Dissertations / Theses on the topic 'Premixed Combustion'

To see the other types of publications on this topic, follow the link: Premixed Combustion.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Premixed Combustion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Porumbel, Ionut. "Large Eddy Simulation of premixed and partially premixed combustion." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14050.

Full text
Abstract:
Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The LES algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions. Algorithm validation is achieved by comparison with reactive and non-reactive experimental data. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction. Three premixed (equivalence ratio = 0.6, 0.65, and 0.75) cases are simulated. For the leaner case, the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case, the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release Partially premixed combustion is simulated for cases where the transverse profile of the inflow equivalence ratio is variable. The simulations show that for mixtures leaner in the core the vortical pattern tends towards anti-symmetry and the heat release decreases, resulting also in instability of the flame. For mixtures richer in the core, the flame displays sinusoidal flapping resulting in larger wake spreading. More accurate predictions of flame stability will require the use of detailed chemistry, raising the computational cost of the simulation. To address this issue, a novel algorithm for training Artificial Neural Networks (ANN) for prediction of the chemical source terms has been implemented and tested. Compared to earlier methods, the main advantages of the ANN method are in CPU time and disk space and memory reduction.
APA, Harvard, Vancouver, ISO, and other styles
2

Porumbel, Ionuţ. "Large Eddy Simulation of premixed and partially premixed combustion." Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-11042006-042840/.

Full text
Abstract:
Thesis (Ph. D.)--Aerospace Engineering, Georgia Institute of Technology, 2007.
Yeung, Pui-Kuen, Committee Member ; Lieuwen, Tim, Committee Member ; Menon, Suresh, Committee Chair ; Seitzman, Jerry, Committee Member ; Syed, Saadat, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
3

Mann, Kenneth R. C. "Premixed ammonia-methane-air combustion." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ62250.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chew, Tuan Chiong. "Aspects of premixed tubulent combustion." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haq, Md Zahurul. "Fundamental studies of premixed combustion." Thesis, University of Leeds, 1998. http://etheses.whiterose.ac.uk/1545/.

Full text
Abstract:
The thesis comprises a fundamental study of spherical premixed flame propagation,originating at a point under both laminar and turbulent propagation. Schlieren cine photography has been employed to study laminar flame propagation, while planar mie scattering (PMS) has elucidated important aspects of turbulent flame propagation. Thrbulent flame curvature has also been studied using planar laser induced fluorescence (PLIF) images. Spherically expanding flames propagating at constant pressure have been employed to determine the unstretched laminar burning velocity and the effect of flame stretch, quantified by the associated Markstein lengths. Methane-air mixtures at initial temperatures between 300 and 400 K, and pressures between 0.1 and 1.0 MPa have been studied at equivalence ratios of 0.8, 1.0 and 1.2. Values of unstretched laminar burning velocity are correlated as functions of pressure, temperature and equivalence ratio. Two definitions of laminar burning velocity and their response to stretch due to curvature and flow strain are explored. Experimental results are compared with two sets of modeled predictions; one model considers the propagation of a spherically expanding flame using a reduced mechanism and the second considers a one dimensional flame using a full kinetic scheme. Data from the present experiments and computations are compared with those reported elsewhere. Comparisons are made with iso-octane-air mixtures and the contrast between fuels lighter and heavier than air is emphasized. Flame instability in laminar flame propagation become more pronounced at higher pressures, especially for lean and stoichiometric methane-air mixtures. Critical Peclet numbers for the onset of cellularity have been measured and related to the appropriate Markstein number. Analyses using flame photography clearly show the flame to accelerate as the instability develops, giving rise to a cellular flame structure. The underlying laws controlling the flame speed as cellularity develops have been explored. PMS images have been analysed to obtain the distributions of burned and unburned gas in turbulent flames. These have enabled turbulent burning velocities to be derived for stoichiometric methane-air at different turbulent r.m.s. velocities and initial pressures of 0.1 MPa and 0.5 MPa. A variety of ways of defining the turbulent burning velocity have been fruitfully explored. Relationships between these different burning velocities are deduced and their relationship with the turbulent flame speed derived. The deduced relationships have also been verified experimentally. Finally, distributions of flame curvature in turbulent flames have been measured experimentally using PMS and PLIF. The variance of the distribution increases with increase in the r.m.s. turbulent velocity and decrease in the Markstein number. Reasons for these effects are suggested.
APA, Harvard, Vancouver, ISO, and other styles
6

Undapalli, Satish. "Large eddy simulation of premixed and non-premixed combustion in a stagnation point reverse flow combustor." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22625.

Full text
Abstract:
Thesis (Ph. D.)--Aerospace Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Suresh, Menon; Committee Member: Ben T, Zinn; Committee Member: Jeff Jagoda; Committee Member: Jerry Seitzman; Committee Member: Thorsten Stoesser.
APA, Harvard, Vancouver, ISO, and other styles
7

Shelil, Nasser. "Flashback studies with premixed swirl combustion." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/55494/.

Full text
Abstract:
The important conclusion was reached that when combusting H2/CH 4 fuel mixes flashback behaviour approaches that of pure methane for equivalence ratios less than about 0.65, all pressures investigated up to 7 bara and air inlet temperatures of 300 and 473K. Significant deleterious changes in flashback behaviour for H2/CH4 fuel mixes occurred for air inlet temperatures of 673K, although operation at weak equivalence ratios less than 0.65 was still beneficial.
APA, Harvard, Vancouver, ISO, and other styles
8

Kostiuk, Larry William. "Premixed turbulent combustion in counterflowing streams." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keays, John F. "Large eddy simulation of premixed combustion." Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/11284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lim, Kian Min. "DNS of inhomogeneous reactants premixed combustion." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/247342.

