Academic literature on the topic 'Pressure sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pressure sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pressure sensor"
Gao, Xin, Piotr Mackowiak, Biswajit Mukhopadhyay, Oswin Ehrmann, Klaus Dieter Lang, and Ha Duong Ngo. "Wireless Pressure Sensor System." Applied Mechanics and Materials 530-531 (February 2014): 75–78. http://dx.doi.org/10.4028/www.scientific.net/amm.530-531.75.
Full textLee, Kang-Ho, Yeong-Eun Kwon, Hyukjin Lee, Yongkoo Lee, Joonho Seo, Ohwon Kwon, Shin-Won Kang, and Dongkyu Lee. "Active Body Pressure Relief System with Time-of-Flight Optical Pressure Sensors for Pressure Ulcer Prevention." Sensors 19, no. 18 (September 6, 2019): 3862. http://dx.doi.org/10.3390/s19183862.
Full textEn, De, Chang Sheng Zhou, Huang He Wei, Na Na Wei, and Xiao Long Shi. "Research of MOEMS Pressure Sensor." Applied Mechanics and Materials 273 (January 2013): 524–27. http://dx.doi.org/10.4028/www.scientific.net/amm.273.524.
Full textGrossöhmichen, Martin, Rolf Salcher, Klaus Püschel, Thomas Lenarz, and Hannes Maier. "Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor." BioMed Research International 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/6059479.
Full textXu, Dandan, Ling Duan, Suyun Yan, Yong Wang, Ke Cao, Weidong Wang, Hongcheng Xu, Yuejiao Wang, Liangwei Hu, and Libo Gao. "Monolayer MoS2-Based Flexible and Highly Sensitive Pressure Sensor with Wide Sensing Range." Micromachines 13, no. 5 (April 22, 2022): 660. http://dx.doi.org/10.3390/mi13050660.
Full textKim, Soo-Wan, Geum-Yoon Oh, Kang-In Lee, Young-Jin Yang, Jeong-Beom Ko, Young-Woo Kim, and Young-Sun Hong. "A Highly Sensitive and Flexible Capacitive Pressure Sensor Based on Alignment Airgap Dielectric." Sensors 22, no. 19 (September 28, 2022): 7390. http://dx.doi.org/10.3390/s22197390.
Full textPan, Jin, Shiyu Liu, Hongzhou Zhang, and Jiangang Lu. "A Flexible Temperature Sensor Array with Polyaniline/Graphene–Polyvinyl Butyral Thin Film." Sensors 19, no. 19 (September 23, 2019): 4105. http://dx.doi.org/10.3390/s19194105.
Full textOkojie, Robert S., Roger D. Meredith, Clarence T. Chang, and Ender Savrun. "High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2014, HITEC (January 1, 2014): 000047–52. http://dx.doi.org/10.4071/hitec-ta25.
Full textFarooq, Muhammad, Talha Iqbal, Patricia Vazquez, Nazar Farid, Sudhin Thampi, William Wijns, and Atif Shahzad. "Thin-Film Flexible Wireless Pressure Sensor for Continuous Pressure Monitoring in Medical Applications." Sensors 20, no. 22 (November 20, 2020): 6653. http://dx.doi.org/10.3390/s20226653.
Full textKim, Dong Hwi, Eun Soo Kim, Sung-chul Shin, and Sun Hong Kwon. "Sources of the Measurement Error of the Impact Pressure in Sloshing Experiments." Journal of Marine Science and Engineering 7, no. 7 (July 3, 2019): 207. http://dx.doi.org/10.3390/jmse7070207.
Full textDissertations / Theses on the topic "Pressure sensor"
Trolliet, Alexia. "Pressure Sensor Miniaturization." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175784.
Full textIbrahim, Amr. "Remotely interrogated MEMS pressure sensor." Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/4149/.
Full textWang, Xingwei. "Optical Fiber Tip Pressure Sensor." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/35490.
Full textMiniature pressure sensors which can endure harsh environments are a highly sought after goal in industrial, medical and research fields. Microelectromechanical systems (MEMS) are the current methods to fabricate such small sensors. However, they suffer from low sensitivity and poor mechanical properties.
To fulfill the need for robust and reliable miniature pressure sensors that can operate under high temperatures, a novel type of optical fiber tip sensor only 125μm in diameter is presented in this thesis. The essential element is a piece of hollow fiber which connects the fiber end and a diaphragm to form a Fabry-Pérot cavity. The all-fused-silica structure fabricated directly on a fiber tip has little temperature dependence and can function very well with high resolution and accuracy at temperatures up to 600ï °C. In addition to its miniature size, its advantages include superior mechanical properties, biocompatibility, immunity to electromagnetic interference, disposability and cost-effective fabrication.
The principle of operation, design analysis, fabrication implementation and performance evaluation of the sensor are discussed in detail in the following chapters.
Master of Science
Swoboda, Marek Lec Ryszard Joseph Jeffrey. "Implantable arterial blood pressure sensor /." Philadelphia, Pa. : Drexel University, 2004. http://hdl.handle.net/1860/2968.
Full textTuinea-Bobe, Cristina L. "A stretchable pressure sensor for early detection of pressure ulcers." Thesis, University of Ulster, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528378.
Full textDutoit, Bertrand Michel. "Flat electromagnetic force-feedback pressure sensor /." Lausanne, 2001. http://library.epfl.ch/theses/?nr=2437.
Full textPalmer, Jason. "Precise pressure sensor temperature compensation algorithms." Diss., Online access via UMI:, 2007.
Find full textVan, den Heever Thomas Stanley. "A zinc oxide nanowire pressure sensor." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5369.
Full textThesis presented in partial fulfilment of the requirements for the degree Master of Science in Engineering at the University of Stellenbosch
ENGLISH ABSTRACT: Measurement of pressure with zinc oxide (ZnO) nanowires was investigated. ZnO exhibits the piezoelectric effect, generating a voltage when pressure is applied to the material. This relationship between pressure and output voltage was used to make a pressure sensor. A study of the physical and mathematical working of the piezoelectric effect in ZnO nanowires was done. Simulations were conducted by means of specialised software to test the theory. The simulations gave results as the theory had predicted. ZnO nanowires were grown using various methods. Vapour liquid solid (VLS) was found to be the best method to grow uniform and dense arrays of ZnO nanowires. Statistical methods were employed to obtain the optimal parameters for the growth of ZnO nanowires through the VLS method. After the growth of the ZnO nanowires a pressure sensor was built. The manufacturing of the pressure sensor consisted of different steps. The sensors were tested to verify that they worked as described in theory and as shown in the simulations. The output voltage was lower than the simulated value due to imperfections and losses throughout the system. The output voltage versus applied pressure graphs did coincide with the bulk ZnO materials as well as related products, such as force sensing resistors. The output voltage is too low, but there are various methods by which the output voltage can be increased. These methods are discussed. The finished sensor can be used to continuously monitor pressure on a plane.
AFRIKAANSE OPSOMMING: Die meting van druk deur sink oksied (ZnO) nanodrade was ondersoek. ZnO toon die piëzo-elektriese effek - spanning word gegenereer wanneer druk op die materiaal aangewend word. Hierdie verhouding tussen druk en uitsetspanning is gebruik om ’n druksensor te vervaardig. ’n Studie van die fisiese en wiskundige werking van die piëzo-elektriese effek in ZnO nanodrade is gedoen. Simulasies deur middel van gespesialiseerde sagteware is uitgevoer om die teorie te bevestig. Die simulasies het resultate getoon soos deur die teorie beskryf word. ZnO nanodrade is gegroei deur verskillende metodes. Verdamping vloeistof vastestof (VVV) is as die beste metode gevind om uniforme en digte skikkings van ZnO nanodrade te kry. Statistiese metodes is aangewend om die optimale parameters vir die groei van ZnO nanodrade deur middel van die VVV metode te kry. Na afloop van die groei van die ZnO nanodrade is ’n druksensor vervaardig. Die vervaardigingsproses het uit verskillende stappe bestaan, ten einde die bou van ’n werkende druksensor uit die ZnO nanodrade te realiseer. Die sensors is getoets om te bevestig dat dit werk, soos beskryf deur die teorie en gewys in die simulasies. Die uitsetspanning was laer as wat verwag was as gevolg van onvolmaakthede en verliese in die hele stelsel. Die uitsetspanning teenoor druk grafieke van die sensor het ooreengestem met die van die grootmaat materiale, asook verwante produkte soos druk sensitiewe weerstande. Die uitset spanning is baie laag en daar bestaan verskillende maniere waarop die uitsetspanning verhoog kan word. Hierdie metodes word bespreek.
Clavijo, William. "Nanowire Zinc Oxide MOSFET Pressure Sensor." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/625.
Full textMagát, Martin. "Senzory tlaku využívající moderní nanotechnologie." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-233655.
Full textBooks on the topic "Pressure sensor"
(firm), Sensortechnics. Pressure sensor handbook. Puchheim: Sensortechnics, 1991.
Find full textDean, G. J. Optical pressure sensor. Manchester: UMIST, 1996.
Find full textP, Skobelev O., and Rzevski G. 1932-, eds. Pressure sensor dynamics. Samara: IBT, 1993.
Find full textMotorola. Pressure sensor device data. Phoenix, AZ: Motorola, 1994.
Find full textMorin, André. Feasibility of a modulating grid optical pressure sensor. [Montréal]: Transportation Development Centre, Transport Canada, 2002.
Find full textTeymoori, Roshanak. La1-xSrxMnO3 as a candidate for a room temperature pressure sensor. St. Catharines, Ont: Brock University, Dept. of Physics, 2003.
Find full textGeological Survey (U.S.), ed. New pressure-based water-level sensor used by the U.S. Geological Survey. Stennis Space Center, Miss: U.S. Geological Survey, 1992.
Find full textGeological Survey (U.S.), ed. New pressure-based water-level sensor used by the U.S. Geological Survey. Stennis Space Center, Miss: U.S. Geological Survey, 1992.
Find full textL, Wilbourn Sammy, and Geological Survey (U.S.), eds. Proceedings of a U.S. Geological Survey Pressure-Sensor Workshop, Denver, Colorado, July 28-31, 1992. Denver, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1994.
Find full textL, Wilbourn Sammy, and Geological Survey (U.S.), eds. Proceedings of a U.S. Geological Survey Pressure-Sensor Workshop, Denver, Colorado, July 28-31, 1992. Denver, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1994.
Find full textBook chapters on the topic "Pressure sensor"
Baumann, Peter. "Pressure Sensors." In Selected Sensor Circuits, 131–50. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-38212-4_5.
Full textSeneviratne, Pradeeka. "Textile Pressure Sensor." In Beginning e-Textile Development, 121–47. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6261-0_5.
Full textMatsui, Takeshi. "Automotive High-Pressure Sensor." In Advanced Microsystems for Automotive Applications 98, 231. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-39696-4_22.
Full textMatsui, Takeshi. "Automotive High-Pressure Sensor." In Advanced Microsystems for Automotive Applications 98, 231. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72146-5_22.
Full textCsászár, Csaba. "Polymer Thick-Film Pressure Sensor." In Multichip Modules with Integrated Sensors, 315–19. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0323-4_33.
Full textGussmann, V. "Monolithic Integrated Pressure Sensor ICs." In Advanced Microsystems for Automotive Applications 2000, 39–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-18146-7_4.
Full textGonzález Ruiz, Pilar, Kristin De Meyer, and Ann Witvrouw. "The Pressure Sensor Fabrication Process." In Poly-SiGe for MEMS-above-CMOS Sensors, 75–99. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6799-7_4.
Full textWan, Yun, and Pin Wan. "A Novel Ceramic Pressure Sensor." In Key Engineering Materials, 772–74. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.772.
Full textMohd Noor, Anas, Zulkarnay Zakaria, and Norlaili Saad. "Intraocular MEMS Capacitive Pressure Sensor." In Lecture Notes in Mechanical Engineering, 493–501. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0866-7_42.
Full textOhta, T., H. Miyake, M. Yamashita, S. Tsuzawa, H. Tanabe, L. Sakaguchi, and S. Yokoyama. "Development of a Fully Implantable Epidural Pressure (EDP) Sensor." In Intracranial Pressure VII, 48–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73987-3_10.
Full textConference papers on the topic "Pressure sensor"
Han, Jeahyeong, Shunzhou Yang, and Mark A. Shannon. "Peeling Mode Capacitive Pressure Sensor for Sub-KPA Pressure Measurements." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15521.
Full textBelovolov, M. I., M. M. Bubnov, and S. L. Semjonov. "High Sensitive Fiber Interferometric Pressure Sensor." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cwf57.
Full textClendenin, Jason, Matt Gordon, and Steve Tung. "Pressure Sensitivity of a Thermal Shear Stress Sensor." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45066.
Full textVujanic, Aleksandar, and Nadja Adamovic. "Silicon Micromachined Fiber-Optic Pressure Sensor." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1105.
Full textHajjaj, Amal Z., Md Abdullah Al Hafiz, Nouha Alcheikh, and Mohammad I. Younis. "Scalable Pressure Sensor Based on Electrothermally Operated Resonator." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67785.
Full textManzo, Maurizio, and Omar Cavazos. "A Wireless Photonic Intraocular Pressure Sensor." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70740.
Full textSohi, Ali Najafi, Mohammad Shavezipur, Patricia Nieva, and Amir Khajepour. "Modeling of a Multifunctional Pressure-Temperature Sensor." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12930.
Full textAndarawis, E., E. Berkcan, and B. Kashef. "Remotely Powered, Hermetic RF MEMS Pressure Sensor." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68992.
Full textChang, Sung-Pil, Jeong-Bong Lee, and Mark G. Allen. "An 8x8 Robust Capacitive Pressure Sensor Array." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1293.
Full textZhou, Gui-Zi, Lian Shen, and Hsiao Tsu Chang. "New pressure sensor." In International Symposium on Optoelectronics in Computers, Communications, and Control, edited by Chih-Hong Chen and Tieh-Chu Wang. SPIE, 1992. http://dx.doi.org/10.1117/12.131287.
Full textReports on the topic "Pressure sensor"
Steele, Thomas R. Interferometric Optical High Pressure Sensor. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada245100.
Full textSuarez, Reynold, Tom R. Heimbigner, Joel B. Forrester, James C. Hayes, and Lance S. Lidey. Pressure Sensor Calibration using VIPA Hardware. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/1086929.
Full textZdenek, Jeffrey S., and Ralph A. Anthenien. Ion Based High-Temperature Pressure Sensor. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada453070.
Full textClaus, Ana, Borzooye Jafarizadeh, Azmal Huda Chowdhury, Neziah Pala, and Chunlei Wang. Testbed for Pressure Sensors. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009771.
Full textEaton, W. P., and J. H. Smith. Planar surface-micromachined pressure sensor with a sub-surface, embedded reference pressure cavity. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/373935.
Full textDUNCAN, SEXTON, BALL, DOUGLAS, and OHL. A SENSOR FOR MEASURING PRESSURE IN A SEALED CONTAINER. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/820846.
Full textLee, S. B., C. M. Yu, D. R. Ciarlo, and S. K. Sheem. Micromachined Fabry-Perot interferometric pressure sensor for automotive combustion engine. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/212541.
Full textKennedy, Jermaine L. Fiber-Optic Sensor with Simultaneous Temperature, Pressure, and Chemical Sensing Capabilities. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/949037.
Full textFleming, Austin, and Ashley Lambson. Laboratory and In-Pile Testing of a Fiber-optic Pressure Sensor. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1908526.
Full textChen, Shikui, Yongjia Wu, Shaoxu Xian, Jackson Klein, Lei Zuo, Thanh Tuong Pham, Sujan Yenuganti, et al. Self-powered Wireless Dual-mode Langasite Sensor for Pressure/Temperature Monitoring of Nuclear Reactors. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1505496.
Full text