To see the other types of publications on this topic, follow the link: Primary human articular cells.

Books on the topic 'Primary human articular cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 books for your research on the topic 'Primary human articular cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

R, Koller Manfred, Palsson Bernhard, and Masters John R. W, eds. Primary mesenchymal cells. Dordrecht: Kluwer Academic Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, Koller Manfred, Palsson Bernhard, and Masters J. R. W, eds. Primary hematopoietic cells. Dordrecht: Kluwer Academic Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Koller, Manfred R. Human Cell Culture: Volume IV: Primary Hematopoietic Cells. Dordrecht: Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

W, Masters John R., ed. Human cancer in primary culture: A handbook. Dordrecht: Kluwer Academic Publishers, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Primary Perception: Biocommunication with Plants, Living Foods, and Human Cells. Anza, Calif: White Rose Millennium Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Primary mesenchymal cells. Dordrecht: Kluwer Academic Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koller, Manfred R. Human Cell Culture: Primary Hematopoietic Cells. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Human Cell Culture: Volume IV: Primary Hematopoietic Cells (Human Cell Culture). Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Masters, John. Human Cancer In Primary Culture, A Handbook. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Masters, John. Human Cancer in Primary Culture, a Handbook. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

(Editor), F. Koller, B. Palsson (Editor), and J. R. Masters (Editor), eds. Human Cell Culture: Primary Mesenchymal Cells (Human Cell Culture, Volume 5) (Human Cell Culture). Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Anderson, Greg. The Cells of the Social Body. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190886646.003.0013.

Full text
Abstract:
Within their cosmic ecology, the Athenians took it for granted that their polis was a “communion” (koinonia) of households, so in their experience there could be no equivalents of our modern distinctions between state and society or political and social realms. Households (oikoi) functioned as the cells of the social body, such that the vitality of the parts was inseparable from the vitality of the whole. Thus, the human “government” of the polis began not with assembly meetings but with the management of its constituent oikoi, which were the primary means of life and livelihood for all Athenians. The Athenians also took it for granted that the gods had deliberately designed males and females to play different, but complementary roles in the reproduction of social being. Women were expected to serve as “partners” to their husbands in the business of household management, performing a wide range of functions that were essential to the lives of their oikoi and therefore to the life of their polis. While they may not look like “citizens” to us, they were considered full members of the polis (politides) at the time. Terms like “patriarchy” and “misogyny,” so common in the modern literature, are accordingly unhelpful when describing gender relations in classical Athens.
APA, Harvard, Vancouver, ISO, and other styles
13

Jr, William D. Willis, and Richard E. Coggeshall. Sensory Mechanisms of the Spinal Cord: Volume 1: Primary Afferent Neurons and the Spinal Dorsal Horn. 3rd ed. Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jr, William D. Willis, and Richard E. Coggeshall. Sensory Mechanisms of the Spinal Cord: Volume 1 Primary Afferent Neurons and the Spinal Dorsal Horn. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jr, William D. Willis, and Richard E. Coggeshall. Sensory Mechanisms of the Spinal Cord: Volume 1 Primary Afferent Neurons and the Spinal Dorsal Horn. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Keshav, Satish, and Alexandra Kent. Immunology and genetics in gastrointestinal and hepatic medicine. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0196.

Full text
Abstract:
The gut has a pivotal role in immune homeostasis. It is constantly exposed to a wide array of antigens in food, and resident and consumed microorganisms. It is estimated that the number of bacterial cells in the gastrointestinal tract is tenfold greater than the number of cells in the human body. The gut needs to recognize harmful bacteria, and consequently contains the largest number of immune cells in the body. However, it must remain tolerant to commensal bacteria. Bacteria express antigens that stimulate an immunological response via the gut-associated lymphoid tissue (GALT). The GALT includes the appendix, tonsils, Peyer’s patches, and mesenteric lymph nodes. Therefore, the intestinal immune system is finely balanced between tolerance and reactivity. An example of an abnormal response that generally the individual should be tolerant to is gliadin peptides in coeliac disease. An example of excessive tolerance to an otherwise controllable infection is cryptosporidiosis, which causes diarrhoea in patients with HIV infection. The understanding of genetics in disease has progressed rapidly with the introduction of genome-wide association studies. The Welcome Trust Case Control Consortium has performed extensive research on the genetics of many illnesses, including Crohn’s disease, ulcerative colitis, Barrett’s oesophagus, oesophageal adenocarcinoma, and primary biliary cholangitis. Although these studies have increased our understanding of the molecular basis of disease, they have had little impact on clinical management. This may change as studies associate genotype and phenotype. Several gastrointestinal diseases have an etiology based on immunological or genetic aberrations, and these immunological mechanisms and genetic mutations can be utilized for diagnostic purposes. However, there is no genetic or immunological marker that is 100% specific to a disease and, consequently, the markers are used to support clinical, histological, and/or radiological findings.
APA, Harvard, Vancouver, ISO, and other styles
17

Skiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.

Full text
Abstract:
Bones are multifunctional passive organs of movement that supports soft tissue and directly attached muscles. They also protect internal organs and are a reserve of calcium, phosphorus and magnesium. Each bone is covered with periosteum, and the adjacent bone surfaces are covered by articular cartilage. Histologically, the bone is an organ composed of many different tissues. The main component is bone tissue (cortical and spongy) composed of a set of bone cells and intercellular substance (mineral and organic), it also contains fat, hematopoietic (bone marrow) and cartilaginous tissue. Bones are a tissue that even in adult life retains the ability to change shape and structure depending on changes in their mechanical and hormonal environment, as well as self-renewal and repair capabilities. This process is called bone turnover. The basic processes of bone turnover are: • bone modeling (incessantly changes in bone shape during individual growth) following resorption and tissue formation at various locations (e.g. bone marrow formation) to increase mass and skeletal morphology. This process occurs in the bones of growing individuals and stops after reaching puberty • bone remodeling (processes involve in maintaining bone tissue by resorbing and replacing old bone tissue with new tissue in the same place, e.g. repairing micro fractures). It is a process involving the removal and internal remodeling of existing bone and is responsible for maintaining tissue mass and architecture of mature bones. Bone turnover is regulated by two types of transformation: • osteoclastogenesis, i.e. formation of cells responsible for bone resorption • osteoblastogenesis, i.e. formation of cells responsible for bone formation (bone matrix synthesis and mineralization) Bone maturity can be defined as the completion of basic structural development and mineralization leading to maximum mass and optimal mechanical strength. The highest rate of increase in pig bone mass is observed in the first twelve weeks after birth. This period of growth is considered crucial for optimizing the growth of the skeleton of pigs, because the degree of bone mineralization in later life stages (adulthood) depends largely on the amount of bone minerals accumulated in the early stages of their growth. The development of the technique allows to determine the condition of the skeletal system (or individual bones) in living animals by methods used in human medicine, or after their slaughter. For in vivo determination of bone properties, Abstract 10 double energy X-ray absorptiometry or computed tomography scanning techniques are used. Both methods allow the quantification of mineral content and bone mineral density. The most important property from a practical point of view is the bone’s bending strength, which is directly determined by the maximum bending force. The most important factors affecting bone strength are: • age (growth period), • gender and the associated hormonal balance, • genotype and modification of genes responsible for bone growth • chemical composition of the body (protein and fat content, and the proportion between these components), • physical activity and related bone load, • nutritional factors: – protein intake influencing synthesis of organic matrix of bone, – content of minerals in the feed (CA, P, Zn, Ca/P, Mg, Mn, Na, Cl, K, Cu ratio) influencing synthesis of the inorganic matrix of bone, – mineral/protein ratio in the diet (Ca/protein, P/protein, Zn/protein) – feed energy concentration, – energy source (content of saturated fatty acids - SFA, content of polyun saturated fatty acids - PUFA, in particular ALA, EPA, DPA, DHA), – feed additives, in particular: enzymes (e.g. phytase releasing of minerals bounded in phytin complexes), probiotics and prebiotics (e.g. inulin improving the function of the digestive tract by increasing absorption of nutrients), – vitamin content that regulate metabolism and biochemical changes occurring in bone tissue (e.g. vitamin D3, B6, C and K). This study was based on the results of research experiments from available literature, and studies on growing pigs carried out at the Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences. The tests were performed in total on 300 pigs of Duroc, Pietrain, Puławska breeds, line 990 and hybrids (Great White × Duroc, Great White × Landrace), PIC pigs, slaughtered at different body weight during the growth period from 15 to 130 kg. Bones for biomechanical tests were collected after slaughter from each pig. Their length, mass and volume were determined. Based on these measurements, the specific weight (density, g/cm3) was calculated. Then each bone was cut in the middle of the shaft and the outer and inner diameters were measured both horizontally and vertically. Based on these measurements, the following indicators were calculated: • cortical thickness, • cortical surface, • cortical index. Abstract 11 Bone strength was tested by a three-point bending test. The obtained data enabled the determination of: • bending force (the magnitude of the maximum force at which disintegration and disruption of bone structure occurs), • strength (the amount of maximum force needed to break/crack of bone), • stiffness (quotient of the force acting on the bone and the amount of displacement occurring under the influence of this force). Investigation of changes in physical and biomechanical features of bones during growth was performed on pigs of the synthetic 990 line growing from 15 to 130 kg body weight. The animals were slaughtered successively at a body weight of 15, 30, 40, 50, 70, 90, 110 and 130 kg. After slaughter, the following bones were separated from the right half-carcass: humerus, 3rd and 4th metatarsal bone, femur, tibia and fibula as well as 3rd and 4th metatarsal bone. The features of bones were determined using methods described in the methodology. Describing bone growth with the Gompertz equation, it was found that the earliest slowdown of bone growth curve was observed for metacarpal and metatarsal bones. This means that these bones matured the most quickly. The established data also indicate that the rib is the slowest maturing bone. The femur, humerus, tibia and fibula were between the values of these features for the metatarsal, metacarpal and rib bones. The rate of increase in bone mass and length differed significantly between the examined bones, but in all cases it was lower (coefficient b <1) than the growth rate of the whole body of the animal. The fastest growth rate was estimated for the rib mass (coefficient b = 0.93). Among the long bones, the humerus (coefficient b = 0.81) was characterized by the fastest rate of weight gain, however femur the smallest (coefficient b = 0.71). The lowest rate of bone mass increase was observed in the foot bones, with the metacarpal bones having a slightly higher value of coefficient b than the metatarsal bones (0.67 vs 0.62). The third bone had a lower growth rate than the fourth bone, regardless of whether they were metatarsal or metacarpal. The value of the bending force increased as the animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. The rate of change in the value of this indicator increased at a similar rate as the body weight changes of the animals in the case of the fibula and the fourth metacarpal bone (b value = 0.98), and more slowly in the case of the metatarsal bone, the third metacarpal bone, and the tibia bone (values of the b ratio 0.81–0.85), and the slowest femur, humerus and rib (value of b = 0.60–0.66). Bone stiffness increased as animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. Abstract 12 The rate of change in the value of this indicator changed at a faster rate than the increase in weight of pigs in the case of metacarpal and metatarsal bones (coefficient b = 1.01–1.22), slightly slower in the case of fibula (coefficient b = 0.92), definitely slower in the case of the tibia (b = 0.73), ribs (b = 0.66), femur (b = 0.59) and humerus (b = 0.50). Bone strength increased as animals grew. Regardless of the growth point tested, bone strength was as follows femur > tibia > humerus > 4 metacarpal> 3 metacarpal> 3 metatarsal > 4 metatarsal > rib> fibula. The rate of increase in strength of all examined bones was greater than the rate of weight gain of pigs (value of the coefficient b = 2.04–3.26). As the animals grew, the bone density increased. However, the growth rate of this indicator for the majority of bones was slower than the rate of weight gain (the value of the coefficient b ranged from 0.37 – humerus to 0.84 – fibula). The exception was the rib, whose density increased at a similar pace increasing the body weight of animals (value of the coefficient b = 0.97). The study on the influence of the breed and the feeding intensity on bone characteristics (physical and biomechanical) was performed on pigs of the breeds Duroc, Pietrain, and synthetic 990 during a growth period of 15 to 70 kg body weight. Animals were fed ad libitum or dosed system. After slaughter at a body weight of 70 kg, three bones were taken from the right half-carcass: femur, three metatarsal, and three metacarpal and subjected to the determinations described in the methodology. The weight of bones of animals fed aa libitum was significantly lower than in pigs fed restrictively All bones of Duroc breed were significantly heavier and longer than Pietrain and 990 pig bones. The average values of bending force for the examined bones took the following order: III metatarsal bone (63.5 kg) <III metacarpal bone (77.9 kg) <femur (271.5 kg). The feeding system and breed of pigs had no significant effect on the value of this indicator. The average values of the bones strength took the following order: III metatarsal bone (92.6 kg) <III metacarpal (107.2 kg) <femur (353.1 kg). Feeding intensity and breed of animals had no significant effect on the value of this feature of the bones tested. The average bone density took the following order: femur (1.23 g/cm3) <III metatarsal bone (1.26 g/cm3) <III metacarpal bone (1.34 g / cm3). The density of bones of animals fed aa libitum was higher (P<0.01) than in animals fed with a dosing system. The density of examined bones within the breeds took the following order: Pietrain race> line 990> Duroc race. The differences between the “extreme” breeds were: 7.2% (III metatarsal bone), 8.3% (III metacarpal bone), 8.4% (femur). Abstract 13 The average bone stiffness took the following order: III metatarsal bone (35.1 kg/mm) <III metacarpus (41.5 kg/mm) <femur (60.5 kg/mm). This indicator did not differ between the groups of pigs fed at different intensity, except for the metacarpal bone, which was more stiffer in pigs fed aa libitum (P<0.05). The femur of animals fed ad libitum showed a tendency (P<0.09) to be more stiffer and a force of 4.5 kg required for its displacement by 1 mm. Breed differences in stiffness were found for the femur (P <0.05) and III metacarpal bone (P <0.05). For femur, the highest value of this indicator was found in Pietrain pigs (64.5 kg/mm), lower in pigs of 990 line (61.6 kg/mm) and the lowest in Duroc pigs (55.3 kg/mm). In turn, the 3rd metacarpal bone of Duroc and Pietrain pigs had similar stiffness (39.0 and 40.0 kg/mm respectively) and was smaller than that of line 990 pigs (45.4 kg/mm). The thickness of the cortical bone layer took the following order: III metatarsal bone (2.25 mm) <III metacarpal bone (2.41 mm) <femur (5.12 mm). The feeding system did not affect this indicator. Breed differences (P <0.05) for this trait were found only for the femur bone: Duroc (5.42 mm)> line 990 (5.13 mm)> Pietrain (4.81 mm). The cross sectional area of the examined bones was arranged in the following order: III metatarsal bone (84 mm2) <III metacarpal bone (90 mm2) <femur (286 mm2). The feeding system had no effect on the value of this bone trait, with the exception of the femur, which in animals fed the dosing system was 4.7% higher (P<0.05) than in pigs fed ad libitum. Breed differences (P<0.01) in the coross sectional area were found only in femur and III metatarsal bone. The value of this indicator was the highest in Duroc pigs, lower in 990 animals and the lowest in Pietrain pigs. The cortical index of individual bones was in the following order: III metatarsal bone (31.86) <III metacarpal bone (33.86) <femur (44.75). However, its value did not significantly depend on the intensity of feeding or the breed of pigs.
APA, Harvard, Vancouver, ISO, and other styles
18

Alexander, D. J., N. Phin, and M. Zuckerman. Influenza. Edited by I. H. Brown. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0037.

Full text
Abstract:
Influenza is a highly infectious, acute illness which has affected humans and animals since ancient times. Influenza viruses form the Orthomyxoviridae family and are grouped into types A, B, and C on the basis of the antigenic nature of the internal nucleocapsid or the matrix protein. Infl uenza A viruses infect a large variety of animal species, including humans, pigs, horses, sea mammals, and birds, occasionally producing devastating pandemics in humans, such as in 1918 when it has been estimated that between 50–100 million deaths occurred worldwide.There are two important viral surface glycoproteins, the haemagglutinin (HA) and neuraminidase (NA). The HA binds to sialic acid receptors on the membrane of host cells and is the primary antigen against which a host’s antibody response is targeted. The NA cleaves the sialic acid bond attaching new viral particles to the cell membrane of host cells allowing their release. The NA is also the target of the neuraminidase inhibitor class of antiviral agents that include oseltamivir and zanamivir and newer agents such as peramivir. Both these glycoproteins are important antigens for inducing protective immunity in the host and therefore show the greatest variation.Influenza A viruses are classified into 16 antigenically distinct HA (H1–16) and 9 NA subtypes (N1–9). Although viruses of relatively few subtype combinations have been isolated from mammalian species, all subtypes, in most combinations, have been isolated from birds. Each virus possesses one HA and one NA subtype.Last century, the sudden emergence of antigenically different strains in humans, termed antigenic shift, occurred on three occasions, 1918 (H1N1), 1957 (H2N2) and 1968 (H3N2), resulting in pandemics. The frequent epidemics that occur between the pandemics are as a result of gradual antigenic change in the prevalent virus, termed antigenic drift. Epidemics throughout the world occur in the human population due to infection with influenza A viruses, such as H1N1 and H3N2 subtypes, or with influenza B virus. Phylogenetic studies have led to the suggestion that aquatic birds that show no signs of disease could be the source of many influenza A viruses in other species. The 1918 H1N1 pandemic strain is thought to have arisen as a result of spontaneous mutations within an avian H1N1 virus. However, most pandemic strains, such as the 1957 H2N2, 1968 H3N2 and 2009 pandemic H1N1, are considered to have emerged by genetic re-assortment of the segmented RNA genome of the virus, with the avian and human influenza A viruses infecting the same host.Influenza viruses do not pass readily between humans and birds but transmission between humans and other animals has been demonstrated. This has led to the suggestion that the proposed reassortment of human and avian influenza viruses takes place in an intermediate animal with subsequent infection of the human population. Pigs have been considered the leading contender for the role of intermediary because they may serve as hosts for productive infections of both avian and human viruses, and there is good evidence that they have been involved in interspecies transmission of influenza viruses; particularly the spread of H1N1 viruses to humans. Apart from public health measures related to the rapid identification of cases and isolation. The main control measures for influenza virus infections in human populations involves immunization and antiviral prophylaxis or treatment.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography