Academic literature on the topic 'Prey-predator relationships'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Prey-predator relationships.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Prey-predator relationships"
A.S., Taleb, and Alaa Khalaf. "Predator-Prey Relationships System." International Journal of Computer Applications 140, no. 5 (April 15, 2016): 42–44. http://dx.doi.org/10.5120/ijca2016909310.
Full textNakazawa, Takefumi, Shin-ya Ohba, and Masayuki Ushio. "Predator–prey body size relationships when predators can consume prey larger than themselves." Biology Letters 9, no. 3 (June 23, 2013): 20121193. http://dx.doi.org/10.1098/rsbl.2012.1193.
Full textJuanes, Francis. "A length-based approach to predator–prey relationships in marine predators." Canadian Journal of Fisheries and Aquatic Sciences 73, no. 4 (April 2016): 677–84. http://dx.doi.org/10.1139/cjfas-2015-0159.
Full textInozemtseva, Iuliia, and James Braselton. "Epistasis in Predator-Prey Relationships." Open Journal of Applied Sciences 04, no. 09 (2014): 473–91. http://dx.doi.org/10.4236/ojapps.2014.49046.
Full textSchalk, Christopher M., and Michael V. Cove. "Squamates as prey: Predator diversity patterns and predator-prey size relationships." Food Webs 17 (December 2018): e00103. http://dx.doi.org/10.1016/j.fooweb.2018.e00103.
Full textSchmitz, Oswald. "Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions." F1000Research 6 (September 27, 2017): 1767. http://dx.doi.org/10.12688/f1000research.11813.1.
Full textGibert, Jean P., and John P. DeLong. "Temperature alters food web body-size structure." Biology Letters 10, no. 8 (August 2014): 20140473. http://dx.doi.org/10.1098/rsbl.2014.0473.
Full textHone, Jim, Charles J. Krebs, and Mark O'Donoghue. "Is the relationship between predator and prey abundances related to climate for lynx and snowshoe hares?" Wildlife Research 38, no. 5 (2011): 419. http://dx.doi.org/10.1071/wr11009.
Full textRodewald, Amanda D., Laura J. Kearns, and Daniel P. Shustack. "Anthropogenic resource subsidies decouple predator–prey relationships." Ecological Applications 21, no. 3 (April 28, 2011): 936–43. http://dx.doi.org/10.1890/10-0863.1.
Full textVadas, Robert L. "Predator-prey relationships in the lower vertebrates." Environmental Biology of Fishes 22, no. 1 (May 1988): 79–80. http://dx.doi.org/10.1007/bf00000545.
Full textDissertations / Theses on the topic "Prey-predator relationships"
Pupovac-Velikonja, Ankica. "Environmental factors affecting predator-prey relationships among yeasts." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ39869.pdf.
Full textAkkas, Sara Banu. "The Effect Of Ecotoxicants On The Aquatic Food Web And Prey-predator Relationships." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610823/index.pdf.
Full texts priorities were two-fold: a novel approach utilizing higher-tier ecotoxicity bioassay-guided ATR-FTIR (Attenuated Total Reflectance Fourier Transform Infrared) spectroscopy to better understand the impact of the presence of fish predation pressure &ndash
mimicked by predator-exuded info-chemicals &ndash
on cypermethrin or salinity toxicity to Daphnia pulex &ndash
key-stone species in lake ecosystems &ndash
and ultimately better assess toxicant-induced alterations at both organismal and molecular levels. This approach indicates that even low concentrations of cypermethrin/salinity had significant molecular and organismal effects on daphnids. Fish kairomone acted as a major factor affecting toxicant severity, interacting antagonistically below a threshold and synergistically above. Moreover, molecular ATR-FTIR spectroscopic results, clearly consistent with organismal responses, showed that both cypermethrin and salinity lead to decreased contributions of lipid and proteins to the investigated daphnid systems. It is further suggested that the action mechanism of the fish-exuded kairomone occurs via the lipid metabolism of Daphnia. Hence, infrared spectroscopic results enabled detection of early molecular alterations, whose effects might not always be observable at the organismal level. The results of this study clearly indicate that the simplistic nature of standard ecotoxicology tests hinders a precise judgment of threats imposed by chemicals of interest. Furthermore, it has been shown that ATR-FTIR spectroscopy has considerable potential for studies on daphnid responses to varying environmental conditions. Thus, this study presents a starting point for increasing the environmental realism of aquatic risk assessment.
Funderburk, James. "Modern Variation in Predation Intensity: Constraints on Assessing Predator-Prey Relationships in Paleoecologic Reconstructions." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3491.
Full textFreytes-Ortiz, Ileana M. "An Interdisciplinary Approach to Understanding Predator-Prey Relationships in a Changing Ocean: From System Design to Education." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7673.
Full textVaudo, Jeremy. "Habitat Use and Foraging Ecology of a Batoid Community in Shark Bay, Western Australia." FIU Digital Commons, 2011. http://digitalcommons.fiu.edu/etd/367.
Full textCavalcanti, Sandra Maria Cintra. "Predator-Prey Relationships and Spatial Ecology of Jaguars in the Southern Pantanal, Brazil: Implications for Conservation and Management." DigitalCommons@USU, 2008. https://digitalcommons.usu.edu/etd/112.
Full textMathers, Kate L. "The influence of signal crayfish on fine sediment dynamics and macroinvertebrate communities in lowland rivers." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/25493.
Full textFerry, Nicolas. "Processes involved in the functioning of large mammal communities : the role of the African elephant in the ecology of predator-prey relationships." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1054/document.
Full textSpecies can indirectly affect other species and their interactions. The trophic interaction between a predator and its prey can be modified by the presence of a third species either through chain interactions (e.g. successive predation link) either through interaction modification. However, these indirect received few attentions in theorical modelling of food web, and fewer studies tried to explore this phenomenon at the scale of natural complex communities of large mammals. The role of the elephants as modifier of lion’s trophic interaction is explored in the semi-arid woodland savannah ecosystem of Hwange National Park, Zimbabwe. African elephants, as key competitor (male body mass ~ 4000 kg with aggressive behaviour) shape the behaviour of herbivores at waterholes results do not allow to state on the elephant mediation of lion trophic interaction at waterholes. In addition, elephants seem to facilitate the availability of food resources for impalas, possibly by increasing regrowth of shoots by breaking twigs and stem, as these last select habitats used by elephants. However, not effect of facilitation or competition were observed for the other herbivores, which lead to think that elephants do not influence lion trophic interaction in that way. Finally, by altering the physical environment (i.e. engineer species) the elephants affect the visibility and ambush sites for lions in the woody vegetation and ultimately seem to influence the lion kill site selection. This study suggests that indirect effects may act at the community level even if their observation and quantification are difficult in natural communities. Moreover, it supports the observation that it is important to take into account these indirect effects in order to have a thorough understanding and have a better ability to predict the consequences that disruptions may have on the structure and functioning of communities
Tirok, Katrin. "Predator-prey dynamics under the influence of exogenous and endogenous regulation : a data-based modeling study on spring plankton with respect to climate change." Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2008/2452/.
Full textEine der großen Herausforderungen der heutigen ökologischen Forschung ist es, Veränderungen von Ökosystemen vorherzusagen, die mit dem Klimawandel einhergehen. Dafür sind ein umfassendes Verständnis der verschiedenen Steuerungsfaktoren des entsprechenden Systems und Kenntnisse zur Anpassungsfähigkeit des Systems nötig. Auf der Grundlage dieses Wissens, können mit mathematischen Modellen Klimaszenarien gerechnet und Vorhersagen erstellt werden. Die vorliegende Arbeit untersuchte die Regulation des Phytoplanktons (kleine freischwebende einzellige Algen) und seiner Konsumenten (Zooplankton, tierische Kleinstlebewesen) sowie deren Wechselspiel während des Frühjahrs mit Bezug auf den Klimawandel. Als Basis dienten langjährige Daten von einem großen tiefen See (Bodensee) sowie Daten von Versuchen mit Organismen aus einem flachen marinen Gewässer (Kieler Förde, Ostsee). Diese Daten wurden mit statistischen Verfahren und mathematischen Modellen ausgewertet. In Gewässern sind Algen als Primärproduzenten die Nahrungsgrundlage für tierische Organismen bis hin zu Fischen und Meeresfrüchten, und bestimmen die Wasserqualität der Gewässer. Daher ist es wichtig zu verstehen, welche Mechanismen die Dynamik der Algen steuern. Der Grundstein für die saisonale Entwicklung von Phyto- und Zooplankton in Gewässern unserer Breiten wird mit dem Beginn des Wachstums im Frühjahr gelegt. Diese Arbeit zeigt, dass es bereits im zeitigen, noch kalten Frühjahr ein Wechselspiel physikalischer und biologischer Steuerungsmechanismen für die Algenentwicklung gibt. Physikalische Faktoren sind die Wassertemperatur, die Globalstrahlung und die Durchmischung des Gewässers, die durch die Stärke des Windes beeinflusst wird. All diese Steuerungsmechanismen sind eng miteinander verwoben und werden unterschiedlich stark vom Klimawandel beeinflusst. Mit mathematischen Modellen gelang es den Einfluss einzelner Faktoren voneinander zu trennen und zu zeigen, dass Effekte durch den Klimawandel sich gegenseitig aufheben oder aber auch verstärken können. Schon geringe Änderungen an der Basis der Nahrungsnetze können weitreichende Auswirkungen auf höhere Ebenen habe. Wie stark diese Auswirkungen im Einzelnen sind, hängt entscheidend von der Anpassungsfähigkeit gesamter Ökosysteme und ihrer Artengemeinschaften sowie einzelner Individuen ab. Beispielsweise reagiert die Algengemeinschaft auf einen starken Fraßdruck ihrer Räuber mit einer Verschiebung zu weniger gut fressbaren Algenarten. Diese weniger gut fressbaren Arten unterscheiden sich jedoch auch in anderen Eigenschaften, wie zum Beispiel der Ressourcenausnutzung, von besser fressbaren Algen. In dieser Arbeit wurden Modellansätze entwickelt, die diese Fähigkeit zur Anpassung berücksichtigen. Auf dieser Grundlage und mit Einbeziehung der physikalischen Steuerungsfaktoren können Klimaszenarien gerechnet werden und Vorhersagen für den Einfluss des Klimawandels auf unsere Gewässer gemacht werden, die letztlich auch Perspektiven für Handlungsmöglichkeiten aufzeigen.
Sjöberg, Kjell. "Temporal relationships between fish-eating birds and their prey in a north Swedish river." Doctoral thesis, Umeå universitet, Ekologi och geovetenskap, 1987. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-100702.
Full textS. 1-41: sammanfattning, s. 43-227: 7 uppsatser
digitalisering@umu
Books on the topic "Prey-predator relationships"
Taylor, Iain R. Barn owls: Predator-prey relationships and conservation. Cambridge: Cambridge University Press, 2003.
Find full textBarn owls: Predator-prey relationships and conservation. Cambridge: Cambridge University Press, 1994.
Find full textTaylor, Iain. Barn Owls: Predator-Prey Relationships and Conservation. Cambridge University Press, 2004.
Find full textHelms, Doris R. Predator-Prey Relationships: Separate from Biology in the Laboratory 3e. W. H. Freeman, 1997.
Find full textE, Feder Martin, and Lauder George V, eds. Predator-prey relationships: Perspectives and approaches from the study of lower vertebrates. Chicago: University of Chicago Press, 1986.
Find full text(Editor), George V. Lauder, ed. Predator-Prey Relationships: Perspectives and Approaches from the Study of Lower Vertebrates. Univ of Chicago Pr (Tx), 1986.
Find full textUhlig, Leslie J. Comparison of predator-prey relationships between stoneflies and mayflies in various habitats of Padden Creek. 1991.
Find full textKasperbauer, T. J. Evolved Attitudes to Animals. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190695811.003.0002.
Full textKing, Carolyn M., Grant Norbury, and Andrew J. Veale. Small mustelids in New Zealand: invasion ecology in a different world. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198759805.003.0010.
Full textBook chapters on the topic "Prey-predator relationships"
Weis, Judith S. "Predator–Prey Relationships." In Encyclopedia of Estuaries, 496–99. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-8801-4_21.
Full textHerzig, Alois. "Predator-prey relationships within the pelagic community of Neusiedler See." In Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes, 81–96. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-2460-9_8.
Full textRayor, Linda S., and Steven Munson. "Larval feeding experience influences adult predator acceptance of chemically defended prey." In Proceedings of the 11th International Symposium on Insect-Plant Relationships, 193–201. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2776-1_22.
Full textSkeen, Judy. "Predator–Prey Relationships: What Humans Can Learn from Horses about Being Whole." In The Psychology of the Human-Animal Bond, 81–106. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9761-6_5.
Full textTrites, Andrew W. "Predator–Prey Relationships." In Encyclopedia of Marine Mammals, 780–83. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-804327-1.00207-7.
Full text"Predator–Prey Relationships." In Biology and Management of White-tailed Deer, 264–99. CRC Press, 2011. http://dx.doi.org/10.1201/9781482295986-12.
Full textTrites, Andrew W. "Predator–Prey Relationships." In Encyclopedia of Marine Mammals, 933–36. Elsevier, 2009. http://dx.doi.org/10.1016/b978-0-12-373553-9.00211-x.
Full textBécus, Georges A. "Stochastic Prey-Predator Relationships." In Modeling and Differential Equations in Biology, 171–97. Routledge, 2017. http://dx.doi.org/10.1201/9780203746912-6.
Full textBretagnolle, Vincent, and Julien Terraube. "Predator–prey interactions and climate change." In Effects of Climate Change on Birds, 199–220. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198824268.003.0015.
Full textMcLaughlin, Órla B., Tomas Jonsson, and Mark C. Emmerson. "Temporal Variability in Predator–Prey Relationships of a Forest Floor Food Web." In Advances in Ecological Research, 171–264. Elsevier, 2010. http://dx.doi.org/10.1016/b978-0-12-381363-3.00004-6.
Full textConference papers on the topic "Prey-predator relationships"
Ito, Takashi, Marcin Pilat, Reiji Suzuki, and Takaya Arita. "Coevolutionary Dynamics Caused by Asymmetries in Predator-Prey and Morphology-Behavior Relationships." In European Conference on Artificial Life 2013. MIT Press, 2013. http://dx.doi.org/10.7551/978-0-262-31709-2-ch063.
Full textWittmer, Jacalyn M., Michael Meyer, and G. Robert Ganis. "NEW EVIDENCE OF PREDATOR-PREY RELATIONSHIPS IN THE PLANKTIC ECOSYSTEM DURING THE GREAT ORDOVICIAN BIODIVERSITY EVENT: A REPORT OF A SUGGESTED PREDATOR OF GRAPTOLITES." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-286456.
Full textBeech, James D. "RELATIONSHIPS BETWEEN BODY SIZE AND TAPHONOMIC SIGNAL IN THE PREDATOR-PREY INTERACTIONS OF LAND CRABS AND SNAILS ON SAN SALVADOR ISLAND, THE BAHAMAS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-304101.
Full textHara, Akira, Kazumasa Shiraga, and Tetsuyuki Takahama. "Heterogeneous Particle Swarm Optimization including predator-prey relationship." In 2012 Joint 6th Intl. Conference on Soft Computing and Intelligent Systems (SCIS) and 13th Intl. Symposium on Advanced Intelligent Systems (ISIS). IEEE, 2012. http://dx.doi.org/10.1109/scis-isis.2012.6505194.
Full textDefterli, Sinem Gozde, and Yunjun Xu. "Virtual Motion Camouflage Based Visual Servo Control of a Leaf Picking Mechanism." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9042.
Full textKnadler, Charles E. "Models of a predator-prey relationship in a closed habitat." In 2008 Winter Simulation Conference (WSC). IEEE, 2008. http://dx.doi.org/10.1109/wsc.2008.4736407.
Full textIto, Takashi, Marcin Pilat, Reiji Suzuki, and Takaya Arita. "Population and Evolutionary Dynamics Based on Predator-Prey Relationship in 3D Physical Simulation." In Artificial Life 14: International Conference on the Synthesis and Simulation of Living Systems. The MIT Press, 2014. http://dx.doi.org/10.7551/978-0-262-32621-6-ch018.
Full textLayton, Astrid, Bert Bras, and Marc Weissburg. "Designing Sustainable Manufacturing Networks: The Role of Exclusive Species in Achieving Ecosystem-Type Cycling." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68334.
Full textPetrunenko, Y. K., R. A. Montgomery, I. V. Seryodkin, O. Y. Zaumyslova, D. G. Miquelle, and D. W. Macdonald. "ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ АМУРСКОГО ТИГРА В ЗАВИСИМОСТИ ОТ ПЛОТНОСТИ НАСЕЛЕНИЯ И УЯЗВИМОСТИ ОСНОВНЫХ ВИДОВ ЖЕРТВ." In GEOGRAFICHESKIE I GEOEKOLOGICHESKIE ISSLEDOVANIIA NA DAL`NEM VOSTOKE. ИП Мироманова Ирина Витальевна, 2019. http://dx.doi.org/10.35735/tig.2019.76.93.013.
Full textHuntley, John Warren, Tara Selly, Kelly Elizabeth Hale, Daniel A. Clapp, and James D. Schiffbauer. "ENVIRONMENTAL GRADIENTS IN A TIDAL CARBONATE LAGOON (PIGEON CREEK, SAN SALVADOR ISLAND, BAHAMAS) AND THEIR RELATIONSHIP TO MOLLUSCAN DIVERSITY, BODY SIZE, AND PREDATOR-PREY INTERACTIONS." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-282623.
Full text