Academic literature on the topic 'Présurseurs des organes sensoriels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Présurseurs des organes sensoriels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Présurseurs des organes sensoriels"
Ghysen, A., and C. Dambly-Chaudière. "Le développement des organes sensoriels chez la drosophile." médecine/sciences 11, no. 2 (1995): 178. http://dx.doi.org/10.4267/10608/2184.
Full textMessaddeq, N., M. Fabre, and M. Kremer. "Étude au microscope électronique à balayage des organes sensoriels deCulicoides nubeculosus(Diptère : Cératopogonidé)." Annales de Parasitologie Humaine et Comparée 64, no. 3 (1989): 224–37. http://dx.doi.org/10.1051/parasite/1989643224.
Full textBÉGOUT-ANRAS, M. L., and J. P. LAGARDÈRE. "Domestication et comportement chez les poissons téléostéens." INRAE Productions Animales 17, no. 3 (July 29, 2004): 211–15. http://dx.doi.org/10.20870/productions-animales.2004.17.3.3594.
Full textD'Amico, F., B. Geoffroy, Dominique Cuisance, and J. P. Bossy. "Acquisition de nouvelles données sur l'équipement sensoriel des glossines (Diptera, Glossinidae)." Revue d’élevage et de médecine vétérinaire des pays tropicaux 44, no. 1 (January 1, 1991): 75–79. http://dx.doi.org/10.19182/remvt.9220.
Full textHenry, Jean-Pierre. "Peut-on comprendre les mécanismes de la perception ?" médecine/sciences 38, no. 2 (February 2022): 191–97. http://dx.doi.org/10.1051/medsci/2022004.
Full textGeoffroy, B., F. Bialota, J. P. Bossy, M. Ravallec, F. D'Amico, and Dominique Cuisance. "Les chimiorécepteurs de l'aile chez Glossina pallidipes (Diptera : Glossinidae) et Stomoxys nigra (Diptera : Muscidae)." Revue d’élevage et de médecine vétérinaire des pays tropicaux 49, no. 2 (February 1, 1996): 141–48. http://dx.doi.org/10.19182/remvt.9532.
Full textGualandi, Alberto. "The dance of the mind. Physics and metaphysics in Gilles Deleuze and David Bohm." Veritas (Porto Alegre) 62, no. 2 (October 26, 2017): 279. http://dx.doi.org/10.15448/1984-6746.2017.2.28508.
Full textJones, John, Vivian Blok, and Geert Smant. "SXP/RAL-2 proteins of the potato cyst nematode Globodera rostochiensis: secreted proteins of the hypodermis and amphids." Nematology 2, no. 8 (2000): 887–93. http://dx.doi.org/10.1163/156854100750112833.
Full textBoussarie, Didier. "L’univers sensoriel des tortues." Bulletin de l'Académie vétérinaire de France 174 (2021). http://dx.doi.org/10.3406/bavf.2021.70961.
Full textDissertations / Theses on the topic "Présurseurs des organes sensoriels"
Kim, Jang-Mi. "Quantitative live imaging analysis of proneural factor dynamics during lateral inhibition in Drosophila." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS585.pdf.
Full textLateral inhibition by Notch is a conserved mechanism that regulates the formation of regular patterns of cell fates1. In many tissues, intercellular Delta-Notch signaling coordinates in time and space binary fate decisions thought to be stochastic. In the context of sensory organ development in Drosophila, it has been proposed that fate symmetry breaking between equipotent cells relies on random fluctuations in the level of Delta/Notch2 (or one of their upstream regulators, e.g. YAP1 in the mouse gut3), with small differences being amplified and stabilized to generate distinct fates. Notch-mediated stochastic fate choices may also be biased by intrinsic, i.e. cell history4, or extrinsic factors. Although lateral inhibition has been extensively studied in many developmental contexts, a detailed in vivo analysis of fate and signaling dynamics is still lacking. Here, we used a quantitative live imaging approach to study the dynamics of sensory organ fate specification in the Drosophila abdomen. The accumulation of the transcription factor Scute (Sc), a key regulator of sensory organ formation in the abdomen, was used as a proxy to monitor proneural competence and SOP fate acquisition in developing pupae expressing GFP-tagged Sc. We generated high spatial and temporal resolution movies and segmented/tracked all nuclei using a custom-made pipeline. This allowed us to quantitatively study Sc dynamics in all cells. Having defined a fate difference index (FDI), we found that symmetry breaking can be detected early, when cells expressed very low and heterogeneous levels of Sc. We also observed rare cases of late fate resolution, e.g. when two cells close to each other accumulate high levels of GFP-Scute before being pulled away from each other. Interestingly, we did not observe a rapid decrease in GFP-Sc levels in non-selected cells right after symmetry breaking. Also, the rate of change of FDI values after symmetry breaking appeared to positively correlate with cell-to-cell heterogeneity in Sc levels. Whether increased heterogeneity is causally linked to symmetry breaking remains to be tested. We next addressed if this stochastic fate decision is biased by birth order (as proposed in the context of the AC/VU decision in worms4) or by the size and geometry of cell-cell contacts (as modeling suggested5). We found that neither appeared to significantly influence Notch-mediated binary fate decisions in the Drosophila abdomen. In conclusion, our live imaging data provide a detailed analysis of proneural dynamics during lateral inhibition in Drosophila
Leyns, Luc. "Patterns des organes sensoriels: Isolement et étude de gènes." Doctoral thesis, Universite Libre de Bruxelles, 1991. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213027.
Full textCourtier-Orgogozo, Virginie. "Formation des organes sensoriels chez D. Melanogaster : lignages cellulaires, apoptose et évolution." Paris 6, 2003. http://www.theses.fr/2003PA066242.
Full textVervoort, Michel. "De la formation des organes sensoriels de la drosophile-aspects génétiques et évolutives." Doctoral thesis, Universite Libre de Bruxelles, 1996. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212350.
Full textSchuster, Kevin. "Se trouver, se perdre, se retrouver : innervation des organes sensoriels de la ligne latérale." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20008.
Full textIn this thesis, I address the question of how peripheral axons of sensory neurons find their distant target organs. In the case of the posterior lateral line (PLL) system of zebrafish, sensory organs are deposited by a migrating primordium and sensory neurites accompany this primordium during its migration. In this way, the neurites are guided to their prospective target organs. I show that the inactivation of «Glial cell line Derived Neurotrophic Factor » (GDNF) signaling leads to the inability of sensory axons to track the migrating primordium. GDNF signaling is also used as a guidance cue during axonal regeneration following nerve cut. I conclude that GDNF is a major determinant of directed neuritic growth and of target finding in this system, and propose that GDNF acts by promoting local neurite outgrowth. Further, I demonstrate that «Brain Derived Neurotrophic Factor » (BDNF) signaling exerts another role in PLL development as it is essent ial to anchor and properly connect axons to their targets organs.In another project, we could demonstrate that the development of the embryonic PLL of the atlantic blue-fin tuna shows striking similarities to that of the relatively basal zebrafish, including that PLL axons follow the migrating primordium
Gautier, Philippe. "Recherche et caractérisation d'un gène impliqué dans les étapes finales de la formation des organes sensoriels de drosophila melanogaster." Doctoral thesis, Universite Libre de Bruxelles, 1995. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212577.
Full textBesson, Charlotte. "Division asymétrique et remodelage de la polarité épithéliale : dynamique de la polarisation des cellules précurseurs des organes sensoriels externes chez drosophila melanogaster." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066318/document.
Full textDuring development, cell fate diversity can be generated by asymmetric cell division. As fate asymmetry can result from the unequal segregation at mitosis of cell fate determinants, polarization of the mother cell is essential for this process. The epithelial Sensory Organ Precursor cells (SOPs) divide asymmetrically within the plane of the notum epithelium in Drosophila. Planar polarization of mitotic SOPs critically depends on the asymmetric distribution of the PAR polarity complex. Nevertheless, PAR proteins are also involved in the maintenance of epithelial apico-basal polarity. When and how this epithelial polarity is remodelled to allow planar polarization of the PAR complex is unknown. During my thesis, I developed a quantitative live-imaging approach to monitor polarization of the PAR proteins. I showed that the three members of the PAR complex (Bazooka (Baz), Par6 and atypical Protein Kinase C (aPKC)) become planar polarized prior to mitosis and identified Planar Cell Polarity (PCP) as the initial symmetry breaking input. Expanded (Ex) and p120/catenin (p120ctn) were identified as SOP-specific regulators of Crumbs and AJ dynamics, respectively, that negatively regulate planar polarization in SOPs. This work led to a model whereby decreasing levels of Ex and p120ctn in SOPs increases free Par6-aPKC and Baz to promote the formation and polarization of the Baz-Par6-aPKC complex. Thus, this study links fate determination to asymmetric cell division and provides a general framework to understand how epithelial cells can divide asymmetrically despite having junctions
Besson, Charlotte. "Division asymétrique et remodelage de la polarité épithéliale : dynamique de la polarisation des cellules précurseurs des organes sensoriels externes chez drosophila melanogaster." Electronic Thesis or Diss., Paris 6, 2014. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2014PA066318.pdf.
Full textDuring development, cell fate diversity can be generated by asymmetric cell division. As fate asymmetry can result from the unequal segregation at mitosis of cell fate determinants, polarization of the mother cell is essential for this process. The epithelial Sensory Organ Precursor cells (SOPs) divide asymmetrically within the plane of the notum epithelium in Drosophila. Planar polarization of mitotic SOPs critically depends on the asymmetric distribution of the PAR polarity complex. Nevertheless, PAR proteins are also involved in the maintenance of epithelial apico-basal polarity. When and how this epithelial polarity is remodelled to allow planar polarization of the PAR complex is unknown. During my thesis, I developed a quantitative live-imaging approach to monitor polarization of the PAR proteins. I showed that the three members of the PAR complex (Bazooka (Baz), Par6 and atypical Protein Kinase C (aPKC)) become planar polarized prior to mitosis and identified Planar Cell Polarity (PCP) as the initial symmetry breaking input. Expanded (Ex) and p120/catenin (p120ctn) were identified as SOP-specific regulators of Crumbs and AJ dynamics, respectively, that negatively regulate planar polarization in SOPs. This work led to a model whereby decreasing levels of Ex and p120ctn in SOPs increases free Par6-aPKC and Baz to promote the formation and polarization of the Baz-Par6-aPKC complex. Thus, this study links fate determination to asymmetric cell division and provides a general framework to understand how epithelial cells can divide asymmetrically despite having junctions
Faucheux, Michel J. "Recherches sur les organes sensoriels impliques dans le comportement de ponte chez deux lepidopteres a larves keratinophages : tineola bisselliella humm. et monopis crocicapitella clem. (tineidae)." Nantes, 1987. http://www.theses.fr/1987NANT2046.
Full textFaucheux, Michel J. "Recherches sur les organes sensoriels impliqués dans le comportement de ponte chez deux lépidoptères à larves kératinophages, Tineola bisselliella Humm, et Monopis crocicapitella Clem. (Tineidae)." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37604981n.
Full textBooks on the topic "Présurseurs des organes sensoriels"
Pendoué, Materne. Récit Originel de la Création Biblique Ou l'automatisation de la Fonctionnalité des Organes Sensoriels. Independently Published, 2020.
Find full textPendoué, Materne. Synchronisation des 05 Calendriers : 8960 Corps Libres Dans le Cosmos - 6060 Intensités des Phénomènes Paranormaux -11 Organes Vitaux - 06 Organes Sensoriels - Chiffre de la Bête: 686 - 05 Autels. Independently Published, 2020.
Find full textBook chapters on the topic "Présurseurs des organes sensoriels"
Math, François, Jean-Pierre Kahn, and Jean-Pierre Vignal. "Chapitre 4. Les organes sensoriels." In Neurosciences cliniques, 159–230. De Boeck Supérieur, 2008. http://dx.doi.org/10.3917/dbu.math.2008.01.0159.
Full text