Full text
Abstract:
The search for clean and efficient combustors is motivated by the increasingly stringent emissions regulations. New gas turbine engines are designed to operate under lean conditions with inhomogeneous reactants to ensure cleanliness and stability of the combustion. This ushers in a new mode of combustion, called the inhomogeneous reactants premixed combustion. The present study investigates the effects of inhomogeneous reactants on premixed combustion, specifically on the interactions of an initially planar flame with field of inhomogeneous reactants. Unsteady and unstrained laminar methane-air flames are studied in one- and two-dimensional simulations to investigate the effects of normally and tangentially (to the flame surface) stratified reactants. A three-dimensional DNS of turbulent inhomogeneous reactants premixed combustion is performed to extend the investigation into turbulent flames. The methaneair combustion is represented by a complex chemical reaction mechanism with 18 species and 68 steps. The flame surface density (FSD) and displacement speed S_d have been used as the framework to analyse the inhomogeneous reactants premixed flame. The flames are characterised by an isosurface of reaction progress variable. The unsteady flames are compared to the steady laminar unstrained reference case. An equivalence ratio dip is observed in all simulations and it can serve as a marker for the premixed flame. The dip is attributed to the preferential diffusion of carbon- and hydrogen- containing species. Hysteresis of S_d is observed in the unsteady and unstrained laminar flames that propagate into normally stratified reactants. Stoichiometric flames propagating into lean mixture have a larger S_d than lean flames propagating into stoichiometric mixtures. The cross-dissipation term contribution to S_d is small (~~10%) but its contribution to the hysteresis of S_d is not (~~50%). Differential propagation of the flame surface is observed in the laminar flame that propagates into tangentially stratified reactants. Stretch on the flame surface is induced by the differential propagation, which in turn increases the flame surface area.
APA, Harvard, Vancouver, ISO, and other styles
11

Ravikanti, Veera Venkata Satyanarayana M. "Advanced flamelet modelling of turbulent non-premixed and partially premixed combustion." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/34739.

Full text
Abstract:
Current work focuses on the development and performance evaluation of advanced flamelet models for turbulent non-premixed and partially premixed combustion in RANS and large eddy simulation (LES) based modelling. A RANS-based combustion modelling strategy which has the ability to capture the detailed structure of turbulent non-premixed flames, including the pollutant NO, and account for the effects of radiation heat loss and transient evolution of NO, has been developed and incorporated into the in-house RANS code. The strategy employs an 'enthalpy defect'-based non-adiabatic flamelet model in conjunction with steady or unsteady nonadiabatic flamelets based NO submodels.
APA, Harvard, Vancouver, ISO, and other styles
12

YAMAMOTO, Kazuhiro, Satoshi INOUE, Hiroshi YAMASHITA, Daisuke SHIMOKURI, and Satoru ISHIZUKA. "Flow Field of Turbulent Premixed Combustion in a Cyclone-Jet Combustor." The Japan Society of Mechanical Engineers, 2007. http://hdl.handle.net/2237/9384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shin, Dong-hyuk. "Premixed flame kinematics in a harmonically oscillating velocity field." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45950.

Full text
Abstract:
Air pollution regulations have driven modern power generation systems to move from diffusion to premixed combustion. However, these premixed combustion systems are prone to combustion instability, causing high fluctuations in pressure and temperature. This results in shortening of component life, system failure, or even catastrophic disasters. A large number of studies have been performed to understand and quantify the onset of combustion instability and the limit cycle amplitude. However, much work remains due to the complexity of the process associated with flow dynamics and chemistry. This thesis focuses on identifying, quantifying and predicting mechanisms of flame response subject to disturbances. A promising tool for predicting combustion instability is a flame transfer function. The flame transfer function is obtained by integrating unsteady heat release over the combustor domain. Thus, the better understanding of spatio-temporal characteristics of flame is required to better predict the flame transfer function. The spatio-temporal flame response is analyzed by the flame kinematic equation, so called G-equation. The flame is assumed to be a thin interface separating products and reactant, and the interface is governed by the local flow and the flame propagation. Much of the efforts were done to the flame response subject to the harmonic velocity disturbance. A key assumption allowing for analytic solutions is that the velocity is prescribed. For the mathematical tools, small perturbation theory, Hopf-Lax formula and numerical simulation were used. Solutions indicated that the flame response can be divided into three regions, referred to here as the near-field, mid-field, and farfield. In each regime, analytical expressions were derived, and those results were compared with numerical and experimental data. In the near field, it was shown that the flame response grows linearly with the normal component of the velocity disturbance. In the mid field, the flame response shows peaks in gain, and the axial location of these peaks can be predicted by the interference pattern by two characteristic waves. Lastly, in the far field where the flame response decreases, three mechanisms are studied; they are kinematic restoration, flame stretch, and turbulent flow effects. For each mechanism, key parameters are identified and their relative significances are compared.
APA, Harvard, Vancouver, ISO, and other styles
14

Pater, Sjoerd Gerardus Maria. "Acoustics of turbulent non-premixed syngas combustion." Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/58039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hossain, Mamdud. "CFD modelling of turbulent non-premixed combustion." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/12230.

Full text
Abstract:
The thesis comprises of a thorough assessment of turbulent non-premixed combustion modelling techniques, emphasising the fundamental issue of turbulence-chemistry interaction. The combustion models studied are the flame-sheet, equilibrium, eddy breakup and laminar flamelet models. An in-house CFD code is developed and all the combustion models are implemented. Fundamental numerical issues involving the discretisation schemes are addressed by employing three discretisation schemes namely, hybrid, power law and TVD. The combustion models are evaluated for a number of fuels ranging from simple H2/CO and CO/H2/N2 to more complex Cl4/H2 burning in bluff body stabilised burners at different inlet fuel velocities. The bluff body burner with its complex recirculation zone provides a suitable model problem for industrial flows. The initial and boundary conditions are simple and well-defined. The bluff body burner also provides a controlled environment for the study of turbulence-chemistry interaction at the neck zone. The high quality experimental database available from the University of Sydney and other reported measurements are used for the validation and evaluation of combustion models. The present calculations show that all the combustion models provide good predictions for near equilibrium flames for temperature and major species. Although the equilibrium chemistry model is capable of predicting minor species, the predictive accuracy is found to be inadequate when compared to the experimental data. The laminae flamelet model is the only model which has yielded good predictions for the minor species. For flames at higher velocities. the laminar flamelet model again has provided better predictions compared to predictions of other models considered. With different fuels, the laminar flamelet model predictions for CO/H2/N2 fuel are better than those for CH4/H2 fuel. The reasons for this discrepancy are discussed in detail. The effects of differential diffusion are studied in the laminar flamelet modelling strategy. The flamelet with unity Lewis number is found to give a better representation of the transport of species. The laminar flamelet model has yielded reasonably good predictions for NO mass fraction. The predictions of NO mass fraction are found to be very sensitive to differential diffusion effects. This study has also considered the issue of inclusion of radiative heat transfer in the laminar flamelet model. The radiation effects are found to be important only where the temperature is very high. The study undertaken and reported in this thesis shows that the presently available laminar flamelet modelling concepts are capable of predicting species concentrations and temperature fields with an adequate degree of accuracy. The flamelet model is also well suited for the prediction of NO emissions. The inclusion of radiation heat transfer has enhanced the predictive capability of the laminar flamelet model.
APA, Harvard, Vancouver, ISO, and other styles
16

Armstrong, Neil William Hannah. "Planar flowfield measurements in premixed turbulent combustion." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

De, Bruyn Kops Stephen M. "Numerical simulation of non-premixed turbulent combustion /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/7140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ahmed, Umair. "Flame turbulence interaction in premixed turbulent combustion." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/flame-turbulence-interaction-in-premixed-turbulent-combustion(f23c7263-df3d-41fa-90ed-41735fcaa34a).html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chen, Nini. "Premixed combustion of high calorific value gases." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/13385/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hawkes, Evatt Robert. "Large eddy simulation of premixed turbulent combustion." Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/251761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chakravarthy, Veerathu Kalyana. "Stochastic subgrid modeling of turbulent premixed flames." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/12934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Harding, Stephen C. "Investigation into mixing and combustion in an optical, lean, premixed, prevaporised combustor." Thesis, Cranfield University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Scholtissek, Arne [Verfasser]. "Flamelet Modeling in Composition Space for Premixed and Non-Premixed Combustion / Arne Scholtissek." München : Verlag Dr. Hut, 2019. http://d-nb.info/1181515912/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ranasinghe, D. J. "Modelling partially premixed turbulent combustion in a spark ignited internal combustion engine." Thesis, University of Cambridge, 2000. https://www.repository.cam.ac.uk/handle/1810/272095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Geiser, Georg [Verfasser]. "Thermoacoustic Noise Sources in Premixed Combustion / Georg Geiser." München : Verlag Dr. Hut, 2014. http://d-nb.info/1063221366/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Engelbrecht, Geoffrey E. "Modelling of premixed combustion in a gas turbine." Thesis, Cranfield University, 1998. http://hdl.handle.net/1826/3987.

Full text
Abstract:
Three steady state combustion models, two turbulence models and a model for tK'6 prediction of NO., were implemented and investigated on a simple backward facing step experiment as well as an experimental lean prevaporised premixed (LPP) combustor. The three combustion models included the simple Eddy Break-up model as well as a presumed probability density function (pdf) model and a form of the BML crossing frequency flamelet model. These models were adapted to consider a variable mixture fraction to account for a non-homogeneous fuel air mixture. The two turbulence models used were the k-e and second moment models. Despite being unable to capture the flame front spreading in the case of the backward facing step, these predictions provided insight into the performance and implementation of the models. All three of the combustion models, after appropriate tuning, worked well for the LPP test combustor. This illustrates that such time averaged models are useful for flows which do not contain large transient coherent structures, such as that of the LPP test combustor and most practical engine combustors designed today. The second moment closure turbulence model was found to have the greatest impact on the flame front through the flow field predictions rather than through counter gradient diffusion. The Eddy Break-up and BML crossing frequency models both performed very well, qualitatively predicting the correct trends. The additional consideration of flame front straining in the BML crossing frequency model did not appear to significantly influence the flame front. This is because the type of model adopted to predict this effect had a relatively uniform influence everywhere in the flow. The presumed pdf model also performed well and was additionally found to self ignite without the existence of hot products when the inlet temperature was high enough. The NO., model faired well for a simple experimental geometry. However, it considerably over predicted the NO., formed within the LIPP test combustor, which was most probably due to poor boundary conditions. Despite this overprediction, the results give insight into how to improve the NQ, emissions for the experimental combustor.
APA, Harvard, Vancouver, ISO, and other styles
27

Dunn, Matthew John. "Finite-Rate Chemistry Effects in Turbulent Premixed Combustion." University of Sydney, 2008. http://hdl.handle.net/2123/5782.

Full text
Abstract:
Doctor of Philosophy (PhD)
In recent times significant public attention has been drawn to the topic of combustion. This has been due to the fact that combustion is the underlying mechanism of several key challenges to modern society: climate change, energy security (finite reserves of fossil fuels) and air pollution. The further development of combustion science is undoubtedly necessary to find improved solutions to manage these combustion science related challenges in the near and long term future. Combustion is essentially an exothermic process, this exothermicity or heat release essentially occurs at small scales, by small scales it meant these scales are small relative to the fluid length scales, for example heat release layer thicknesses in flames are typically much less than the fluid integral length scales. As heat release occurs at small scales this means that in turbulent combustion the small scales of the turbulence (which can be of the order of the heat release layer thickness) can possibly interact and influence the heat release and thus chemistry of the flame reaction zone. Premixed combustion is a combustion mode where the fuel and oxidiser are completely premixed prior to the flame reaction zone, this mode of combustion has been shown to be a promising method to maximise combustion efficiency and minimise pollutant formation. The continued and further application of premixed combustion to practical applications is limited by the current understanding of turbulent premixed combustion, these limitations in understanding are linked to the specific flame phenomena that can significantly influence premixed combustion in a combustion device, examples of such phenomena are: flame flashback, flame extinction and fuel consumption rate – all phenomena that are influenced by the interaction of the small scales of turbulence and chemistry. It is the study and investigation of the interaction of turbulence and chemistry at the small scales (termed finite-rate chemistry) in turbulent premixed flames that is the aim of this thesis which is titled “Finite-rate chemistry effects in turbulent premixed combustion”. Two very closely related experimental burner geometries have been developed in this thesis: the Piloted Premixed Jet Burner (PPJB) and the Premixed Jet Burner (PJB). Both feature an axisymmetric geometry and exhibit a parabolic like flow field. The PPJB and PJB feature a small 4mm diameter central jet from which a high velocity lean-premixed methane-air mixture issues. Surrounding the central jet in the PPJB is a 23.5mm diameter pilot of stoichiometric methane-air products, the major difference between the PPJB and the PJB is that the PJB does not feature a stoichiometric pilot. The pilot in the PPJB provides a rich source of combustion intermediates and enthalpy which promotes initial ignition of the central jet mixture. Surrounding both the central jet and pilot is a large diameter hot coflow of combustion products. It is possible to set the temperature of the hot coflow to the adiabatic flame temperature of the central jet mixture to simulate straining and mixing against and with combustion products without introducing complexities such as quenching and dilution from cold air. By parametrically increasing the central jet velocity in the PPJB it is possible to show that there is a transition from a thin conical flame brush to a flame that exhibits extinction and re-ignition effects. The flames that exhibit extinction and re-ignition effects have a luminous region near the jet exit termed the initial ignition region. This is followed by a region of reduced luminosity further downstream termed the extinction region. Further downstream the flame luminosity increases this region is termed the re-ignition region. For the flames that exhibit extinction and re-ignition it is proposed that intense turbulent mixing and high scalar dissipation rates drives the initial extinction process after the influence of the pilot has ceased (x/D>10). Re-ignition is proposed to occur downstream where turbulent mixing and scalar dissipation rates have decreased allowing robust combustion to continue. As the PJB does not feature a pilot, the flame stabilisation structure is quite different to the PPJB. The flame structure in the PJB is essentially a lifted purely premixed flame, which is an experimental configuration that is also quite unique. A suite of laser diagnostic measurements has been parametrically applied to flames in the PPJB and PJB. Laser Doppler Velocimetry (LDV) has been utilised to measure the mean and fluctuating radial and axial components of velocity at a point, with relevant time and length scale information being extracted from these measurements. One of the most interesting results from the LDV measurements is that in the PPJB the pilot delays the generation of high turbulence intensities, for flames that exhibit extinction the rapid increase of turbulence intensity after the pilot corresponds to the start of the extinction region. Using the LDV derived turbulence characteristics and laminar flame properties and plotting these flames on a traditional turbulent regime diagram indicates that all of the flames examined should fall in the so call distributed reaction regime. Planar imaging experiments have been conducted for flames using the PPJB and PJB to investigate the spatial structure of the temperature and selected minor species fields. Results from two different simultaneous 2D Rayleigh and OH PLIF experiments and a simultaneous 2D Rayleigh, OH PLIF and CH2O PLIF experiment are reported. For all of the flames examined in the PPJB and PJB a general trend of decreasing conditional mean temperature gradient with increasing turbulence intensity is observed. This indicates that a trend of so called flame front thickening with increased turbulence levels occurs for the flames examined. It is proposed that the mechanism for this flame front thickening is due to eddies penetrating and embedding in the instantaneous flame front. In the extinction region it is found that the OH concentration is significantly reduced compared to the initial ignition region. In the re-ignition region it is found that the OH level increases again indicating that an increase in the local reaction rate is occurring. In laminar premixed flames CH2O occurs in a thin layer in the reaction zone, it is found for all of the flames examined that the CH2O layer is significantly thicker than the laminar flame. For the high velocity flames beyond x/D=15, CH2O no longer exist in a distinct layer but rather in a near uniform field for the intermediate temperature regions. Examination of the product of CH2O and OH reveals that the heat release in the initial ignition region is high and rapidly decreases in the extinction region, an increase in the heat release further downstream is observed corresponding to the re-ignition region. This finding corresponds well with the initial hypothesis of an extinction region followed by a re-ignition region that was based on the mean chemiluminescence images. Detailed simultaneous measurement of major and minor species has been conducted using the line Raman-Rayleigh-LIF technique with CO LIF and crossed plane-OH PLIF at Sandia National Laboratories. By measuring all major species it is also possible to define a mixture fraction for all three streams of the PPJB. Using these three mixture fractions it was found that the influence of the pilot in the PPJB decays very rapidly for all but the lowest velocity flames. It was also found that for the high velocity flames exhibiting extinction, a significant proportion of the coflow fluid is entrained into the central jet combustion process at both the extinction region and re-ignition regions. The product of CO and OH conditional on temperature is shown to be proportion to the net production rate of CO2 for certain temperature ranges. By examining the product of CO and OH the hypothesis of an initial ignition region followed by an extinction region then a re-ignition region for certain PPJB flames has been further validated complementing the [CH2O][OH] imaging results. Numerical modelling results using the transported composition probability density function (TPDF) method coupled to a conventional Reynolds averaged Naiver Stokes (RANS) solver are shown in this thesis to successfully predict the occurrence of finite-rate chemistry effects for the PM1 PPJB flame series. To calculate the scalar variance and the degree of finite-rate chemistry effects correctly, it is found that a value of the mixing constant ( ) of approximately 8.0 is required. This value of is much larger than the standard excepted range of 1.5-2.3 for that has been established for non-premixed combustion. By examining the results of the RANS turbulence model in a non-reacting variable density jet, it is shown that the primary limitation of the predictive capability of the TPDF-RANS method is the RANS turbulence model when applied to variable density flows.
APA, Harvard, Vancouver, ISO, and other styles
28

Odedra, Anand. "Unsteady flamelet modelling of turbulent non-premixed combustion." Thesis, Loughborough University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497217.

Full text
Abstract:
In this study, RANS based axisymmetric simulations of the jet flames, bluff-body flames and swirling flames have been attempted by employing steady and unsteady flamelet models. The jet flames have been studied for pure hydrogen and diluted hydrogen (CO/H2/N2) fuels. The bluff-body flames have been studied for three different fuels CH4/H2, H2/CO and CH3OH. The swirling flame has been investigated for CH4/H2 fuel. The importance of unsteady effects is thoroughly assessed for combustion predictions. The transient effects are considered in a post-processing manner employing the Lagrangian Flamelet Model (LFM) for jet flames and the Eulerian Particle Flamelet Model (EPFM) for recirculating bluff-body and swirling flames.
APA, Harvard, Vancouver, ISO, and other styles
29

Yamashita, H., N. Hayashi, M. Ozeki, and K. Yamamoto. "Burning velocity and OH concentration in premixed combustion." Elsevier, 2009. http://hdl.handle.net/2237/20032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Amato, Alberto. "Leading points concepts in turbulent premixed combustion modeling." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52247.

Full text
Abstract:
The propagation of premixed flames in turbulent flows is a problem of wide physical and technological interest, with a significant literature on their propagation speed and front topology. While certain scalings and parametric dependencies are well understood, a variety of problems remain. One major challenge, and focus of this thesis, is to model the influence of fuel/oxidizer composition on turbulent burning rates. Classical explanations for augmentation of turbulent burning rates by turbulent velocity fluctuations rely on global arguments - i.e., the turbulent burning velocity increase is directly proportional to the increase in flame surface area and mean local burning rate along the flame. However, the development of such global approaches is complicated by the abundance of phenomena influencing the propagation of turbulent premixed flames. Emphasizing key governing processes and cutting-off interesting but marginal phenomena appears to be necessary to make further progress in understanding the subject. An alternative approach to understand turbulent augmentation of burning rates is based upon so-called "leading points", which are intrinsically local properties of the turbulent flame. Leading points concepts suggest that the key physical mechanism controlling turbulent burning velocities of premixed flames is the velocity of the points on the flame that propagate farthest out into the reactants. It is postulated that modifications in the overall turbulent combustion speed depend solely on modifications of the burning rate at the leading points since an increase (decrease) in the average propagation speed of these points causes more (less) flame area to be produced behind them. In this framework, modeling of turbulent burning rates can be thought as consisting of two sub-problems: the modeling of (1) burning rates at the leading points and of (2) the dynamics/statistics of the leading points in the turbulent flame. The main objective of this thesis is to critically address both aspects, providing validation and development of the physical description put forward by leading point concepts. To address the first sub-problem, a comparison between numerical simulations of one-dimensional laminar flames in different geometrical configurations and statistics from a database of direct numerical simulations (DNS) is detailed. In this thesis, it is shown that the leading portions of the turbulent flame front display a structure that on average can be reproduced reasonably well by results obtained from model geometries with the same curvature. However, the comparison between model laminar flame computations and highly curved flamelets is complicated by the presence of negative (i.e., compressive) strain rates, due to gas expansion. For the highest turbulent intensity investigated, local consumption speeds, curvatures, strain rates and flame thicknesses approach the maximum values obtained by the laminar model geometries, while other cases display substantially lower values. To address the second sub-problem, the dynamics of flame propagation in simplified flow geometries is studied theoretically. Utilizing results for Hamilton-Jacobi equations from the Aubry-Mather theory, it is shown how the overall flame front progation under certain conditions is controlled only by discrete points on the flame. Based on these results, definitions of leading points are proposed and their dynamics is studied. These results validate some basic ideas from leading points arguments, but also modify them appreciably. For the simple case of a front propagating in a one-dimensional shear flow, these results clearly show that the front displacement speed is controlled by velocity field characteristics at discrete points on the flame only when the amplitude of the shear flow is sufficiently large and does not vary too rapidly in time. However, these points do not generally lie on the farthest forward point of the front. On the contrary, for sufficiently weak or unsteady flow perturbations, the front displacement speed is not controlled by discrete points, but rather by the entire spatial distribution of the velocity field. For these conditions, the leading points do not have any dynamical significance in controlling the front displacement speed. Finally, these results clearly show that the effects of flame curvature sensitivity in modifying the front displacement speed can be successfully interpreted in term of leading point concepts.
APA, Harvard, Vancouver, ISO, and other styles
31

Wu, Ar-Shiang. "Aspects of premixed turbulent combustion in stagnating flows." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Prasad, Vinayaka Nakul. "Large eddy simulation of partially premixed turbulent combustion." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/11871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kim, Ik Soo. "Conditional moment closure for non-premixed turbulent combustion." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Louch, Derek Stanley. "Vorticity and turbulent transport in premixed turbulent combustion." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Langella, Ivan. "Large eddy simulation of premixed combustion using flamelets." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/254303.

Full text
Abstract:
Large Eddy Simulation (LES) has potential to address unsteady phenomena in turbulent premixed flames and to capture turbulence scales and their influence on combustion. Thus, this approach is gaining interest in industry to analyse turbulent reacting flows. In LES, the dynamics of large-scale turbulent eddies down to a cut-off scale are solved, with models to mimic the influences of sub-grid scales. Since the flame front is thinner than the smallest scale resolved in a typical LES, the premixed combustion is a sub-grid scale (SGS) phenomenon and involves strong interplay among small-scale turbulence, chemical reactions and molecular diffusion. Sub-grid scale combustion models must accurately represent these processes. When the flame front is thinner than the smallest turbulent scale, the flame is corrugated by the turbulence and can be seen as an ensemble of thin, one-dimensional laminar flames (flamelets). This allows one to decouple turbulence from chemistry, with a significant reduction in computational effort. However, potentials and limitations of flamelets are not fully explored and understood. This work contributes to this understanding. Two models are identified, one based on an algebraic expression for the reaction rate of a progress variable and the assumption of fast chemistry, the other based on a database of unstrained flamelets in which reaction rates are stored and parametrised using a progress variable and its SGS variance, and their potentials are shown for a wide range of premixed combustion conditions of practical interest. The sensitivity to a number of model parameters and boundary conditions is explored to assess the robustness of these models. This work shows that the SGS variance of progress variable plays a crucial role in the SGS reaction rate modelling and cannot be obtained using a simple algebraic closure like that commonly used for a passive scalar. The use of strained flamelets to include the flame stretching effects is not required when the variance is obtained from its transport equation and the resolved turbulence contains predominant part of the turbulent kinetic energy. Thus, it seems that SGS closure using unstrained flamelets model is robust and adequate for wide range of turbulent premixed combustion conditions.
APA, Harvard, Vancouver, ISO, and other styles
36

Ma, Yi Pearlman Howard. "High-Lewis number premixed flame instabilities /." Philadelphia, Pa. : Drexel University, 2009. http://hdl.handle.net/1860/3127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Okon, Aniekan. "Combustion dynamics in a lean premixed combustor with swirl forcing and fuel conditions." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/108265/.

Full text
Abstract:
Fossil fuels still account for a large percentage of global energy demand according to available statistics. Natural gas is increasingly gaining the share of these fuels due to the retired coal and nuclear plants. The more stringent emission standards have also put natural gas ahead of other fuels as a result of its efficiency, cost, environmental attributes as well as the operational efficiency of the gas turbine, an engine that uses this fuel. A standard low emission combustion technique in gas turbines is the dry low NOx combustion, with lean fuel and fuel-air premixed upstream of the flame holder. However, this condition is highly susceptible to combustion instabilities characterised by large amplitude oscillations of the combustor’s acoustic modes excited by unsteady combustion processes. These pressure oscillations are detrimental both to the efficiency of performance as well as the hardware of the system. Although the processes and mechanisms that result in instabilities are well known, however, the current challenges facing gas turbine operators are the precise understanding of the operational conditions that cause combustion instabilities, accurate prediction of the instability modes and the control of the disturbances. In a bid to expand this knowledge frontier, this study uses a 100kW swirl premixed combustor to examine the evolution of the flow structures, its influence on the flame dynamics, in terms of heat release fluctuation and the overall effects on the pressure field, under different, swirl, fuel and external excitation conditions. The aim is to determine the operational conditions whose pressure oscillation is reduced to the barest minimum to keep the system in an excellent running condition. The results of this study are expected to contribute towards the design of a new control system to damp instabilities in gas turbines.
APA, Harvard, Vancouver, ISO, and other styles
38

Graham, Owen Stewart. "Modelling the thermoacoustic response of premixed flames." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lieuwen, Tim C. "Investigation of combustion instability mechanisms in premixed gas turbines." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/20300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lee, Doh-Hyoung. "Premixed flame kinematics in a longitudinal acoustic field." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/12134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sadasivuni, S. K. "LES modelling of non-premixed and partially premixed turbulent flames." Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/5804.

Full text
Abstract:
A large eddy simulation (LES) model has been developed and validated for turbulent non-premixed and partially premixed combustion systems. LES based combustion modelling strategy has the ability to capture the detailed structure of turbulent flames and account for the effects of radiation heat loss. Effects of radiation heat loss is modelled by employing an enthalpy-defect based non-adiabatic flamelet model (NAFM) in conjunction with a steady non-adiabatic flamelet approach. The steady laminar flamelet model (SLFM) is used with multiple flamelet solutions through the development of pre-integrated look up tables. The performance of the non-adiabatic model is assessed against experimental measurements of turbulent CH4/H2 bluff-body stabilized and swirl stabilized jet flames carried out by the University of Sydney combustion group. Significant enhancements in the predictions of mean thermal structure have been observed with both bluff body and swirl stabilized flames by the consideration of radiation heat loss through the non-adiabatic flamelet model. In particular, mass fractions of product species like CO2 and H2O have been improved with the consideration of radiation heat loss. From the Sydney University data the HM3e flame was also investigated with SLFM using multiple flamelet strategy and reasonably fair amount of success has been achieved. In this work, unsteady flamelet/progress variable (UFPV) approach based combustion model which has the potential to describe both non-premixed and partially premixed combustion, has been developed and incorporated in an in-house LES code. The probability density function (PDF) for reaction progress variable and scalar dissipation rate is assumed to follow a delta distribution while mixture fraction takes the shape of a beta PDF. The performance of the developed model in predicting the thermal structure of a partially premixed lifted turbulent jet flame in vitiated co-flow has been evaluated. The UFPV model has been found to successfully predict the flame lift-off, in contrast SLFM results in a false attached flame. The mean lift-off height is however over-predicted by UFPV-δ function model by ~20% for methane based flame and under-predicted by ~50% for hydrogen based flame. The form of the PDF for the reaction progress variable and inclusion of a scalar dissipation rate thus seems to have a strong influence on the predictions of gross characteristics of the flame. Inclusion of scalar dissipation rate in the calculations appears to be successful in predicting the flame extinction and re-ignition phenomena. The beta PDF distribution for the reaction progress variable would be a true prospect for extending the current simulation to predict the flame characteristics to a higher degree.
APA, Harvard, Vancouver, ISO, and other styles
42

Andrae, Johan. "Wall Related Lean Premixed Combustion Modeled with Complex Chemistry." Doctoral thesis, KTH, Kemiteknik, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3455.

Full text
Abstract:
Increased knowledge into the physics and chemistrycontrolling emissions from flame-surface interactions shouldhelp in the design of combustion engines featuring improvedfuel economy and reduced emissions. The overall aim of this work has been to obtain afundamental understanding of wall-related, premixed combustionusing numerical modeling with detailed chemical kinetics. Thiswork has utilized CHEMKIN®, one of the leading softwarepackages for modeling combustion kinetics. The simple fuels hydrogen and methane as well as the morecomplex fuels propane and gasified biomass have been used inthe model. The main emphasis has been on lean combustion, andthe principal flow field studied is a laminar boundary layerflow in two-dimensional channels. The assumption has been madethat the wall effects may at least in principle be the same forlaminar and turbulent flames. Different flame geometries have been investigated, includingfor example autoignition flames (Papers I and II) and premixedflame fronts propagating toward a wall (Papers III and IV).Analysis of the results has shown that the wall effects arisingdue to the surface chemistry are strongly affected by changesin flame geometry. When a wall material promoting catalyticcombustion (Pt) is used, the homogeneous reactions in theboundary layer are inhibited (Papers I, II and IV). This isexplained by a process whereby water produced by catalyticcombustion increases the rate of the third-body recombinationreaction: H+O2+M ⇔ HO2+M. In addition, the water produced at higherpressures increases the rate of the 2CH3(+M) ⇔ C2H6(+M) reaction, giving rise to increased unburnedhydrocarbon emissions (Paper IV). The thermal coupling between the flame and the wall (theheat transfer and development of the boundary layers) issignificant in lean combustion. This leads to a sloweroxidation rate of the fuel than of the intermediatehydrocarbons (Paper III). Finally in Paper V, a well-known problem in the combustionof gasified biomass has been addressed, being the formation offuel-NOx due to the presence of NH3 in the biogas. A hybridcatalytic gas-turbine combustor has been designed, which cansignificantly reduce fuel-NOx formation. Keywords:wall effects, premixed flames, flamequenching, numerical modeling, CHEMKIN, boundarylayerapproximation, gasified biomass, fuel-NOx, hybrid catalytic combustor.
QC 20100504
APA, Harvard, Vancouver, ISO, and other styles
43

Doan, Nguyen Anh Khoa. "Physical insights of non-premixed MILD combustion using DNS." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/285009.

Full text
Abstract:
Moderate or Intense Low-oxygen Dilution (MILD) combustion is a combustion technology that can simultaneously improve the energy efficiency and reduce the pollutant emissions of combustion devices. It is characterised by highly preheated reactants and a small temperature rise during combustion due to the large dilution of the reactant mixture with products of combustion. These conditions are generally achieved using exhaust gas recirculation. However, the physical understanding of MILD combustion remains limited which prevents its more widely spread use. In this thesis, Direct Numerical Simulation (DNS) is used to study turbulence, premixed flames and MILD combustion to obtain these additional physical insights. In a first stage, the scale-locality of the energy cascade is analysed by applying a multiscale analysis methodology, called the bandpass filter method, on DNS of homogeneous isotropic turbulence. Evidence supporting this scale-locality were obtained and the results were found to be similar for Reynolds numbers ranging from 37 to 1131. Using the same method in turbulent premixed flames, the scale-locality of the energy cascade was still observed despite the presence of intense reactions. In addition, it was found that eddies of scales larger than the laminar flame thickness were imparting the most strain on the flame. In a second part, a methodology was developed to conduct the DNS of MILD combustion with mixture fraction variations. This methodology included the effect of mixing of exhaust gases with fuel and oxidiser in unburnt, burnt and reacting states. In addition, a specific chemical mechanism that includes the chemistry of ${\rm OH^*}$ was developed. From these DNS, the role of radicals on the inception of MILD combustion was studied. In particular, due to the reactions initiated by these radicals, the initial temperature rise in MILD combustion was occurring concurrently with an increase in the scalar dissipation rate of mixture fraction which is contrasting to conventional combustion. The reaction zones in MILD combustion were also analysed and extremely convoluted reaction zones were observed with frequent interactions among them. These interactions yielded the appearance of volumetrically distributed reactions. Furthermore, the adequacy of some species to identify these reaction zones was assessed and ${\rm OH}$ showed a poor correlation with regions of heat release. On the other hand, ${\rm OH^*}$, ${\rm HCO}$ or ${\rm OH} \times {\rm CH_2O}$ were found to be well correlated. Through the study of the flame index, the existence of non-premixed and premixed modes of combustion were also highlighted. The premixed mode was observed to be dominant but the contribution of the non-premixed mode to the total heat release was non negligible. Because of the presence of radicals and high reactant temperatures, auto-igniting regions and propagating reaction zones are both observed locally. The balance between these phenomena was investigated and it was found that this was strongly influenced by the typical lengthscale of the mixture fraction field, with a smaller lengthscale favouring sequential autoignition. Finally, using the bandpass filtering method, the effect of heat release rate in MILD combustion on the energy cascade was studied and this showed that the energy cascade was not unduly affected.
APA, Harvard, Vancouver, ISO, and other styles
44

Hudgins, Duane Edward. "Suppression of premixed combustion dynamics utilizing microjet air injection." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45213.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
Includes bibliographical references (leaves 119-123).
The problem of thermoacoustic instability in continuous combustion systems is a major challenge in the field of propulsion and power generation. With the current environmental and political pressure that is being placed on the consumption of fossil fuels, this subject has become even more critical. In the past, the presence of combustion instability could be avoided by designing a combustor with fixed inlet conditions, where these conditions were conducive to a stable system. Today, utilities and providers of propulsion systems are under pressure to make systems that are not only more efficient and clean, but also have a greater flexibility of input fuel. In order to accomplish this, combustion engineers need an even deeper insight into what causes thermoacoustic instability and they need a wider array of tools at their disposal to suppress these instabilities. This thesis adds pieces of that deeper insight and provides another tool to tackle this difficult problem. As a first step in the further understanding of thermoacoustic instabilities, experiments were done in a premixed gas backwards facing step combustor using propane or propane/hydrogen mixture as a fuel. I fully characterized the combustion dynamics in this combustor by measuring the four defining states of the system. These states are pressure, heat release, velocity, and equivalence ratio. Once these measurements were performed I tested two novel approaches to suppressing thermoacoustic instabilities through the use of microjet air injection. This was done by building upon a previous combustor setup to allow the installation of several new diagnostic capabilities and the new microjets.
(cont.) The new diagnostics include stand-off pressure sensors to measure pressure in the hot exhaust region, a hot wire anemometer to measure velocity, a photomultiplier tube to measure the integrated heat release, an automated gas probe to measure fuel concentration profiles, and a laser absorption sensor to measure the temporal variance in equivalence ratio. The novel microjets were built into the newly designed test section. By fully characterizing the system I was able to show how both equivalence ratio oscillations and wake vortex interactions drive the thermoacoustic instabilities of the combustion. I have also shown that the stability range shifts to leaner equivalence ratios as inlet temperature or hydrogen content in the fuel is increased. This thesis demonstrates the great potential the microjet air injection has for extending the range of stability of the system.
by Duane Edward Hudgins.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
45

Parker, Andrew John. "On the computation of compressible lean premixed turbulent combustion." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Su, Yunde. "High-fidelity Computation and Modeling of Turbulent Premixed Combustion." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595513943378125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gatti, Marco. "Combustion dynamics of premixed swirling flames with different injectors." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC070/document.

Full text
Abstract:
Les systèmes de combustion à prémélange pauvre (PP) sont l’une des technologies les mieux adaptées pour la réduction des émissions de polluants, mais ils sont très sensibles aux phénomènes d’extinction, aux retours de flamme (flashback) dans l’injecteur et aux instabilités de combustion. La plupart des chambres de combustion des turbines à gaz utilisent de swirleurs pour stabiliser des flammes compactes et permettre une combustion efficace et propre avec des densités de puissance élevée. Une meilleure connaissance des mécanismes de la dynamique de la combustion d’écoulements swirlés PP présente un intérêt aussi bien pratique que fondamental. Ce travail est une contribution pour atteindre ce but. Le brûleur Noisedyn, avec une geometrie modifiable, a été spécialement conçu pour répondre à cet objectif. Une analyse expérimentale a etait conduite pour examiner les paramètres qui reduisent la sensibilité des systèmes PP aux phénomènes dynamiques. Mesures de fonction de transfert de flamme (FTF), diagnostiques laser (LDV et PIV) et imagerie des flammes sont les principaux techniques utilisé dans ce travail. Large eddy simulation sont aussi utilisé pour expliquer les mécanismes derrière les observations experimentaux
Lean premixed (LPM) combustion systems achieve low pollutant emission levels, with compact flames and high power densities, but are highly sensitive to dynamic phenomena, e.g, flashback, blowout and thermoacoustic instabilities, that hinder their practical application. Most LPM gas turbine combustors use swirling flows to stabilize compact flames for efficient and clean combustion. A better knowledge of the mechanisms of steady and unsteady combustion of lean premixed swirled mixtures is then of practical, as well as fundamental interest. This thesis is a contribute towards the achievement of this goal. A burner, made of several components with variable geometry, was specifically designed for this scope. An experimental analysis was conducted to investigate the main parameters leading to a reduction of the sensitivity of LPM systems to dynamic phenomena. The diagnostics applied include flame transfer function (FTF) measurements, laser diagnostics (LDV and PIV) and flame imaging. Large eddy simulations were also exploited to elucidate the mechanisms behind the experimental observations
APA, Harvard, Vancouver, ISO, and other styles
48

Obando, Vega Pedro Javier. "Filtered Tabulated Chemistry for LES of non-premixed combustion." Doctoral thesis, Universite Libre de Bruxelles, 2021. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/317788.

Full text
Abstract:
This work addresses the application of non-premixed filtered tabulated chemistry as a turbulent combustion modeling strategy in the LES framework. On the first part of this study the effects of the filtering operation on non-premixed flamelets are carefully appraised, considering an individual flamelet and the entire manifold. Subsequently, a systematic approach is followed where first the numerical implementation is verified. Afterwards validation is done on a coflow laminar diffusion flame, where promising results encourage the further model appraisal on a more complex turbulent configuration. This is finally achieved under turbulent conditions of Flames D and E, where the formalism including a SGS wrinkling modeling function adequately describes the wrinkled flame front features. The formalism assessment on a laminar coflow diffusion flame reveals a considerable sensitivity to the flame dimensionality. A flame sensor based on the mixture fraction gradient, with a tolerance to take into account the numerical grid resolution, is introduced and proves to deliver satisfactory results. The sensor-determined model activation allows to adequately represent the underlying physics behind flame filtering and so it endorses the consistency of the numerical procedure. The evaluation of the non-premixed FTACLES model on turbulent flames D and E demonstrates that the formalism coupling with a SGS wrinkling modeling function can adequately describe the wrinkled flame front condition. The model performs significantly well employing a three-dimensional tabulation strategy, where the numerical grid is coupled with the model by the third parameter, i.e. the computational cell size. The predictions for both the major stable species and the minor ones accurately correspond with the undergoing physics. The obtained results have a deep theoretical implication for the combustion research. First, they confirm the idea that SGS closure in diffusive combustion can be derived based on filtering arguments, and not only based on statistical approaches. Second, they demonstrate the enormous potential of the non-premixed FTACLES formalism once a sound flame sensor and a SGS wrinkling modeling function are included.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
49

Ruan, S. "Turbulent partially premixed combustion : DNS analysis and RANS simulation." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244504.

Full text
Abstract:
Increasingly stringent regulation of pollutant emission has motivated the search for cleaner and more efficient combustion devices, which remain the primary means of power generation and propulsion for all kinds of transport. Fuel-lean premixed combustion technology has been identified to be a promising approach, despite many difficulties involve, notably issues concerning flame stability and ignitability. A partially premixed system has been introduced to remedy these problems, however, our understanding on this combustion mode needs to be greatly improved to realise its full potential. This thesis aims to further the understanding of various fundamental physical processes in turbulent partially premixed flames. DNS data of a laboratory-scale hydrogen turbulent jet lifted flame is analysed in this study. The partially premixed nature of this flame is established by examining the instantaneous and averaged reaction rates and the "Flame Index", which indicate premixed and diffusion burning modes coexisting. The behaviour of turbulent flame stretch and its relation to other physical processes, in particular the scalar-turbulence interaction, the effects of partial premixing on the displacement speed of iso-scalar surface and its correlation with the surface curvature are explored using DNS data. The scalar gradient alignment characteristics change from aligning with the most compressive strain to aligning with the most extensive one in regions of intensive heat release. This alignment change creates negative normal strain rate which can result in negative surface averaged tangential strain rate. The partial premixing affects the flame surface displacement speed through the mixture fraction dissipation rate and a second derivative in the mixture fraction space. The correlation of curvature and displacement speed is found to be negative in general and the effects of partial premixing act to reduce this negative correlation. The combined effects of the normal strain rate and the displacement speed/curvature correlation contribute to the negative mean flame stretch observed in the flame brush. Scalar dissipation rates (SDR) of the mixture fraction ẼZZ, progress variable Ẽcc and their cross dissipation rates (CDR) ẼcZ are identified as important quantities in the modelling of partially premixed flames. Their behaviours in the lifted flame stabilisation region are examined in a unified framework. It is found that SDR of mixture fraction is well below the quenching value in this region while SDR of progress variable is smaller than that in laminar flames. The CDR changes from weakly positive to negative at the flame leading edge due to the change in scalar gradient alignment characteristics. Axial and radial variation of these quantities are analysed and it is found that Ẽcc is an order of magnitude bigger than ẼZZ. ẼcZ is two orders of magnitude smaller than Ẽcc and it can be either positive or negative depending on local flow and flame conditions. Simple algebraic models show reasonable agreement compared to DNS when a suitable definition of c is used. Further statistics of the scalar gradients are presented and a presumed lognormal distribution is found to give reasonable results for their marginal PDFs and a bivariate lognormal distribution is a good approximation for their joint PDF. Four mean reaction rate closures based on presumed PDF and flamelets are assessed a priori using DNS data. The turbulent flame front structure is first compared with unstrained and strained laminar premixed and dif fusion flamelets. It is found that unstrained premixed flamelets give overall reasonable approximation in most parts of this flame. A joint PDF model which includes the correlation between mixture fraction and progress variable using a "copula" method shows excellent agreement with DNS results while their statistical independence does not hold in the burning regions of this partially premixed flame. The unstrained premixed flamelet with the correlated joint PDF method is identified to be the most appropriate model for the lifted jet flame calculation. This model is then used in the RANS simulation of turbulent jet lifted flames. A new model to include the contribution from diffusion burning and the effects of partial premixing due to SDR of mixture fraction is also identified and included in the calculation. These models are implemented in a commercial CFD code "Fluent" with user defined scalars and functions. It is found that both the correlated joint PDF model and the model accounting for the diffusive burning in partial premixing are important in order to accurately predict flame lift-off height compared to the experiments.
APA, Harvard, Vancouver, ISO, and other styles
50

Prakash, Shashvat. "Lean Blowout Mitigation in Swirl Stabilized Premixed Flames." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16159.

Full text
Abstract:
Lean, premixed combustion offers a practical approach for reducing nitrogen oxide (NOx) emissions, but increases the risk of lean blowout (LBO) in gas turbines. Active control techniques are therefore sought which can stabilize a lean flame and prevent LBO. The present work has resulted in the development of flame detection, dynamic modeling, blowout margin estimation, and actuation and control techniques. The flame s acoustic emissions were bandpass filtered at select frequencies to detect localized extinction events, which were found to increase in number near LBO. The lean flame was also found to intermittently burst into a transient tornado configuration in which the flame s inner recirculation zone would collapse. The localized extinctions were dynamically linked to the tornado bursts using a linear, first order model. The model was subsequently applied to predict tornado bursts based on optically detected localized extinction events. It was found that both localized extinctions and tornado bursts are by themselves Poisson processes; the exponential distribution of their spacing times could be used to determine blowout probability. Blowout mitigation was achieved by redistributing the fuel flow between the annular swirlers and central preinjection pilot, both of which were premixed. Rule-based and lead-lag control architectures were developed and validated.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography