To see the other types of publications on this topic, follow the link: Pretransitional phenomena.

Journal articles on the topic 'Pretransitional phenomena'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 30 journal articles for your research on the topic 'Pretransitional phenomena.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Moses, T., Y. Ouchi, W. Chen, and Y. R. Shen. "Pretransitional Surface Phenomena in Ferroelectric Liquid Crystals." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 225, no. 1 (February 1993): 55–65. http://dx.doi.org/10.1080/10587259308036217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Merekalov, A. S., J. Berkmans, E. R. Zubarev, N. A. Plate, R. V. Talroze, and H. Finkelmann. "Pretransitional phenomena in acrylate-based liquid crystal networks." Liquid Crystals 27, no. 7 (July 2000): 921–27. http://dx.doi.org/10.1080/02678290050043879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schröer, W., S. Wiegand, W. Staude, and Th Peters. "Dynamical Lightscattering of Pretransitional Phenomena in Liquid Mixtures." Berichte der Bunsengesellschaft für physikalische Chemie 95, no. 9 (September 1991): 1126–30. http://dx.doi.org/10.1002/bbpc.19910950933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miller, R. J., and H. F. Gleeson. "The influence of pretransitional phenomena on blue phase range." Liquid Crystals 14, no. 6 (January 1993): 2001–11. http://dx.doi.org/10.1080/02678299308027736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Demikhov, E., H. Stegemeyer, and V. Tsukruk. "Pretransitional phenomena and pinning in liquid-crystalline blue phases." Physical Review A 46, no. 8 (October 1, 1992): 4879–87. http://dx.doi.org/10.1103/physreva.46.4879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuroiwa, Yoshihiro, Hideaki Muramoto, Takahisa Shobu, Hiroaki Tokumichi, and Yasusada Yamada. "Pretransitional Phenomena at the First-Order Phase Transition in LaNbO4." Journal of the Physical Society of Japan 64, no. 10 (October 15, 1995): 3798–803. http://dx.doi.org/10.1143/jpsj.64.3798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aliev, Amil R., Isa R. Akhmedov, Murad G. Kakagasanov, Zakir A. Aliev, and Sergey P. Kramynin. "PRETRANSITIONAL PHENOMENA IN REGION OF STRUCTURAL PHASE TRANSITION IN SODIUM PERCHLORATE." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 63, no. 1 (December 10, 2019): 64–70. http://dx.doi.org/10.6060/ivkkt.20206301.6042.

Full text
Abstract:
Structural and dynamic properties and molecular relaxation processes in crystalline sodium NaClO4 perchlorate in the temperature range from 300 K to 650 K were studied by Raman spectroscopy. The temperature dependences of the position of the maximum v (frequency), the width w and the intensity I of the spectral band, corresponding to the fully symmetric vibration v1(A) of the ClO4–1 perchlorate ion, in the spectral range from 933 cm–1 to 944 cm–1 were analyzed. The frequency v and intensity I decrease, and the width w increases with the increasing temperature. It is shown that these temperature dependences have certain features at a temperature of 460 K. With a further increase in temperature, the frequency v decreases more rapidly, the width w increases, and the intensity I decreases more intensively. In the temperature range from 460 K to the temperature Tstr = 581 K of the first order structural phase transition, we observe a deviation of the temperature dependence of the frequency and width from the linear dependences characteristic of lower temperatures. These deviations appear at a temperature of 460 K and increase with the increasing temperature and approaching the phase transition temperature. It has been established that in the crystalline sodium perchlorate NaClO4 a structural first-order phase transition is stretched. At the phase transition temperature (Tstr = 581 K), the width increases sharply, and the frequency decreases sharply, decreasing with a further increase in temperature. The existence of a pretransitional region in the studied crystalline sodium perchlorate NaClO4 was found. This pre-transition region occurs in the temperature range from 460 K to Tstr = 581 K.
APA, Harvard, Vancouver, ISO, and other styles
8

Aliev, A. R., and et al. "Pretransitional phenomena in the region of structural phase transition in potassium carbonate." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 12 (December 1, 2019): 96–101. http://dx.doi.org/10.17223/00213411/62/12/96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blachnik, N., H. Kneppe, and F. Schneider. "Cotton-Mouton constants and pretransitional phenomena in the isotropic phase of liquid crystals." Liquid Crystals 27, no. 9 (September 2000): 1219–27. http://dx.doi.org/10.1080/02678290050122079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Emsley, J. W., C. T. Imrie, G. R. Luckhurst, and R. D. Newmark. "Pretransitional phenomena in liquid crystals studied via electric field induced deuterium quadrupolar splittings." Molecular Physics 63, no. 2 (February 10, 1988): 317–27. http://dx.doi.org/10.1080/00268978800100231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chilaya, G. S., Z. M. Elashvili, M. A. Gogadze, S. P. Tavzarashvili, K. D. Vinokur, and S. A. Pikin. "The effect of pretransitional phenomena on the characteristics of induced ferroelectric liquid-crystalline systems." Liquid Crystals 5, no. 4 (January 1989): 1195–202. http://dx.doi.org/10.1080/02678298908026424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bodnár, Igor, Jan K. G. Dhont, and Henk N. W. Lekkerkerker. "Pretransitional Phenomena of a Colloid Polymer Mixture Studied with Static and Dynamic Light Scattering." Journal of Physical Chemistry 100, no. 50 (January 1996): 19614–19. http://dx.doi.org/10.1021/jp962553v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chilaya, G. S. "Effect of various external factors and pretransitional phenomena on structural transformations in cholesteric liquid crystals." Crystallography Reports 45, no. 5 (September 2000): 871–86. http://dx.doi.org/10.1134/1.1312938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Demikhov, E., J. Hollmann, and P. Pollmann. "Influence of Pressure on Pretransitional Phenomena in the Isotropic Liquid of a Chiral Liquid Crystal." Europhysics Letters (EPL) 21, no. 5 (February 10, 1993): 581–86. http://dx.doi.org/10.1209/0295-5075/21/5/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Oh, Soo Han, Jae-Hyeon Ko, Ho-Yong Lee, Iwona Lazar, and Krystian Roleder. "Precursor Phenomena of Barium Titanate Single Crystals Grown Using a Solid-State Single Crystal Growth Method Studied with Inelastic Brillouin Light Scattering and Birefringence Measurements." Molecules 23, no. 12 (December 1, 2018): 3171. http://dx.doi.org/10.3390/molecules23123171.

Full text
Abstract:
The nature of precursor phenomena in the paraelectric phase of ferroelectrics is one of the main questions to be resolved from a fundamental point of view. Barium titanate (BaTiO3) is one of the most representative perovskite-structured ferroelectrics intensively studied until now. The pretransitional behavior of BaTiO3 single crystal grown using a solid-state crystal growth (SSCG) method was investigated for the first time and compared to previous results. There is no melting process in the SSCG method, thus the crystal grown using a SSCG method have inherent higher levels of impurity and defect concentrations, which is a good candidate for investigating the effect of crystal quality on the precursor phenomena. The acoustic, dielectric, and piezoelectric properties, as well as birefringence, of the SSCG-grown BaTiO3 were examined over a wide temperature range. Especially, the acoustic phonon behavior was investigated in terms of Brillouin spectroscopy, which is a complementary technique to Raman spectroscopy. The obtained precursor anomalies of the SSCG-grown BaTiO3 in the cubic phase were similar to those of other single crystals, in particular, of high-quality single crystal grown by top-seeded solution growth method. These results clearly indicate that the observed precursor phenomena are common and intrinsic effect irrespective of the crystal quality.
APA, Harvard, Vancouver, ISO, and other styles
16

Gasilova, E. R., V. A. Shevelev, and S. Ya Frenkel. "Proton magnetic relaxation study of pretransitional phenomena in the isotropic phase of a nematic liquid crystal I. Dynamics of local order fluctuations." Liquid Crystals 27, no. 5 (May 2000): 573–78. http://dx.doi.org/10.1080/026782900202408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gasilova, E. R., and V. A. Shevelev. "Proton magnetic relaxation study of pretransitional phenomena in the isotropic phase of a nematic liquid crystal II. Presence of inner magnetic field gradients as revealed by self-diffusion study." Liquid Crystals 27, no. 5 (May 2000): 579–84. http://dx.doi.org/10.1080/026782900202417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pocheć, Michał, Katarzyna M. Krupka, Jarosław J. Panek, Kazimierz Orzechowski, and Aneta Jezierska. "Inside out Approach to Rotator State in Hydrogen-Bonded System—Experimental and Theoretical Cross-Examination in n-Octanol." International Journal of Molecular Sciences 23, no. 4 (February 15, 2022): 2138. http://dx.doi.org/10.3390/ijms23042138.

Full text
Abstract:
The experimental and theoretical description of premelting behavior is one of the most challenging tasks in contemporary material science. In this paper, n-octanol was studied using a multi-method approach to investigate it at macroscopic and molecular levels. The experimental infrared (IR) spectra were collected in the solid state and liquid phase at temperature range from −84∘C to −15 ∘C to detect temperature-related indicators of pretransitional phenomena. Next, the nonlinear dielectric effect (NDE) was measured at various temperatures (from −30 ∘C to −15 ∘C) to provide insight into macroscopic effects of premelting. As a result, a two-step mechanism of premelting in n-octanol was established based on experimental data. It was postulated that it consists of a rotator state formation followed by the surface premelting. In order to shed light onto molecular-level processes, classical molecular dynamics (MD) was performed to investigate the time evolution of the changes in metric parameters as a function of simulation temperature. The applied protocol enabled simulations in the solid state as well as in the liquid (the collapse of the ordered crystal structure). The exact molecular motions contributing to the rotator state formation were obtained, revealing an enabling of the rotational freedom of the terminal parts of the chains. The Car–Parrinello molecular dynamics (CPMD) was applied to support and interpret experimental spectroscopic findings. The vibrational properties of the stretching of OH within the intermolecular hydrogen bond were studied using Fourier transformation of the autocorrelation function of both dipole moments and atomic velocity. Finally, path integral molecular dynamics (PIMD) was carried out to analyze the quantum effect’s influence on the bridged proton position in the hydrogen bridge. On the basis of the combined experimental and theoretical conclusions, a novel mechanism of the bridged protons dynamics has been postulated—the interlamellar hydrogen bonding pattern, resulting in an additional OH stretching band, visible in the solid-state experimental IR spectra.
APA, Harvard, Vancouver, ISO, and other styles
19

Waplak, S., W. Bednarski, and A. Ostrowski. "Pretransition Phenomena in Fast-Proton Conductors." Acta Physica Polonica A 108, no. 2 (August 2005): 261–70. http://dx.doi.org/10.12693/aphyspola.108.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mroz, B., R. Czajka, and S. Mielcarek. "Pretransition phenomena on the surface of ferroelastic crystal." Journal of Physics: Condensed Matter 12, no. 45 (October 23, 2000): L685—L690. http://dx.doi.org/10.1088/0953-8984/12/45/102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhizhin, G. N., Yu N. Krasjukov, E. I. Mukhtarov, V. N. Rogovoi, and N. V. Sidorov. "Investigation of pretransition phenomena in organic crystals by vibrational spectroscopy." Journal of Molecular Structure 216 (January 1990): 91–103. http://dx.doi.org/10.1016/0022-2860(90)80319-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aliev, A. R., I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev. "Pretransition Phenomena Near First-Order Phase Transitions in Ion-Molecular Crystals." Physics of the Solid State 62, no. 6 (June 2020): 998–1010. http://dx.doi.org/10.1134/s1063783420060037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Aliev, A. R., I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev. "Pretransition Phenomena in the Vicinity of Structural Phase Transition in Crystalline Sodium Carbonate." Crystallography Reports 65, no. 2 (March 2020): 285–88. http://dx.doi.org/10.1134/s1063774520020029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Aliev, A. R., I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev. "Pretransition Phenomena in the Region of a Structural Phase Transition in Potassium Perchlorate." Journal of Structural Chemistry 60, no. 10 (October 2019): 1584–89. http://dx.doi.org/10.1134/s0022476619100032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lobodyuk, V. A., Yu N. Koval’, and V. G. Pushin. "Crystal-structural features of pretransition phenomena and thermoelastic martensitic transformations in alloys of nonferrous metals." Physics of Metals and Metallography 111, no. 2 (February 2011): 165–89. http://dx.doi.org/10.1134/s0031918x11010212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Aliev, Amil R., Isa R. Akhmedov, Murad G. Kakagasanov, and Zakir A. Aliev. "ПРЕДПЕРЕХОДНЫЕ ЯВЛЕНИЯ В ОБЛАСТИ СТРУКТУРНОГО ФАЗОВОГО ПЕРЕХОДА В СУЛЬФАТЕ КАЛИЯ." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 3 (September 26, 2019): 350–57. http://dx.doi.org/10.17308/kcmf.2019.21/1148.

Full text
Abstract:
Методами спектроскопии комбинационного рассеяния света исследованы структурно-динамические свойства и процессы молекулярной релаксации в кристаллическом сульфате калия K2SO4 в интервале температур от 293 до 900 К. Проанализированы температурные зависимости положения максимума v (частоты), ширины w и интенсивности I спектральной полосы, отвечающей полносимметричному колебанию v1(A) сульфат-иона SO4 2–, в спектральном интервале от 963 до 976 см–1. С ростом температуры частота колебания уменьшается. Примерно при 650 K имеют место определённые особенности температурной зависимости v(T). При дальнейшем увеличении температуры частота продолжает уменьшаться. В точке структурного фазового перехода первого рода (Ts = 854 K)уменьшение частоты приостанавливается. С ростом температуры ширина возрастает, а интенсивность уменьшается. Примерно при 650 K имеют место определённые особенности температурных зависимостей w(T) и I(T). Уменьшение интенсивности приостанавливается, и в интервале температур 650–850 K интенсивность остаётся почти постоянной. При структурном фазовом переходе первого рода (Ts = 854 K) интенсивность уменьшается. Рост ширины при температуре T ≈ 650 K приостанавливается, а затем снова ширина начинает увеличиваться. Ближе к структурному фазовому переходу первого рода (Ts = 854 K) рост ширины замедляется и в точке структурного фазового перехода первого рода (Ts = 854 K) имеет место уменьшение ширины. Установлено, что в кристаллическом сульфате калия K2SO4 структурный фазовый переход первого рода носит растянутый характер. При температуре фазового перехода (Ts = 854 К) ширина резко возрастает, а частота резко уменьшается, уменьшаясь и при дальнейшем увеличении температуры. Обнаружено существование предпереходной области в исследованном кристаллическом сульфате калия K2SO4. Эта предпереходная область имеет место в интервале температур от 650 К до Ts = 854 К. REFERENCES Ivanova E. S., Petrzhik E. A., Gainutdinov R. V., Lashkova A. K., Volk T. R. Fatigue processes in triglycine sulfate and the effect of a magnetic fi eld on them. Phys. Solid State, 2017, vol. 59(3), ph. 569–574. https://doi.org/10.1134/S1063783417030155 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Inelastic intermolecular exchange of vibrational quanta and relaxation of vibrationally excited states in solid binary systems. Phys. Solid State, 2017, vo l . 59(4), pp. 752–757. https://doi.org/10.1134/10.1134/S1063783417040035 Bondarev V. S., Mikhaleva E. A., Flerov I. N., Gorev M. V. Electrocaloric effect in triglycine sulfate under equilibrium and nonequilibrium thermodynamic conditions. Phys. Solid State, 2017, vol. 59(6), pp. 1118–1126. https://doi.org/10.1134/S1063783417060051 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Relaxation of vibrationally excited states insolid binary systems “carbonate – sulfate”. Phys. Solid State, 2018, vol. 60(2), pp. 347–351. https://doi.org/10.1134/S1063783418020038 Nguyen Hoai Thu’o’ng, Sidorkin A. S., Milovidova S. D. Dispersion of dielectric permittivity in a nanocrystallinecellulose–triglycine sulfate composite at low and ultralow frequencies. Phys. Solid State, 2018, vo l . 60(3), pp. 559–565. https://doi.org/10.1134/S1063783418030320 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Vibrational relaxation in LiNO3 – LiClO4, Na2CO3 – Na2SO4, and KNO3 – KNO2 solid binary systems. Rus. J. Phys. Chem. B, 2018, vol. 12(3), pp. 357–362. https://doi.org/10.1134/S1990793118030211 Mikhaleva E. A., Flerov I. N., Kartashev A. V., Gorev M. V., Molokeev M. S., Korotkov L. N., Rysiakiewicz-Pasek E. Specifi c heat and thermal expansion of triglycine sulfate–porous glass nanocomposites. Phys. Solid State, 2018, vol. 60(7), pp. 1338–1343. https://doi.org/10.1134/S1063783418070181 Korabel’nikov D. V., Zhuravlev Yu. N. Ab initio structure and vibration properties of oxyanionic crystalline hydrates. Phys. Solid State, 2018, vol. 60(10), pp. 2058-2065. https://doi.org/10.1134/S106378341810013X Koposov G. D., Bardyug D. Yu. Analysis of ice premelting in water-containing disperse media. Tech. Phys. Lett., 2007, vol. 33(7), pp. 622–624. https://doi.org/10.1134/S1063785007070243 Demikhov E. I., Dolganov V. K. Pretransitional effects near blue phases of a cholesteric liquid crystal. JETP Lett., 1983, vol. 38(8), pp. 445–447. (in Russ.) Kizel’ V. A., Panin S. I. Pretransition phenomena in cholesterics with a short helix pitch. JETP Lett., 1986, vol. 44(2), pp. 93–96. (in Russ.) Klopotov A. A., Chekalkin T. L., Gyunter V. E. Effect of preliminary deformation on the fi ne structure of a TiNi-based alloy in the premartensitic region. Tech. Phys., 2001, vol. 46(6), pp. 770–772. https://doi.org/10.1134/1.1379650 Grishkov V. N., Lotkov A. I., Dubinin S. F., Teploukhov S.G., Parkhomenko V.D. Short-wavelength atomic-displacement modulation preceding the B2 →B19’ martensitic transformation in a TiNi-based alloy. Phys. Solid State, 2004, vol. 46(8), pp. 1386–1393. https://doi.org/10.1134/1.1788767 Mel’nikova S. V., Isaenko L. I., Pashkov V. M., Pevnev I. V. Phase transition in a KPb2Br5 crystal. Phys. Solid State, 2005, vol. 47(2), pp. 332–336. https://doi.org/10.1134/1.1866415 Mel’nikova S. V., Fokina V. D., Laptash N. M. Phase transitions in oxyfl uoride (NH4)2WO2F4. Phys. Solid State, 2006, vol. 48(1), pp. 117–121. https://doi.org/10.1134/S1063783406010239 Mel’nikova S. V., Isaenko L. I., Pashkov V. M., Pevnev I. V. Search for and study of phase transitions in some representatives of the APb2X5 family. Phys. Solid State, 2006, vol. 48(11), pp. 2152–2156. https://doi.org/10.1134/S1063783406110217 Mel’nikova S. V., Laptash N. M., Aleksandrov K. S. Optical studies of phase transitions in oxyfl uoride (NH4)2NbOF5. Phys. Solid State, 2010, vol. 52(10), pp. 2168–2172. https://doi.org/10.1134/S1063783410100240 Slyadnikov E. E. Pretransition state and structural transition in a deformed crystal. Phys. Solid State, 2004, vol. 46(6), pp. 1095–1100. https://doi.org/10.1134/1.1767251 Belyaev A. P., Rubets V. P., Antipov V. V. Infl uence of temperature on the rhombic shape of paracetamol molecular crystals. Technical Physics, 2017, vol. 62(4), pp. 645-647. https://doi.org/10.1134/S1063784217040041 Aliev A. R., Gafurov M. M., Akhmedov I. R., Kakagasanov M.G., Aliev Z.A. Structural phase transition peculiarities in ion-molecular perchlorate crystals. Phys. Solid State, 2018, vol. 60(6), pp. 1203–1213. https://doi.org/10.1134/S1063783418060045 Maksimov V. I., Maksimova E. N., Surkova T. P., Vokhmyanin A. P. On possible states of the crystal structure preceding to a phase transition in Zn1–xVxSe (0.01 ≤ x ≤ 0.10) crystals. Phys. Solid State, 2018, vol . 60(12), pp. 2424–2435. https://doi.org/10.1134/S1063783419010177 Vtyurin A. N., Bulou A., Krylov A. S., Afanas’ev M. L., Shebanin A. P. The cubic-to-monoclinic phase transition in (NH4)3ScF6 cryolite: A Raman scattering study. Phys. Solid State, 2001, vol. 43(12), pp. 2307–2310. https://doi.org/10.1134/1.1427961 Karpov S. V., Shultin A. A. Orientational melting and pretransition in ordered phases of rubidium and cesium nitrates. Sov. Phys. Solid State, 1975, vol. 17(10), pp. 1915–1919. (in Russ.) Gafurov M. M., Aliev A. R., Akhmedov I. R. Raman and infrared study of the crystals with molecular anions in the region of the solid – liquid phase transition. Spectrochim. Acta, 2002, vol. 58A(12), pp. 2683–2692. https://doi.org/10.1016/S1386-1425(02)00014-8 Gafurov M. M., Aliev A. R. Molecular relaxation processes in the salt systems containing anions of various configurations. Spectrochim. Acta, 2004, vol. 60A(7), pp. 1549–1555. https://doi.org/10.1016/j.saa.2003.06.004 Chemical Encyclopedy. V. 2. Moscow, Sov. Entsiklopediya, 1990, p. 289 (in Russ.) Bale C. W., Pelton A. D. Coupled phase diagram and thermodynamic analysis of the 18 binary systems formed among Li2CO3, K2CO3, Na2CO3, LiOH, KOH, NaOH, Li2SO4, K2SO4 and Na2SO4. CALPHAD, 1982, vol. 6(4), pз. 255–278. https://doi.org/10.1016/0364-5916(82)90020-7 Dessureault Y., Sangster J., Pelton A. D. Coupledphase diagram / thermodynamic analysis of the ninecommon-ion binary systems involving the carbonates and sulfates of lithium, sodium, and potassium. J. Electrochem. Soc., 1990, vol. 137(9), pр. 2941–2950. https://doi.org/10.1149/1.2087103 Lindberg D., Backman R., Chartrand P. Thermodynamic evaluation and optimization of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system. J. Chem. Thermodynamics, 2007, vol. 39, pp. 942–960. https://doi.org/10.1016/j.jct.2006.11.002 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Relaxation of vibrationally excited states in solid “nitrate – nitrite” binary systems. Opt. Spectrosc., 2017, vol. 123(4), pp. 587–589. https://doi.org/10.1134/S0030400X17100022
APA, Harvard, Vancouver, ISO, and other styles
27

Mariette, C., Ilya Frantsuzov, Bo Wang, L. Guérin, P. Rabiller, Mark D. Hollingsworth, and B. Toudic. "Frustrated pretransitional phenomena in aperiodic composites." Physical Review B 94, no. 18 (November 11, 2016). http://dx.doi.org/10.1103/physrevb.94.184105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Timonin, P. N. "Pretransitional phenomena in dilute crystals with a first-order phase transition." Physical Review B 69, no. 21 (June 10, 2004). http://dx.doi.org/10.1103/physrevb.69.212103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Aliev, A., I. Akhmedov, M. Kakagasanov, and Z. Aliev. "Pretransitional phenomena in the region of structural phase transition in sodium sulfate." Himičeskaâ fizika i mezoskopiâ 21, no. 2 (June 15, 2019). http://dx.doi.org/10.15350/17270529.2019.2.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

"Pretransition phenomena in the region of structural phase transition in potassium perchlorate." Журнал структурной химии, 2019. http://dx.doi.org/10.26902/jsc_id47983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography