations of receptors to extract specific features. Tactile neurons in areas 1 and 2 are shown to select features such as contact area, edge orientation, motion across the skin, or direction of movement. Features coded by kinesthetic neurons in areas 3a and 2 relate to joint movement, the joint angle around which the movement occurs, or coordinated postures of the hand and arm. An even higher order cortical cell integrates tactile and kinesthetic information; these "haptic neurons" respond optimally to contact of objects actively grasped in the hand. These global features are coded at the expense of loss of information concerning fine-grained spatial detail.
APA, Harvard, Vancouver, ISO, and other styles
20

Dum, Richard P., David J. Levinthal, and Peter L. Strick. "Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla." Proceedings of the National Academy of Sciences 113, no. 35 (August 15, 2016): 9922–27. http://dx.doi.org/10.1073/pnas.1605044113.

Full text
Abstract:
Modern medicine has generally viewed the concept of “psychosomatic” disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness.
APA, Harvard, Vancouver, ISO, and other styles
21

Johnston, Renée, Guillaume Doucet, Chadwick Boulay, Kai Miller, Julio Martinez-Trujillo, and Adam Sachs. "Decoding Saccade Intention From Primate Prefrontal Cortical Local Field Potentials Using Spectral, Spatial, and Temporal Dimensionality Reduction." International Journal of Neural Systems 31, no. 06 (April 30, 2021): 2150023. http://dx.doi.org/10.1142/s0129065721500234.

Full text
Abstract:
Most invasive Brain Computer Interfaces (iBCIs) use spike and Local Field Potentials (LFPs) from the motor or parietal cortices to decode movement intentions. It has been debated whether harvesting signals from other brain areas that encode global cognitive variables, such as the allocation of attention and eye movement goals in a variety of spatial reference frames, may improve the outcome of iBCIs. Here, we explore the ability of LFP signals, sampled from the lateral prefrontal cortex (LPFC) of macaque monkeys, to encode eye-movement intention during the pre-movement fixation period of a delayed saccade task. We use spectral dimensionality reduction to examine the spatiotemporal properties of the extracted non-rhythmic broadband activity and explore its usefulness in decoding saccade goals. The dynamics of the broadband signal in low spatial dimensions across the pre-movement fixation period uncovered saccade target separation; its discriminative potential was confirmed using support vector machine classifications. These findings reveal that broadband LFP from the LPFC can be used to decode intended saccade target location during pre-movement periods. We further provide a general workflow that can be implemented in iBCIs and it is relatively robust to the loss of spikes in individual electrodes.
APA, Harvard, Vancouver, ISO, and other styles
22

Soteropoulos, Demetris S. "Corticospinal gating during action preparation and movement in the primate motor cortex." Journal of Neurophysiology 119, no. 4 (April 1, 2018): 1538–55. http://dx.doi.org/10.1152/jn.00639.2017.

Full text
Abstract:
During everyday actions there is a need to be able to withhold movements until the most appropriate time. This motor inhibition is likely to rely on multiple cortical and subcortical areas, but the primary motor cortex (M1) is a critical component of this process. However, the mechanisms behind this inhibition are unclear, particularly the role of the corticospinal system, which is most often associated with driving muscles and movement. To address this, recordings were made from identified corticospinal (PTN, n = 94) and corticomotoneuronal (CM, n = 16) cells from M1 during an instructed delay reach-to-grasp task. The task involved the animals withholding action for ~2 s until a GO cue, after which they were allowed to reach and perform the task for a food reward. Analysis of the firing of cells in M1 during the delay period revealed that, as a population, non-CM PTNs showed significant suppression in their activity during the cue and instructed delay periods, while CM cells instead showed a facilitation during the preparatory delay. Analysis of cell activity during movement also revealed that a substantial minority of PTNs (27%) showed suppressed activity during movement, a response pattern more suited to cells involved in withholding rather than driving movement. These results demonstrate the potential contributions of the M1 corticospinal system to withholding of actions and highlight that suppression of activity in M1 during movement preparation is not evenly distributed across different neural populations. NEW & NOTEWORTHY Recordings were made from identified corticospinal (PTN) and corticomotoneuronal (CM) cells during an instructed delay task. Activity of PTNs as a population was suppressed during the delay, in contrast to CM cells, which were facilitated. A minority of PTNs showed a rate profile that might be expected from inhibitory cells and could suggest that they play an active role in action suppression, most likely through downstream inhibitory circuits.
APA, Harvard, Vancouver, ISO, and other styles
23

Berman, Rebecca A., James Cavanaugh, Kerry McAlonan, and Robert H. Wurtz. "A circuit for saccadic suppression in the primate brain." Journal of Neurophysiology 117, no. 4 (April 1, 2017): 1720–35. http://dx.doi.org/10.1152/jn.00679.2016.

Full text
Abstract:
Saccades should cause us to see a blur as the eyes sweep across a visual scene. Specific brain mechanisms prevent this by producing suppression during saccades. Neuronal correlates of such suppression were first established in the visual superficial layers of the superior colliculus (SC) and subsequently have been observed in cortical visual areas, including the middle temporal visual area (MT). In this study, we investigated suppression in a recently identified circuit linking visual SC (SCs) to MT through the inferior pulvinar (PI). We examined responses to visual stimuli presented just before saccades to reveal a neuronal correlate of suppression driven by a copy of the saccade command, referred to as a corollary discharge. We found that visual responses were similarly suppressed in SCs, PI, and MT. Within each region, suppression of visual responses occurred with saccades into both visual hemifields, but only in the contralateral hemifield did this suppression consistently begin before the saccade (~100 ms). The consistency of the signal along the circuit led us to hypothesize that the suppression in MT was influenced by input from the SC. We tested this hypothesis in one monkey by inactivating neurons within the SC and found evidence that suppression in MT depends on corollary discharge signals from motor SC (SCi). Combining these results with recent findings in rodents, we propose a complete circuit originating with corollary discharge signals in SCi that produces suppression in visual SCs, PI, and ultimately, MT cortex. NEW & NOTEWORTHY A fundamental puzzle in visual neuroscience is that we frequently make rapid eye movements (saccades) but seldom perceive the visual blur accompanying each movement. We investigated neuronal correlates of this saccadic suppression by recording from and perturbing a recently identified circuit from brainstem to cortex. We found suppression at each stage, with evidence that it was driven by an internally generated signal. We conclude that this circuit contributes to neuronal suppression of visual signals during eye movements.
APA, Harvard, Vancouver, ISO, and other styles
24

Scannell, J. W., F. Sengpiel, M. J. Tovee, P. J. Benson, C. Blakemore, and M. P. Young. "Visual motion processing in the anterior ectosylvian sulcus of the cat." Journal of Neurophysiology 76, no. 2 (August 1, 1996): 895–907. http://dx.doi.org/10.1152/jn.1996.76.2.895.

Full text
Abstract:
1. Neurons that are selectively sensitive to the direction of motion of elongated contours have been found in several cortical areas in many species. However, in the striate cortex of the cat and monkey, and the extrastriate posteromedial lateral suprasylvian visual area of the cat, such cells are generally component motion selective, signaling only the direction of movement orthogonal to the preferred orientation; a direction that is not necessarily the same as the motion of the entire pattern or texture of which the cell's preferred contour is part. The primate extrastriate middle temporal area is the only cortical region currently known to contain a substantial population of pattern-motion-selective cells that respond to the shared vector of motion of mixtures of contours. 2. From analyzing published data on the connectivity of the cat's cortex, we predicted that the anterior ectosylvian visual area (AEV), situated within the anterior ectosylvian sulcus, might be a higher-order motion processing area and thus likely to contain pattern-motion-selective neurons. This paper presents the results of a study on neuronal responses in AEV. 3. Ninety percent of AEV cells that responded strongly to drifting grating and/or plaid stimuli were directionally selective (directionality index > 0.5). For this group, the mean directionality index was 0.75. Moreover, 55% of these cells were unequivocally classified as pattern motion selective and only one neuron was classified as definitely component motion selective. Thus high-level pattern motion coding occurs in the cat extrastriate cortex and is not limited to the primate middle temporal area. 4. AEV contains a heterogeneous population of directionally selective cells. There was no clear relation between the degree of directional selectivity for plaids or gratings and the degree of selectivity for pattern motion or component motion. Nevertheless, 28% of the highly responsive cells were both more strongly modulated by plaids than gratings and more pattern motion selective than component motion selective. Such cells could correspond to a population of "selection units" signaling the salience of local motion information. 5. AEV lacks global retinotopic order but the preferred direction of motion of neurons (rather than axis of motion, as in the middle temporal area and the posteromedial lateral suprasylvian visual area) is mapped systematically across the cortex. Our data are compatible with AEV being a nonretinotopic, feature-mapped area in which cells representing similar parts of "motion space" are brought together on the cortical sheet.
APA, Harvard, Vancouver, ISO, and other styles
25

Matsumura, M., T. Sawaguchi, and K. Kubota. "GABAergic inhibition of neuronal activity in the primate motor and premotor cortex during voluntary movement." Journal of Neurophysiology 68, no. 3 (September 1, 1992): 692–702. http://dx.doi.org/10.1152/jn.1992.68.3.692.

Full text
Abstract:
1. The functional role of GABAergic inhibition in neuronal activity in the forearm-hand area of the motor cortex and the postarcuate premotor cortex was studied while monkeys pressed and released a lever in response to a visual cue. gamma-Aminobutyric acid (GABA), its agonist muscimol (MUS), and its antagonist bicuculline methiodide (BMI), as well as acetylcholine, noradrenaline, and sodium glutamate, were applied iontophoretically to isolated single neurons whose activity was recorded via glass micropipettes that contained carbon fibers. 2. The activity from single neurons recorded in the motor and premotor cortex showed changes during the press or release of the lever by movement of the contralateral wrist. Discharge of most of the movement-related neurons (greater than 90%) was decreased or completely suppressed by iontophoretically applied GABA or MUS. 3. The activity of the movement-related neurons increased after application of BMI. In 70% of neurons tested, the activity during application of BMI was specifically enhanced at or near the phase of their peaks of activity, with or without a noticeable elevation in background activity. 4. About 10% of the neurons that had been unidirectional (i.e., neurons that showed a change in activity at either the lever-press or lever-release phase) became bidirectional (i.e., they showed changes in activity at both phases) when GABA transmission was blocked by the application of BMI. Bidirectional neurons also showed a reduction in the value of the directionality index. 5. One-half of the silent neurons, which had not shown any activity during either the lever-release or the lever-press phase, became active during the movement phases that followed application of BMI. 6. Most of the cortical neurons in layers II-VI in the motor area were found to be subject to GABAergic inhibition during voluntary movement. 7. We conclude that GABAergic inhibition plays a role in regulating the population of task-related neurons, and the levels of the task-related activity. GABAergic inhibition also improves directionality index in the motor cortex neurons to control the activity of target muscles.
APA, Harvard, Vancouver, ISO, and other styles
26

Hendrix, Claudia M., Brett A. Campbell, Benjamin J. Tittle, Luke A. Johnson, Kenneth B. Baker, Matthew D. Johnson, Gregory F. Molnar, and Jerrold L. Vitek. "Predictive encoding of motor behavior in the supplementary motor area is disrupted in parkinsonism." Journal of Neurophysiology 120, no. 3 (September 1, 2018): 1247–55. http://dx.doi.org/10.1152/jn.00306.2018.

Full text
Abstract:
Many studies suggest that Parkinson’s disease (PD) is associated with changes in neuronal activity patterns throughout the basal ganglia-thalamocortical motor circuit. There are limited electrophysiological data, however, describing how parkinsonism impacts the presupplementary motor area (pre-SMA) and SMA proper (SMAp), cortical areas known to be involved in movement planning and motor control. In this study, local field potentials (LFPs) were recorded in the pre-SMA/SMAp of a nonhuman primate during a visually cued reaching task. Recordings were made in the same subject in both the naive and parkinsonian state using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of parkinsonism. We found that in the naive animal, well before a go-cue providing instruction of reach onset and direction was given, LFP activity was dynamically modulated in both high (20–30 Hz) and low beta (10–20 Hz) bands, and the magnitude of this modulation (e.g., decrease/increase in beta amplitude for each band, respectively) correlated linearly with reaction time (RT) on a trial-to-trial basis, suggesting it may predictively encode for RT. Consistent with this hypothesis, we observed that this activity was more prominent within the pre-SMA compared with SMAp. In the parkinsonian state, however, pre-SMA/SMAp beta band modulation was disrupted, particularly in the high beta band, such that the predictive encoding of RT was significantly diminished. In addition, the predictive encoding of RT preferentially within pre-SMA over SMAp was lost. These findings add to our understanding of the role of pre-SMA/SMAp in motor behavior and suggest a fundamental role of these cortical areas in early preparatory and premovement processes that are altered in parkinsonism. NEW & NOTEWORTHY Goal-directed movements, such as reaching for an object, necessitate temporal preparation and organization of information processing within the basal ganglia-thalamocortical motor network. Impaired movement in parkinsonism is thought to be the result of pathophysiological activity disrupting information flow within this network. This work provides neurophysiological evidence linking altered motor preplanning processes encoded in pre-SMA/SMAp beta band modulation to the pathogenesis of motor disturbances in parkinsonism.
APA, Harvard, Vancouver, ISO, and other styles
27

Cloherty, Shaun L., Jacob L. Yates, Dina Graf, Gregory C. DeAngelis, and Jude F. Mitchell. "Motion Perception in the Common Marmoset." Cerebral Cortex 30, no. 4 (December 11, 2019): 2659–73. http://dx.doi.org/10.1093/cercor/bhz267.

Full text
Abstract:
Abstract Visual motion processing is a well-established model system for studying neural population codes in primates. The common marmoset, a small new world primate, offers unparalleled opportunities to probe these population codes in key motion processing areas, such as cortical areas MT and MST, because these areas are accessible for imaging and recording at the cortical surface. However, little is currently known about the perceptual abilities of the marmoset. Here, we introduce a paradigm for studying motion perception in the marmoset and compare their psychophysical performance with human observers. We trained two marmosets to perform a motion estimation task in which they provided an analog report of their perceived direction of motion with an eye movement to a ring that surrounded the motion stimulus. Marmosets and humans exhibited similar trade-offs in speed versus accuracy: errors were larger and reaction times were longer as the strength of the motion signal was reduced. Reverse correlation on the temporal fluctuations in motion direction revealed that both species exhibited short integration windows; however, marmosets had substantially less nondecision time than humans. Our results provide the first quantification of motion perception in the marmoset and demonstrate several advantages to using analog estimation tasks.
APA, Harvard, Vancouver, ISO, and other styles
28

Huang, C. S., M. A. Sirisko, H. Hiraba, G. M. Murray, and B. J. Sessle. "Organization of the primate face motor cortex as revealed by intracortical microstimulation and electrophysiological identification of afferent inputs and corticobulbar projections." Journal of Neurophysiology 59, no. 3 (March 1, 1988): 796–818. http://dx.doi.org/10.1152/jn.1988.59.3.796.

Full text
Abstract:
1. The technique of intracortical microstimulation (ICMS), supplemented by single-neuron recording, was used to carry out an extensive mapping of the face primary motor cortex. The ICMS study involved a total of 969 microelectrode penetrations carried out in 10 unanesthetized monkeys (Macaca fascicularis). 2. Monitoring of ICMS-evoked movements and associated electromyographic (EMG) activity revealed a general pattern of motor cortical organization. This was characterized by a representation of the facial musculature, which partially enclosed and overlapped the rostral, medial, and caudal borders of the more laterally located cortical regions representing the jaw and tongue musculatures. Responses were evoked at ICMS thresholds as low as 1 microA, and the latency of the suprathreshold EMG responses ranged from 10 to 45 ms. 3. Although contralateral movements predominated, a representation of ipsilateral movements was found, which was much more extensive than previously reported and which was intermingled with the contralateral representations in the anterior face motor cortex. 4. In examining the fine organizational pattern of the representations, we found clear evidence for multiple representation of a particular muscle, thus supporting other investigations of the motor cortex, which indicate that multiple, yet discrete, efferent microzones represent an essential organizational principle of the motor cortex. 5. The close interrelationship of the representations of all three muscle groups, as well as the presence of a considerable ipsilateral representation, may allow for the necessary integration of unilateral or bilateral activities of the numerous face, jaw, and tongue muscles, which is a feature of many of the movement patterns in which these various muscles participate. 6. In six of these same animals, plus an additional two animals, single-neuron recordings were made in the motor and adjacent sensory cortices in the anesthetized state. These neurons were electrophysiologically identified as corticobulbar projection neurons or as nonprojection neurons responsive to superficial or deep orofacial afferent inputs. The rostral, medial, lateral, and caudal borders of the face motor cortex were delineated with greater definition by ICMS and these electrophysiological procedures than by cytoarchitectonic features alone. We noted that there was an approximate fit in area 4 between the extent of projection neurons and field potentials anti-dromically evoked from the brain stem and the extent of positive ICMS sites.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
29

Mitchell, Jude F., Nicholas J. Priebe, and Cory T. Miller. "Motion dependence of smooth pursuit eye movements in the marmoset." Journal of Neurophysiology 113, no. 10 (June 2015): 3954–60. http://dx.doi.org/10.1152/jn.00197.2015.

Full text
Abstract:
Smooth pursuit eye movements stabilize slow-moving objects on the retina by matching eye velocity with target velocity. Two critical components are required to generate smooth pursuit: first, because it is a voluntary eye movement, the subject must select a target to pursue to engage the tracking system; and second, generating smooth pursuit requires a moving stimulus. We examined whether this behavior also exists in the common marmoset, a New World primate that is increasingly attracting attention as a genetic model for mental disease and systems neuroscience. We measured smooth pursuit in two marmosets, previously trained to perform fixation tasks, using the standard Rashbass step-ramp pursuit paradigm. We first measured the aspects of visual motion that drive pursuit eye movements. Smooth eye movements were in the same direction as target motion, indicating that pursuit was driven by target movement rather than by displacement. Both the open-loop acceleration and closed-loop eye velocity exhibited a linear relationship with target velocity for slow-moving targets, but this relationship declined for higher speeds. We next examined whether marmoset pursuit eye movements depend on an active engagement of the pursuit system by measuring smooth eye movements evoked by small perturbations of motion from fixation or during pursuit. Pursuit eye movements were much larger during pursuit than from fixation, indicating that pursuit is actively gated. Several practical advantages of the marmoset brain, including the accessibility of the middle temporal (MT) area and frontal eye fields at the cortical surface, merit its utilization for studying pursuit movements.
APA, Harvard, Vancouver, ISO, and other styles
30

Bruce, C. J., M. E. Goldberg, M. C. Bushnell, and G. B. Stanton. "Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements." Journal of Neurophysiology 54, no. 3 (September 1, 1985): 714–34. http://dx.doi.org/10.1152/jn.1985.54.3.714.

Full text
Abstract:
We studied single neurons in the frontal eye fields of awake macaque monkeys and compared their activity with the saccadic eye movements elicited by microstimulation at the sites of these neurons. Saccades could be elicited from electrical stimulation in the cortical gray matter of the frontal eye fields with currents as small as 10 microA. Low thresholds for eliciting saccades were found at the sites of cells with presaccadic activity. Presaccadic neurons classified as visuomovement or movement were most associated with low (less than 50 microA) thresholds. High thresholds (greater than 100 microA) or no elicited saccades were associated with other classes of frontal eye field neurons, including neurons responding only after saccades and presaccadic neurons, classified as purely visual. Throughout the frontal eye fields, the optimal saccade for eliciting presaccadic neural activity at a given recording site predicted both the direction and amplitude of the saccades that were evoked by microstimulation at that site. In contrast, the movement fields of postsaccadic cells were usually different from the saccades evoked by stimulation at the sites of such cells. We defined the low-threshold frontal eye fields as cortex yielding saccades with stimulation currents less than or equal to 50 microA. It lies along the posterior portion of the arcuate sulcus and is largely contained in the anterior bank of that sulcus. It is smaller than Brodmann's area 8 but corresponds with the union of Walker's cytoarchitectonic areas 8A and 45. Saccade amplitude was topographically organized across the frontal eye fields. Amplitudes of elicited saccades ranged from less than 1 degree to greater than 30 degrees. Smaller saccades were evoked from the ventrolateral portion, and larger saccades were evoked from the dorsomedial portion. Within the arcuate sulcus, evoked saccades were usually larger near the lip and smaller near the fundus. Saccade direction had no global organization across the frontal eye fields; however, saccade direction changed in systematic progressions with small advances of the microelectrode, and all contralateral saccadic directions were often represented in a single electrode penetration down the bank of the arcuate sulcus. Furthermore, the direction of change in these progressions periodically reversed, allowing particular saccade directions to be multiply represented in nearby regions of cortex.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
31

Nudo, R. J., and G. W. Milliken. "Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys." Journal of Neurophysiology 75, no. 5 (May 1, 1996): 2144–49. http://dx.doi.org/10.1152/jn.1996.75.5.2144.

Full text
Abstract:
1. Intracortical microstimulation (ICMS) techniques were used to derive detailed maps of distal forelimb movement representations in primary motor cortex (area 4) of adult squirrel monkeys before and a few months after a focal ischemic infarct. 2. Infarcts caused a marked but transient deficit in use of the contralateral hand, as evidenced by increased use of the ipsilateral hand, and reduced performance on a task requiring skilled digit use. 3. Infarcts resulted in a widespread reduction in the areal extent of digit representations adjacent to the lesion, and apparent increases in adjacent proximal representations. 4. We conclude that substantial functional reorganization occurs in primary motor cortex of adult primates following a focal ischemic infarct, but at least in the absence of postinfarct training, the movements formerly represented in the infarcted zone do not reappear in adjacent cortical regions.
APA, Harvard, Vancouver, ISO, and other styles
32

Vitek, J. L., J. Ashe, M. R. DeLong, and Y. Kaneoke. "Microstimulation of primate motor thalamus: somatotopic organization and differential distribution of evoked motor responses among subnuclei." Journal of Neurophysiology 75, no. 6 (June 1, 1996): 2486–95. http://dx.doi.org/10.1152/jn.1996.75.6.2486.

Full text
Abstract:
1. The functional organization of motor responses to microstimulation throughout the primate “motor” thalamus including nucleus ventralis lateralis, pars oralis (VLo); nucleus ventralis posterior lateralis, pars oralis (VPLo); nucleus ventralis lateralis, pars caudalis (VLc); and portions of ventralis anterior (VA) and area X, was systematically studied in awake monkeys. A total of 2,021 sites were examined for their response to microstimulation. Of these, 1,123 were histologically verified as to their location within the motor thalamus. At or near each site, isolated neurons were examined for their responses to somatosensory examination and active movement (n = 1,272). This study was carried out as part of a larger study examining the responses of neurons in the motor thalamus to somatosensory examination, torque-induced limb perturbations, and active movement in a visuomotor step-tracking task. 2. Microstimulation at < or = 40 microA evoked movements in the contralateral limbs, trunk, or face. Evoked movements of the limb were generally maximal about a single joint. 3. There was a differential response to microstimulation between subnuclei of the motor thalamus. In order of decreasing frequency, the percentages of sites within each subnucleus from which movements were evoked were as follows: VPLo, 93% (449 of 483); VLo, 21% (57 of 272); VLc, 11% (15 of 140); VA, 1% (1 of 85); and reticular nucleus, 0% (0 of 65). In VPLc, 44% (34 of 78) of sites examined were microexcitable. However, these were almost all within 500 microns of the border of VPLo, suggesting they may have occurred as a result of current spread to adjacent VPLo. Although area X was not sampled in its entirety, it did not appear to be microexcitable. 4. Microexcitable responses had a somatotopic organization, similar to that for neuronal responses to sensorimotor examination, with leg responses found most laterally and arm and face responses found progressively more medially. 5. Zones in VPLo generally ranging from 500 to 1,500 microns were found in which microstimulation resulted in the same motor response. These microexcitable zones resemble those described for the striatum and were termed thalamic microexcitable zones (TMZ). TMZs also resemble cortical efferent zones in that both are somatotopically organized, may affect a single muscle or group of muscles, have low thresholds for microstimulation with sharp boundaries that lie adjacent to other microexcitable zones with the opposite effects, and are of approximately the same dimension. 6. This study suggest that a fundamental unit of motor organization, i.e., single muscle or joint, is preserved at the thalamic level in the form of TMZs, and that these fundamental units of organization may contribute to the modular organization of the cortex.
APA, Harvard, Vancouver, ISO, and other styles
33

Dum, Richard P., David J. Levinthal, and Peter L. Strick. "The mind–body problem: Circuits that link the cerebral cortex to the adrenal medulla." Proceedings of the National Academy of Sciences 116, no. 52 (December 23, 2019): 26321–28. http://dx.doi.org/10.1073/pnas.1902297116.

Full text
Abstract:
Which regions of the cerebral cortex are the origin of descending commands that influence internal organs? We used transneuronal transport of rabies virus in monkeys and rats to identify regions of cerebral cortex that have multisynaptic connections with a major sympathetic effector, the adrenal medulla. In rats, we also examined multisynaptic connections with the kidney. In monkeys, the cortical influence over the adrenal medulla originates from 3 distinct networks that are involved in movement, cognition, and affect. Each of these networks has a human equivalent. The largest influence originates from a motor network that includes all 7 motor areas in the frontal lobe. These motor areas are involved in all aspects of skeletomotor control, from response selection to motor preparation and movement execution. The motor areas provide a link between body movement and the modulation of stress. The cognitive and affective networks are located in regions of cingulate cortex. They provide a link between how we think and feel and the function of the adrenal medulla. Together, the 3 networks can mediate the effects of stress and depression on organ function and provide a concrete neural substrate for some psychosomatic illnesses. In rats, cortical influences over the adrenal medulla and the kidney originate mainly from 2 motor areas and adjacent somatosensory cortex. The cognitive and affective networks, present in monkeys, are largely absent in rats. Thus, nonhuman primate research is essential to understand the neural substrate that links cognition and affect to the function of internal organs.
APA, Harvard, Vancouver, ISO, and other styles
34

Feingold, Joseph, Theresa M. Desrochers, Naotaka Fujii, Ray Harlan, Patrick L. Tierney, Hideki Shimazu, Ken-ichi Amemori, and Ann M. Graybiel. "A system for recording neural activity chronically and simultaneously from multiple cortical and subcortical regions in nonhuman primates." Journal of Neurophysiology 107, no. 7 (April 1, 2012): 1979–95. http://dx.doi.org/10.1152/jn.00625.2011.

Full text
Abstract:
A major goal of neuroscience is to understand the functions of networks of neurons in cognition and behavior. Recent work has focused on implanting arrays of ∼100 immovable electrodes or smaller numbers of individually adjustable electrodes, designed to target a few cortical areas. We have developed a recording system that allows the independent movement of hundreds of electrodes chronically implanted in several cortical and subcortical structures. We have tested this system in macaque monkeys, recording simultaneously from up to 127 electrodes in 14 brain regions for up to one year at a time. A key advantage of the system is that it can be used to sample different combinations of sites over prolonged periods, generating multiple snapshots of network activity from a single implant. Used in conjunction with microstimulation and injection methods, this versatile system represents a powerful tool for studying neural network activity in the primate brain.
APA, Harvard, Vancouver, ISO, and other styles
35

Ackermann, Hermann, Steffen R. Hage, and Wolfram Ziegler. "Phylogenetic reorganization of the basal ganglia: A necessary, but not the only, bridge over a primate Rubicon of acoustic communication." Behavioral and Brain Sciences 37, no. 6 (December 2014): 577–604. http://dx.doi.org/10.1017/s0140525x1400003x.

Full text
Abstract:
AbstractIn this response to commentaries, we revisit the two main arguments of our target article. Based on data drawn from a variety of research areas – vocal behavior in nonhuman primates, speech physiology and pathology, neurobiology of basal ganglia functions, motor skill learning, paleoanthropological concepts – the target article, first, suggests a two-stage model of the evolution of the crucial motor prerequisites of spoken language within the hominin lineage: (1) monosynaptic refinement of the projections of motor cortex to brainstem nuclei steering laryngeal muscles, and (2) subsequent “vocal-laryngeal elaboration” of cortico-basal ganglia circuits, driven by human-specific FOXP2 mutations. Second, as concerns the ontogenetic development of verbal communication, age-dependent interactions between the basal ganglia and their cortical targets are assumed to contribute to the time course of the acquisition of articulate speech. Whereas such a phylogenetic reorganization of cortico-striatal circuits must be considered a necessary prerequisite for ontogenetic speech acquisition, the 30 commentaries – addressing the whole range of data sources referred to – point at several further aspects of acoustic communication which have to be added to or integrated with the presented model. For example, the relationships between vocal tract movement sequencing – the focus of the target article – and rhythmical structures of movement organization, the connections between speech motor control and the central-auditory and central-visual systems, the impact of social factors upon the development of vocal behavior (in nonhuman primates and in our species), and the interactions of ontogenetic speech acquisition – based upon FOXP2-driven structural changes at the level of the basal ganglia – with preceding subvocal stages of acoustic communication as well as higher-order (cognitive) dimensions of phonological development. Most importantly, thus, several promising future research directions unfold from these contributions – accessible to clinical studies and functional imaging in our species as well as experimental investigations in nonhuman primates.
APA, Harvard, Vancouver, ISO, and other styles
36

Hinkley, Leighton B., Leah A. Krubitzer, Srikantan S. Nagarajan, and Elizabeth A. Disbrow. "Sensorimotor Integration in S2, PV, and Parietal Rostroventral Areas of the Human Sylvian Fissure." Journal of Neurophysiology 97, no. 2 (February 2007): 1288–97. http://dx.doi.org/10.1152/jn.00733.2006.

Full text
Abstract:
We explored cortical fields on the upper bank of the Sylvian fissure using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to measure responses to two stimulus conditions: a tactile stimulus applied to the right hand and a tactile stimulus with an additional movement component. fMRI data revealed bilateral activation in S2/PV in response to tactile stimulation alone and source localization of MEG data identified a peak latency of 122 ms in a similar location. During the tactile and movement condition, fMRI revealed bilateral activation of S2/PV and an anterior field, while MEG data contained one source at a location identical to the tactile-only condition with a latency of 96 ms and a second rostral source with a longer latency (136 ms). Furthermore, Region-of-interest analysis of fMRI data identified increased bilateral activation in S2/PV and the rostral area in the tactile and movement condition compared with the tactile only condition. An area of cortex immediately rostral to S2/PV in monkeys has been called the parietal rostroventral area (PR). Based on location, latency, and conditions under which this field was active, we have termed the rostral area of human cortex PR as well. These findings indicate that humans, like non-human primates, have a cortical field rostral to PV that processes proprioceptive inputs, both S2/PV and PR play a role in somatomotor integration necessary for manual exploration and object discrimination, and there is a temporal hierarchy of processing with S2/PV active prior to PR.
APA, Harvard, Vancouver, ISO, and other styles
37

Srihasam, Krishna, Daniel Bullock, and Stephen Grossberg. "Target Selection by the Frontal Cortex during Coordinated Saccadic and Smooth Pursuit Eye Movements." Journal of Cognitive Neuroscience 21, no. 8 (August 2009): 1611–27. http://dx.doi.org/10.1162/jocn.2009.21139.

Full text
Abstract:
Oculomotor tracking of moving objects is an important component of visually based cognition and planning. Such tracking is achieved by a combination of saccades and smooth-pursuit eye movements. In particular, the saccadic and smooth-pursuit systems interact to often choose the same target, and to maximize its visibility through time. How do multiple brain regions interact, including frontal cortical areas, to decide the choice of a target among several competing moving stimuli? How is target selection information that is created by a bias (e.g., electrical stimulation) transferred from one movement system to another? These saccade–pursuit interactions are clarified by a new computational neural model, which describes interactions between motion processing areas: the middle temporal area, the middle superior temporal area, the frontal pursuit area, and the dorsal lateral pontine nucleus; saccade specification, selection, and planning areas: the lateral intraparietal area, the frontal eye fields, the substantia nigra pars reticulata, and the superior colliculus; the saccadic generator in the brain stem; and the cerebellum. Model simulations explain a broad range of neuroanatomical and neurophysiological data. These results are in contrast with the simplest parallel model with no interactions between saccades and pursuit other than common-target selection and recruitment of shared motoneurons. Actual tracking episodes in primates reveal multiple systematic deviations from predictions of the simplest parallel model, which are explained by the current model.
APA, Harvard, Vancouver, ISO, and other styles
38

Tankus, Ariel, and Itzhak Fried. "Visuomotor Coordination and Motor Representation by Human Temporal Lobe Neurons." Journal of Cognitive Neuroscience 24, no. 3 (March 2012): 600–610. http://dx.doi.org/10.1162/jocn_a_00160.

Full text
Abstract:
The division of cortical visual processing into distinct dorsal and ventral streams is a key concept in primate neuroscience [Goodale, M. A., & Milner, A. D. Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25, 1992; Steele, G., Weller, R., & Cusick, C. Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys. Journal of Comparative Neurology, 306, 495–520, 1991]. The ventral stream is usually characterized as a “What” pathway, whereas the dorsal stream is implied in mediating spatial perception (“Where”) and visually guided actions (“How”). A subpathway emerging from the dorsal stream and projecting to the medial-temporal lobe has been identified [Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12, 217–230, 2011; Cavada, C., & Goldman-Raiuc, P. S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory cortico-cortical connections. Journal of Comparative Neurology, 287, 393–421, 1989]. The current article studies the coordination of visual information typically associated with the dorsal stream (“Where”), with planned movements, focusing on the temporal lobe. We recorded extracellular activity from 565 cells in the human medial-temporal and frontal lobes while 13 patients performed cued hand movements with visual feedback (visuomotor task), without feedback (motor task), or observed visual feedback without motor movement (visual-only task). We discovered two different neural populations in the human medial-temporal lobe. One consists of motor-like neurons representing hand position, speed or acceleration during the motor task but not during the visuomotor or visual tasks. The other is specific to the parahippocampal gyrus (an area known to process visual motion [Gur, M., & Snodderly, D. M. Direction selectivity in V1 of alert monkeys: Evidence for parallel pathways for motion processing. Journal of Physiology, 585, 383–400, 2007; Sato, N., & Nakamura, K. Visual response properties of neurons in the parahippocampal cortex of monkeys. Journal of Neurophysiology, 90, 876–886, 2003]) and encodes speed, acceleration, or direction of hand movements, but only during the visuomotor task: neither during visual-only nor during motor tasks. These findings suggest a functional basis for the anatomical subpathway between the dorsal stream and the medial-temporal lobe. Similar to the recent expansion of the motor control process into the sensory cortex [Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., et al. Motor control by sensory cortex. Science, 330, 1240–1243, 2010], our findings render the human medial-temporal lobe an important junction in the process of planning and execution of motor acts whether internally or externally (visually) driven. Thus, the medial-temporal lobe might serve as an integration node between the two processing streams. Our findings thus shed new light on the brain mechanisms underlying visuomotor coordination which is a crucial capacity for everyday survival, whether it is identifying and picking up food, sliding a key into a lock, driving a vehicle, or escaping a predator.
APA, Harvard, Vancouver, ISO, and other styles
39

Paninski, Liam, Matthew R. Fellows, Nicholas G. Hatsopoulos, and John P. Donoghue. "Spatiotemporal Tuning of Motor Cortical Neurons for Hand Position and Velocity." Journal of Neurophysiology 91, no. 1 (January 2004): 515–32. http://dx.doi.org/10.1152/jn.00587.2002.

Full text
Abstract:
A pursuit-tracking task (PTT) and multielectrode recordings were used to investigate the spatiotemporal encoding of hand position and velocity in primate primary motor cortex (MI). Continuous tracking of a randomly moving visual stimulus provided a broad sample of velocity and position space, reduced statistical dependencies between kinematic variables, and minimized the nonstationarities that are found in typical “step-tracking” tasks. These statistical features permitted the application of signal-processing and information-theoretic tools for the analysis of neural encoding. The multielectrode method allowed for the comparison of tuning functions among simultaneously recorded cells. During tracking, MI neurons showed heterogeneity of position and velocity coding, with markedly different temporal dynamics for each. Velocity-tuned neurons were approximately sinusoidally tuned for direction, with linear speed scaling; other cells showed sinusoidal tuning for position, with linear scaling by distance. Velocity encoding led behavior by about 100 ms for most cells, whereas position tuning was more broadly distributed, with leads and lags suggestive of both feedforward and feedback coding. Individual cells encoded velocity and position weakly, with comparable amounts of information about each. Linear regression methods confirmed that random, 2-D hand trajectories can be reconstructed from the firing of small ensembles of randomly selected neurons (3-19 cells) within the MI arm area. These findings demonstrate that MI carries information about evolving hand trajectory during visually guided pursuit tracking, including information about arm position both during and after its specification. However, the reconstruction methods used here capture only the low-frequency components of movement during the PTT. Hand motion signals appear to be represented as a distributed code in which diverse information about position and velocity is available within small regions of MI.
APA, Harvard, Vancouver, ISO, and other styles
40

Vaidya, Mukta, Karthikeyan Balasubramanian, Joshua Southerland, Islam Badreldin, Ahmed Eleryan, Kelsey Shattuck, Suchin Gururangan, et al. "Emergent coordination underlying learning to reach to grasp with a brain-machine interface." Journal of Neurophysiology 119, no. 4 (April 1, 2018): 1291–304. http://dx.doi.org/10.1152/jn.00982.2016.

Full text
Abstract:
The development of coordinated reach-to-grasp movement has been well studied in infants and children. However, the role of motor cortex during this development is unclear because it is difficult to study in humans. We took the approach of using a brain-machine interface (BMI) paradigm in rhesus macaques with prior therapeutic amputations to examine the emergence of novel, coordinated reach to grasp. Previous research has shown that after amputation, the cortical area previously involved in the control of the lost limb undergoes reorganization, but prior BMI work has largely relied on finding neurons that already encode specific movement-related information. In this study, we taught macaques to cortically control a robotic arm and hand through operant conditioning, using neurons that were not explicitly reach or grasp related. Over the course of training, stereotypical patterns emerged and stabilized in the cross-covariance between the reaching and grasping velocity profiles, between pairs of neurons involved in controlling reach and grasp, and to a comparable, but lesser, extent between other stable neurons in the network. In fact, we found evidence of this structured coordination between pairs composed of all combinations of neurons decoding reach or grasp and other stable neurons in the network. The degree of and participation in coordination was highly correlated across all pair types. Our approach provides a unique model for studying the development of novel, coordinated reach-to-grasp movement at the behavioral and cortical levels. NEW & NOTEWORTHY Given that motor cortex undergoes reorganization after amputation, our work focuses on training nonhuman primates with chronic amputations to use neurons that are not reach or grasp related to control a robotic arm to reach to grasp through the use of operant conditioning, mimicking early development. We studied the development of a novel, coordinated behavior at the behavioral and cortical level, and the neural plasticity in M1 associated with learning to use a brain-machine interface.
APA, Harvard, Vancouver, ISO, and other styles
41

Naito, Eiichi, Per E. Roland, Christian Grefkes, H. J. Choi, Simon Eickhoff, Stefan Geyer, Karl Zilles, and H. Henrik Ehrsson. "Dominance of the Right Hemisphere and Role of Area 2 in Human Kinesthesia." Journal of Neurophysiology 93, no. 2 (February 2005): 1020–34. http://dx.doi.org/10.1152/jn.00637.2004.

Full text
Abstract:
We have previously shown that motor areas are engaged when subjects experience illusory limb movements elicited by tendon vibration. However, traditionally cytoarchitectonic area 2 is held responsible for kinesthesia. Here we use functional magnetic resonance imaging and cytoarchitectural mapping to examine whether area 2 is engaged in kinesthesia, whether it is engaged bilaterally because area 2 in non-human primates has strong callosal connections, which other areas are active members of the network for kinesthesia, and if there is a dominance for the right hemisphere in kinesthesia as has been suggested. Ten right-handed blindfolded healthy subjects participated. The tendon of the extensor carpi ulnaris muscles of the right or left hand was vibrated at 80 Hz, which elicited illusory palmar flexion in an immobile hand (illusion). As control we applied identical stimuli to the skin over the processus styloideus ulnae, which did not elicit any illusions (vibration). We found robust activations in cortical motor areas [areas 4a, 4p, 6; dorsal premotor cortex (PMD) and bilateral supplementary motor area (SMA)] and ipsilateral cerebellum during kinesthetic illusions (illusion-vibration). The illusions also activated contralateral area 2 and right area 2 was active in common irrespective of illusions of right or left hand. Right areas 44, 45, anterior part of intraparietal region (IP1) and caudo-lateral part of parietal opercular region (OP1), cortex rostral to PMD, anterior insula and superior temporal gyrus were also activated in common during illusions of right or left hand. These right-sided areas were significantly more activated than the corresponding areas in the left hemisphere. The present data, together with our previous results, suggest that human kinesthesia is associated with a network of active brain areas that consists of motor areas, cerebellum, and the right fronto-parietal areas including high-order somatosensory areas. Furthermore, our results provide evidence for a right hemisphere dominance for perception of limb movement.
APA, Harvard, Vancouver, ISO, and other styles
42

Grannan, Benjamin L., Wenhua Zhang, Songjun William Li, and Ziv Williams. "144 Prefrontal Neurons Modulate Motor Behavior by Targeting Distinct Mediolateral Cortical Sites." Neurosurgery 64, CN_suppl_1 (August 24, 2017): 234. http://dx.doi.org/10.1093/neuros/nyx417.144.

Full text
Abstract:
Abstract INTRODUCTION Injury to the prefrontal cortex (PFC) can result in maladaptive and disinhibited behavior. However, the neural basis for behavioral control of the prefrontal cortex remains largely unknown. Here, we explored the role of the dorsolateral PFC (dlPFC) in orchestrating motor behavior by conducting simultaneous, invasive recordings of the DLPFC, supplementary motor area (SMA), and dorsal premotor (PMd) in primates. METHODS Cortical surface microarrays were implanted into the dlPFC, SMA, and PMd of two monkeys who then participated in a reward-based motor task. For each trial, a monkey received visual instructional cues correlating to a two-step joystick movement plan. They then received cues to either initiate or withhold each step of the plan. Coherence and Granger causality (GC) analysis of the local field potential (LFP) data was used to characterize the interactions between the cortical sites during various behavioral scenarios (initiation, withholding, continuing, or aborting an initiated motor task). RESULTS >Theta band (3-7 Hz) coherence activity was found to most greatly distinguish the four behavioral scenarios. Initiation and continuation cues were associated with increased dlPFC-SMA and dlPFC-PMd coherence (t-test, P < 10e-12), but a more significant increase was seen in dlPFC-SMA compared to dlPFC-PMd (ANOVA, P < 0.001). Inhibition of movement initiation was characterized by dlPFC-SMA coherence increase but lack of dlPFC-PMd coherence change (t-test, P = 0.9). Aborting an already initiated movement sequence was associated with a global decrement in coherence (t-test, P < 10e-35). GC analysis demonstrated that these coherence changes were generally associated with an increase of information flow from the PFC to the more distal mediolateral frontal sites. CONCLUSION We discovered two functional circuitries between the pre-frontal and pre-motor cortices that distinctly control initiation and inhibition of motor behavior. These findings provide an important circuit-based model on which to understand and prospectively treat neuro-cognitive disorders characterized by disinhibition and maladaptation.
APA, Harvard, Vancouver, ISO, and other styles
43

Johnston, Kevin D., Kevin Barker, Lauren Schaeffer, David Schaeffer, and Stefan Everling. "Methods for chair restraint and training of the common marmoset on oculomotor tasks." Journal of Neurophysiology 119, no. 5 (May 1, 2018): 1636–46. http://dx.doi.org/10.1152/jn.00866.2017.

Full text
Abstract:
The oculomotor system is the most thoroughly understood sensorimotor system in the brain, due in large part to electrophysiological studies carried out in macaque monkeys trained to perform oculomotor tasks. A disadvantage of the macaque model is that many cortical oculomotor areas of interest lie within sulci, making high-density array and laminar recordings impractical. Many techniques of molecular biology developed in rodents, such as optogenetic manipulation of neuronal subtypes, are also limited in this species. The common marmoset ( Callithrix jacchus) possesses a smooth cortex, allowing easy access to frontoparietal oculomotor areas, and may bridge the gap between systems neuroscience in macaques and molecular techniques. Techniques for restraint, training, and neural recording in these animals have been well developed in auditory neuroscience. Those for oculomotor neuroscience, however, remain at a relatively early stage. In this article we provide details of a custom-designed restraint chair for marmosets, a combination head restraint/recording chamber allowing access to cortical oculomotor areas and providing stability suitable for eye movement and neural recordings, as well as a training protocol for oculomotor tasks. We additionally report the results of a psychophysical study in marmosets trained to perform a saccade task using these methods, showing that, as in rhesus and humans, marmosets exhibit a “gap effect,” a decrease in reaction time when the fixation stimulus is removed before the onset of a visual saccade target. These results are the first evidence of this effect in marmosets and support the common marmoset model for neurophysiological investigations of oculomotor control. NEW & NOTEWORTHY The ability to carry out neuronal recordings in behaving primates has provided a wealth of information regarding the neural circuits underlying the control of eye movements. Such studies require restraint of the animal within a primate chair, head fixation, methods of acclimating the animals to this restraint, and the use of operant conditioning methods for training on oculomotor tasks. In contrast to the macaque model, relatively few studies have reported in detail methods for use in the common marmoset. In this report we detail custom-designed equipment and methods by which we have used to successfully train head-restrained marmosets to perform basic oculomotor tasks.
APA, Harvard, Vancouver, ISO, and other styles
44

Wyder, Melanie T., Dino P. Massoglia, and Terrence R. Stanford. "Quantitative Assessment of the Timing and Tuning of Visual-Related, Saccade-Related, and Delay Period Activity in Primate Central Thalamus." Journal of Neurophysiology 90, no. 3 (September 2003): 2029–52. http://dx.doi.org/10.1152/jn.00064.2003.

Full text
Abstract:
This study investigates the visuomotor properties of several nuclei within primate central thalamus. These nuclei, which might be considered components of an oculomotor thalamus (OcTh), are found within and at the borders of the internal medullary lamina. These nuclei have extensive anatomical links to numerous cortical and subcortical visuomotor areas including the frontal eye fields, supplementary eye fields, prefrontal cortex, posterior parietal cortex, caudate, and substantia nigra pars reticulata. Previous single-unit recordings have shown that neurons in OcTh respond during self-paced spontaneous saccades and to visual stimuli in the absence of any specific behavioral requirement, but a thorough account of the activity of these areas in association with voluntary, goal-directed movement is lacking. We recorded activity from single neurons in primate central thalamus during performance of a visually guided delayed saccade task. The sample consisted primarily of neurons from the centrolateral and paracentral intralaminar nuclei and paralaminar regions of the ventral anterior and ventral lateral nuclei. Neurons responsive to sensory, delay, and motor phases of the task were observed in each region, with many neurons modulated during multiple task periods. Across the population, variation in the quality and timing of saccade-contingent activity suggested participation in functions ranging from generating a saccade (presaccadic) to registering its consequences (e.g., efference copy). Finally, many neurons were found to carry spatial information during the delay period, suggesting a role for central thalamus in higher-order aspects of visuomotor control.
APA, Harvard, Vancouver, ISO, and other styles
45

Lobel, Elie, Justus F. Kleine, Denis Le Bihan, Anne Leroy-Willig, and Alain Berthoz. "Functional MRI of Galvanic Vestibular Stimulation." Journal of Neurophysiology 80, no. 5 (November 1, 1998): 2699–709. http://dx.doi.org/10.1152/jn.1998.80.5.2699.

Full text
Abstract:
Lobel, Elie, Justus F. Kleine, Denis Le Bihan, Anne Leroy-Willig A, and Alain Berthoz. Functional MRI of galvanic vestibular stimulation. J. Neurophysiol. 80: 2699–2709, 1998. The cortical processing of vestibular information is not hierarchically organized as the processing of signals in the visual and auditory modalities. Anatomic and electrophysiological studies in the monkey revealed the existence of multiple interconnected areas in which vestibular signals converge with visual and/or somatosensory inputs. Although recent functional imaging studies using caloric vestibular stimulation (CVS) suggest that vestibular signals in the human cerebral cortex may be similarly distributed, some areas that apparently form essential constituents of the monkey cortical vestibular system have not yet been identified in humans. Galvanic vestibular stimulation (GVS) has been used for almost 200 years for the exploration of the vestibular system. By contrast with CVS, which mediates its effects mainly via the semicircular canals (SCC), GVS has been shown to act equally on SCC and otolith afferents. Because galvanic stimuli can be controlled precisely, GVS is suited ideally for the investigation of the vestibular cortex by means of functional imaging techniques. We studied the brain areas activated by sinusoidal GVS using functional magnetic resonance imaging (fMRI). An adapted set-up including LC filters tuned for resonance at the Larmor frequency protected the volunteers against burns through radio-frequency pickup by the stimulation electrodes. Control experiments ensured that potentially harmful effects or degradation of the functional images did not occur. Six male, right-handed volunteers participated in the study. In all of them, GVS induced clear perceptions of body movement and moderate cutaneous sensations at the electrode sites. Comparison with anatomic data on the primate cortical vestibular system and with imaging studies using somatosensory stimulation indicated that most activation foci could be related to the vestibular component of the stimulus. Activation appeared in the region of the temporo-parietal junction, the central sulcus, and the intraparietal sulcus. These areas may be analogous to areas PIVC, 3aV, and 2v, respectively, which form in the monkey brain, the “inner vestibular circle”. Activation also occurred in premotor regions of the frontal lobe. Although undetected in previous imaging-studies using CVS, involvement of these areas could be predicted from anatomic data showing projections from the anterior ventral part of area 6 to the inner vestibular circle and the vestibular nuclei. Using a simple paradigm, we showed that GVS can be implemented safely in the fMRI environment. Manipulating stimulus waveforms and thus the GVS-induced subjective vestibular sensations in future imaging studies may yield further insights into the cortical processing of vestibular signals.
APA, Harvard, Vancouver, ISO, and other styles
46

Jerbi, Karim, Jean-Philippe Lachaux, Karim N′Diaye, Dimitrios Pantazis, Richard M. Leahy, Line Garnero, and Sylvain Baillet. "Coherent neural representation of hand speed in humans revealed by MEG imaging." Proceedings of the National Academy of Sciences 104, no. 18 (April 18, 2007): 7676–81. http://dx.doi.org/10.1073/pnas.0609632104.

Full text
Abstract:
The spiking activity of single neurons in the primate motor cortex is correlated with various limb movement parameters, including velocity. Recent findings obtained using local field potentials suggest that hand speed may also be encoded in the summed activity of neuronal populations. At this macroscopic level, the motor cortex has also been shown to display synchronized rhythmic activity modulated by motor behavior. Yet whether and how neural oscillations might be related to limb speed control is still poorly understood. Here, we applied magnetoencephalography (MEG) source imaging to the ongoing brain activity in subjects performing a continuous visuomotor (VM) task. We used coherence and phase synchronization to investigate the coupling between the estimated activity throughout the brain and the simultaneously recorded instantaneous hand speed. We found significant phase locking between slow (2- to 5-Hz) oscillatory activity in the contralateral primary motor cortex and time-varying hand speed. In addition, we report long-range task-related coupling between primary motor cortex and multiple brain regions in the same frequency band. The detected large-scale VM network spans several cortical and subcortical areas, including structures of the frontoparietal circuit and the cerebello–thalamo–cortical pathway. These findings suggest a role for slow coherent oscillations in mediating neural representations of hand kinematics in humans and provide further support for the putative role of long-range neural synchronization in large-scale VM integration. Our findings are discussed in the context of corticomotor communication, distributed motor encoding, and possible implications for brain–machine interfaces.
APA, Harvard, Vancouver, ISO, and other styles
47

Scott, T. R., C. R. Plata-Salaman, V. L. Smith, and B. K. Giza. "Gustatory neural coding in the monkey cortex: stimulus intensity." Journal of Neurophysiology 65, no. 1 (January 1, 1991): 76–86. http://dx.doi.org/10.1152/jn.1991.65.1.76.

Full text
Abstract:
1. We analyzed the activity of single neurons in gustatory cortex of alert cynomolgus monkeys in response to a range of stimulus intensities. Chemicals were deionized water, fruit juice, and several concentrations of the four prototypical taste stimuli: 10(-3)-1.0 M glucose, 10(-3)-1.0 M NaCl, 10(-4)-3 x 10(-2) M HCl, and 10(-5)-3 x 10(-3) M quinine HCl. 2. Taste-evoked responses could be recorded from a cortical gustatory area that measured 2.5 mm in its anteroposterior extent, 6.0 mm dorsoventrally, and 3.0 mm mediolaterally. Taste-responsive cells constituted 62 (3.7%) of the 1,661 neurons tested. Nongustatory cells gave responses associated with mouth movement (10.1%), somatosensory stimulation (2.2%), and approach or anticipation (0.9%). 3. Intensity-response functions were determined across 62 gustatory neurons. Neural thresholds for each stimulus quality conformed well to human psychophysical thresholds. Mean discharge rate was a direct function of stimulus concentration for glucose, NaCl, and quinine HCl. The most effective of the basic stimuli was glucose. 4. Power function exponents were calculated from the responses of neural subgroups most responsive to each basic stimulus. Those for glucose, NaCl, and quinine were within the range of psychophysically derived values. Thus the perceived intensity of each basic quality is presumably based on the activity of the appropriate neural subgroup rather than on the mean activity of all taste cells. 5. The mean breadth-of-tuning (entropy) coefficient for 62 gustatory neurons was 0.65 (range, 0.00–0.98). 6. There was no clear evidence of chemotopic organization in the gustatory cortex. 7. An analysis of taste quality indicated that sweet stimuli evoked patterns of activity that were clearly distinct from those of the nonsweet chemicals. Among the latter group, NaCl was differentiable from HCl and quinine HCl, whose patterns were closely related. 8. The response characteristics of cortical taste cells imply gustatory thresholds and intensity-response functions for the nonhuman primate that conform well to those reported in psychophysical studies of humans, reinforcing the value of this neural model for human taste intensity perception.
APA, Harvard, Vancouver, ISO, and other styles
48

Ma, Liya, Janahan Selvanayagam, Maryam Ghahremani, Lauren K. Hayrynen, Kevin D. Johnston, and Stefan Everling. "Single-unit activity in marmoset posterior parietal cortex in a gap saccade task." Journal of Neurophysiology 123, no. 3 (March 1, 2020): 896–911. http://dx.doi.org/10.1152/jn.00614.2019.

Full text
Abstract:
Abnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. The common marmoset ( Callithrix jacchus) is becoming increasingly popular as a nonhuman primate model to investigate the cortical mechanisms of saccadic control. Recently, our group demonstrated that microstimulation in the posterior parietal cortex (PPC) of marmosets elicits contralateral saccades. Here we recorded single-unit activity in the PPC of the same two marmosets using chronic microelectrode arrays while the monkeys performed a saccadic task with gap trials (target onset lagged fixation point offset by 200 ms) interleaved with step trials (fixation point disappeared when the peripheral target appeared). Both marmosets showed a gap effect, shorter saccadic reaction times (SRTs) in gap vs. step trials. On average, stronger gap-period responses across the entire neuronal population preceded shorter SRTs on trials with contralateral targets although this correlation was stronger among the 15% “gap neurons,” which responded significantly during the gap. We also found 39% “target neurons” with significant saccadic target-related responses, which were stronger in gap trials and correlated with the SRTs better than the remaining neurons. Compared with saccades with relatively long SRTs, short-SRT saccades were preceded by both stronger gap-related and target-related responses in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation. NEW & NOTEWORTHY As a primate model in systems neuroscience, the marmoset is a great complement to the macaque monkey because of its unique advantages. To identify oculomotor networks in the marmoset, we recorded from the marmoset posterior parietal cortex during a saccadic task and found single-unit activities consistent with a role in saccadic modulation. This finding supports the marmoset as a valuable model for studying oculomotor control.
APA, Harvard, Vancouver, ISO, and other styles
49

Stepniewska, Iwona, Robert M. Friedman, Daniel J. Miller, and Jon H. Kaas. "Interactions within and between parallel parietal-frontal networks involved in complex motor behaviors in prosimian galagos and a squirrel monkey." Journal of Neurophysiology 123, no. 1 (January 1, 2020): 34–56. http://dx.doi.org/10.1152/jn.00576.2019.

Full text
Abstract:
Long-train intracortical microstimulation (ICMS) of motor (M1) and posterior parietal cortices (PPC) in primates reveals cortical domains for different ethologically relevant behaviors. How functional domains interact with each other in producing motor behaviors is not known. In this study, we tested our hypothesis that matching domains interact to produce a specific complex movement, whereas connections between nonmatching domains are involved in suppression of conflicting motor outputs to prevent competing movements. In anesthetized galagos, we used 500-ms trains of ICMS to evoke complex movements from a functional domain in M1 or PPC while simultaneously stimulating another mismatched or matched domain. We considered movements of different and similar directions evoked from chosen cortical sites distant or close to each other. Their trajectories and speeds were analyzed and compared with those evoked by simultaneous stimulation. Stimulation of two sites evoking same or complementary movements produced a similar but more pronounced movement or a combined movement, respectively. Stimulation of two sites representing movements of different directions resulted in partial or total suppression of one of these movements. Thus interactions between domains in M1 and PPC were additive when they were functionally matched across fields or antagonistic between functionally conflicting domains, especially in PPC, suggesting that mismatched domains are involved in mutual suppression. Simultaneous stimulation of unrelated domains (forelimb and face) produced both movements independently. Movements produced by the simultaneous stimulation of sites in domains of two cerebral hemispheres were largely independent, but some interactions were observed. NEW & NOTEWORTHY Long trains of electrical pulses applied simultaneously to two sites in motor cortical areas (M1, PPC) have shown that interactions of functionally matched domains (evoking similar movements) within these areas were additive to produce a specific complex movement. Interactions between functionally mismatched domains (evoking different movements) were mostly antagonistic, suggesting their involvement in mutual suppression of conflicting motor outputs to prevent competing movements. Simultaneous stimulation of unrelated domains (forelimb and face) produced both movements independently.
APA, Harvard, Vancouver, ISO, and other styles
50

Hinkley, Leighton B. N., Leah A. Krubitzer, Jeff Padberg, and Elizabeth A. Disbrow. "Visual-Manual Exploration and Posterior Parietal Cortex in Humans." Journal of Neurophysiology 102, no. 6 (December 2009): 3433–46. http://dx.doi.org/10.1152/jn.90785.2008.

Full text
Abstract:
Areas of human posterior parietal cortex (PPC) specialized for processing sensorimotor information associated with visually locating an object, reaching to grasp, and manually exploring that object were examined using functional MRI. Cortical activation was observed in response to three tasks: 1) saccadic eye movements, 2) visually guided reaching to grasp, and 3) manual shape discrimination. During saccadic eye movements, cortical fields within the lateral and rostral superior parietal lobe (SPL) and the caudal SPL and parieto-occipital boundary were active. During visually guided reaching to grasp, regions of cortex within the postcentral sulcus (PoCS) and rostral intraparietal sulcus (IPS) were active, as well as the caudal SPL of the left hemisphere and the medial and caudal IPS of the right hemisphere. Cortical regions at the junction of the IPS and PoCS and an area in the medial SPL were active bilaterally during shape manipulation. Only a few regions were most active during a single motor behavior, whereas several areas were highly active during two or more tasks. Hemispheric asymmetries in activation patterns were observed during visually guided reaching to grasp. The gross areal organization of human PPC is likely similar to the pattern previously described in nonhuman primates, including multifunctional regions and asymmetric processing of some manual abilities.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography