Academic literature on the topic 'Predictive control ; Process control ; Automatic control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Predictive control ; Process control ; Automatic control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Predictive control ; Process control ; Automatic control"
Yu, Jian Zhi, and Yong Sheng Chen. "Study on Control Strategy of Train Automatic Speed Control System." Advanced Materials Research 291-294 (July 2011): 2763–66. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.2763.
Full textPacheco Quiñones, Daniel, Maria Paterna, and Carlo De Benedictis. "Automatic Electromechanical Perturbator for Postural Control Analysis Based on Model Predictive Control." Applied Sciences 11, no. 9 (April 29, 2021): 4090. http://dx.doi.org/10.3390/app11094090.
Full textHoffmann, Hartmut, Michael F. Zäh, Ingo Faass, Roland Mork, Matthias Golle, Bernd Griesbach, and Matthias Kerschner. "Automatic Process Control in Press Shops." Key Engineering Materials 344 (July 2007): 881–88. http://dx.doi.org/10.4028/www.scientific.net/kem.344.881.
Full textBaek, Sujeong. "System integration for predictive process adjustment and cloud computing-based real-time condition monitoring of vibration sensor signals in automated storage and retrieval systems." International Journal of Advanced Manufacturing Technology 113, no. 3-4 (January 29, 2021): 955–66. http://dx.doi.org/10.1007/s00170-021-06652-z.
Full textZhang, Lihui, Helei Cui, Hongli Li, Feng Han, Yaqiu Zhang, and Wenfu Wu. "Parameters Online Detection and Model Predictive Control during the Grain Drying Process." Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/924698.
Full textYin, Xiao Hong, Can Yang, and Han Zhao. "Sectionalized Motion Control for Automatic Guided Vehicle." Applied Mechanics and Materials 152-154 (January 2012): 1127–32. http://dx.doi.org/10.4028/www.scientific.net/amm.152-154.1127.
Full textWen, Shuhuan, Jingwei Yang, Ahmad B. Rad, Shengyong Chen, and Pengcheng Hao. "Weighted Multimodel Predictive Function Control for Automatic Train Operation System." Journal of Applied Mathematics 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/520627.
Full textGuo, Yan Ping, and Qi Cui. "PLC-based Automatic Control of Food Production Line." Advanced Materials Research 482-484 (February 2012): 2214–17. http://dx.doi.org/10.4028/www.scientific.net/amr.482-484.2214.
Full textYang, Da Peng, Ping Bo Sun, and Ke Qiang Hua. "Model Predictive Control of Flight Arrival Interval." Advanced Materials Research 503-504 (April 2012): 1375–80. http://dx.doi.org/10.4028/www.scientific.net/amr.503-504.1375.
Full textLin, Chi Ying, and Yu Sheng Zeng. "Visual Servoing of Automatic Alignment System Using Model Predictive Control." Key Engineering Materials 625 (August 2014): 627–32. http://dx.doi.org/10.4028/www.scientific.net/kem.625.627.
Full textDissertations / Theses on the topic "Predictive control ; Process control ; Automatic control"
Hitzemann, U. "Extensions in non-minimal state-space and state-dependent parameter model based control with application to a DC-DC boost converter." Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/ca983ce5-bec4-4598-8ac2-48e7302489f5/1.
Full textHenriksson, Erik. "Predictive Control for Wireless Networked Systems in Process Industry." Doctoral thesis, KTH, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-141459.
Full textQC 20140217
Bowyer, Robert O. "Multiple order models in predictive control." Thesis, University of Oxford, 1998. http://ora.ox.ac.uk/objects/uuid:a5f48d14-0250-4fc6-bb6f-7b43659930e8.
Full textCosta, Thiago Vaz da 1982. "Estudo e implementação de estruturas de controle reconfigurável aplicado a processos químicos." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266123.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-24T13:32:43Z (GMT). No. of bitstreams: 1 Costa_ThiagoVazda_D.pdf: 18980163 bytes, checksum: 01508b929c51cbd2ad88d0be37d75084 (MD5) Previous issue date: 2014
Resumo: A consideração sistemática relacionada ao tratamento de falhas na estrutura de controle é essencial para se atingir as metas de um processo ao mesmo tempo seguro e produtivo. Nesse sentido, este trabalho propõe o estudo e a implementação de técnicas baseadas no controle reconfigurável com aplicações em processos químicos. Essa técnica está relacionada à etapa que lida com a falha no sistema em malha fechada, por meio de sua reconfiguração, evitando a evolução dos seus efeitos na estrutura de controle. Nesse estudo, a atenção é voltada ao rastreamento do comportamento nominal do sistema considerando as técnicas baseadas nos atuadores virtuais. O método considera o desvio da planta em relação ao seu comportamento nominal na presença de falhas em seus atuadores. Deste modo, se o distanciamento em relação ao comportamento nominal pode ser estabilizado por meio das redundâncias físicas e analíticas presentes no processo, o comportamento da planta sujeita à falha também pode ser estabilizado. Neste sentido, uma consideração sobre esse desvio no futuro é proposta, permitindo que técnicas baseadas no controle ótimo e preditivo sejam utilizadas. São consideradas especificamente falhas que comprometam o desempenho do processo quando existe a perda total ou parcial de suas variáveis de entrada. Com os componentes comprometidos devidamente localizados, a redistribuição dos sinais de controle da planta é encaminhada para que a estabilidade e desempenho do processo sejam assegurados. A concepção do atuador virtual com horizonte móvel possibilita o uso de técnicas de otimização, permitindo que as informações referentes às características físicas das redundâncias do processo sejam incluídas, evitando a saturação dos componentes utilizados durante o tratamento da falha. A validação da técnica proposta é avaliada experimentalmente em um processo de neutralização, no qual ferramentas de injeção de falhas são capazes de simular os efeitos de falha dos atuadores no processo real. As estratégias estudadas foram implementadas em um software em código aberto e foram testadas experimentalmente a partir do uso de comunicação OPC (Object Linking and Embedding for Process Control). Cenários com diferentes falhas afetando os atuadores do processo foram concebidos e avaliados. Em todos os estudos, observou-se a capacidade da ferramenta em efetuar a reconfiguração do sistema em malha fechada para mitigar os efeitos indesejáveis da falha. Com base nos resultados, conclui-se que a utilização das técnicas em cenários industriais é viável e pode garantir a operação estável do processo mesmo quando surjam falhas em seus componentes, consideradas as condições de controlabilidade e estabilizabilidade do sistema
Abstract: A systematic approach to fault handling in control loops is important to achieve safe and productive process goals. Therefore, the present work proposes the study and implementation of reconfigurable control methods with applications in chemical processes. This technique is related to the fault handling stage in the closed loop system by means of reconfiguration, preventing the progression of fault effects in the control structure. In this study, particular focus is given to virtual actuator based techniques for tracking nominal system behavior. The method considers the deviation of the plant in relation to its nominal behavior when there are faults in its actuators. Therefore, if the nonconformity from the nominal response can be stabilized using the process physical and analytical redundancies, the faulty plant behavior can also be stabilized. Hence, it is proposed the use of the deviation from the nominal system response in the future, enabling the use of optimal and predictive control techniques. Faults affecting process performance due to total or partial loss of input variables are particularly considered. Once the faulty components are located, input signal redistribution is determined in order to ensure process performance and stability. The moving horizon virtual actuator proposal provides the use of optimization techniques allowing information about physical characteristics of the process redundancies to be included, avoiding component saturation during the fault handling approach. The validation of the technique is performed experimentally in a neutralization process, in which fault injection tools are able to simulate the effects of actuators faults in the real process. The studied strategies were implemented using open-source software and tested experimentally by means of an OPC (Object Linking and Embedding for Process Control) communication. Several fault scenarios considering actuator faults were planned and fulfilled for evaluation. The experimental tests showed that the proposed framework is capable of performing closed loop system reconfiguration to mitigate undesirable fault effects. Based on the results, it is concluded that using such a technique in industrial scenarios is feasible and can guarantee stable process operation even when there are faults in its components, considering system controllability and stabilizability conditions
Doutorado
Sistemas de Processos Quimicos e Informatica
Doutor em Engenharia Química
Costa, Thiago Vaz da 1982. "Controle preditivo baseado em rede de modelos lineares locais aplicado a um reator de neutralização." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266959.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-16T18:45:23Z (GMT). No. of bitstreams: 1 Costa_ThiagoVazda_M.pdf: 15859888 bytes, checksum: 391c96e4f2ff3598497e8840686f8166 (MD5) Previous issue date: 2010
Resumo: Uma malha de controle com baixo desempenho implica em um aumento dos custos de produção, causando descarte de produto fora da especificação e desgaste desnecessário dos elementos finais de controle. A depender do processo controlado, uma malha deficiente pode também acarretar em paradas não previstas na planta e até mesmo em danos ao meio ambiente. Diante do exposto, o controle preditivo baseado em modelos (MPC) é um dos poucos algoritmos comprovadamente capazes de estabilizar processos na presença de não-linearidades e restrições. Para atender aos seus objetivos de controle, o algoritmo clássico MPC utiliza um procedimento de otimização baseado no modelo linear da planta. Contudo, o afastamento da região de projeto do modelo linear resulta na perda de sua efetividade e consequente do controlador que o utiliza. Deste modo, objetivou-se a partir de uma descrição não-linear do sistema a melhoria do desempenho do controlador. Os objetivos específicos dessa dissertação foram o estudo e análise de um controlador GPC (generalized predictive controller) operando em paralelo com uma rede de modelos lineares locais, identificada por meio do algoritmo LOLIMOT (local linear model trees), capaz de adequar o modelo de predição do controlador para a faixa de operação atual do processo. Para a avaliação e análise da qualidade do controlador proposto foi montado um aparato experimental para controle de pH. A estratégia de controle foi implementada em um sistema em código aberto para monitoramento e controle do processo. Portanto, considerando a característica estática não-linear do processo foram realizados estudos comparativos entre o GPC tradicional (baseado em um único modelo linear) e a abordagem proposta. Os resultados mostraram que a rede foi capaz de representar satisfatoriamente a saída do sistema, resultando em uma estrutura simples, com modelos locais na forma de estruturas ARX. Também foi demonstrado que o GPC utilizando a rede de modelos lineares locais desempenhou de forma satisfatória e até mesmo superior ao GPC tradicional.Observou-se que a saída calculada pelo controlador proposto foi consideravelmente menos agressiva que o controlador tradicional, levando a uma considerável diminuição do esforço de controle empregado ao sistema. Os resultados obtidos demonstraram que houve uma economia de até 45% no esforço de controle. Observou-se ainda que o sistema desenvolvido é conveniente para aplicações reais, já que a estratégia de controle preditivo concebida em Scilab obteve sucesso na solução do problema de controle dentro do intervalo de amostragem inclusive quando incorporado o problema QP (programação quadrática) com restrições. Tendo em vista que a estrutura destes sistemas permite que sejam utilizados nas mesmas aplicações destinadas a modelos lineares, comprovou-se também a viabilidade e aplicabilidade do uso das redes de modelos lineares locais diretamente em algoritmos de controle avançado já disponíveis para indústria, como nos controladores GPC
Abstract: Low performance control loops imply in higher production costs, leading to off-specification production loss and unnecessary wear of the final control elements. Depending on the controlled process, the deficient loop can also lead to non-expected plant stops and even on environment damage. In this sense, model predictive control (MPC) is one of the few algorithms proved capable to stabilize processes in the presence of nonlinearities and constraints. To meet its control objectives, the classic MPC algorithm is based on an optimization problem which relies in the system's linear model. Although, the removal of the linear model from its designed condition deteriorates the model's and controller's effectiveness. Hence, the general objective of the presented work relies in the non-linear description of the system for improving the control performance. The main objectives were the study and analysis of a generalized predictive controller (GPC) operating in parallel with a linear local model network, identified by the LOLIMOT algorithm, able to adequate the controller's prediction model for the process operation range. For the quality assessment of the proposed controller, tests were evaluated in an experimental apparatus for pH control. The control strategy was implemented in an open source system for monitoring and control. Therefore, considering the static nonlinear characteristics of the process, comparative studies were applied between the traditional GPC (based on an single global model) and the proposed approach. The results showed that the dynamic network was able to effectively represent the system output, resulting in a simple structure, given the fact that the local models are indeed local ARX models. It was also shown that the GPC using the linear local model network performed satisfactorily and even better than the single model GPC. It was observed that the output calculated by the proposed controller has been considerably less aggressive than the traditional controller, leading to a considerable reduction in the system's control effort. The results showed that there was a saving up to 45% in the control effort. It was also observed that the developed monitoring and control system is suitable for real applications, since the predictive control strategy, implemented in Scilab, succeeded in solving the control problem within the sampling time even with the embedded constrained QP (quadratic programming) problem. Considering that the structure of these systems allows them to be used in similar applications to linear models, it was also proved the viability and applicability of using the linear local models network directly into advanced control algorithms already available to industry as in the GPC controllers
Mestrado
Sistemas de Processos Quimicos e Informatica
Mestre em Engenharia Química
Clavel, Fanny. "Modélisation et contrôle d'un réfrigérateur cryogénique Application à la station 800W à 4.5K du CEA Grenoble." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00576608.
Full textBoza, Condorena Edwin Guido 1958. "Identificação de processos e controle preditivo com modelo utilizando técnicas de inteligência artificial aplicadas à produção de bioetanol." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266648.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-21T12:53:49Z (GMT). No. of bitstreams: 1 BozaCondorena_EdwinGuido_D.pdf: 5093932 bytes, checksum: 505cbc2b6c875e35004ad875c0f0ac6a (MD5) Previous issue date: 2012
Resumo: Na presente tese foram abordados problemas no contexto da produção de etanol de primeira e segunda geração. No caso de etanol de segunda geração foi abordado o problema de melhorar a eficiência da hidrolise enzimática, com as seguintes contribuições: (1) otimização da carga enzimática utilizando técnicas de modelagem por redes neurais. (2) substituição de um modelo com limitações na representatividade dos pontos experimentais obtido por desenho experimental pela superfície de resposta de um modelo de redes neurais que permite a exploração da região do ótimo no espaço de fatores e respostas. Os resultados obtidos mostram (1) boa precisão para a localização das coordenadas da região ótima de trabalho. (2) um mapeamento da evolução do processo com localização do ótimo global utilizando algoritmos genéticos e técnicas de computação evolutiva. No caso dos processos de produção de etanol de primeira geração foi estudado o problema do controle com modelo de um processo de fermentação continua com extração de etanol utilizando vácuo quando não se tem modelo fenomenológico disponível com as seguintes contribuições e resultados: (1) foi desenvolvida uma abordagem que integrou redes neurais artificiais, com o controle preditivo com modelo (MPC). (2) foram desenvolvidos modelos empíricos do processo com redes neurais artificiais (3) foi desenvolvida uma abordagem que utiliza o "conhecimento aprendido" pelas redes neurais o qual e armazenado em pesos sinápticos e bias. (4) foram desenvolvidos vários modelos empíricos de redes neurais para o monitoramento das concentrações de etanol que podem ser utilizados para desenvolver software sensores. (5) foram implementadas diferentes estruturas de controle preditivo com diferentes modelos internos de redes neurais para os controladores, com otimiza dor linear e não linear para o caso de estudo. Nos diferentes capítulos em que foram implementadas estruturas de controle integrando as redes neurais com a tecnologia MPC, se mostrou que, a abordagem desenvolvida e eficiente para os projetos dos sistemas de controle com modelo empírico
Abstract: In this thesis were studied problems in the context of ethanol production of first and second generation. In the case of second generation ethanol was studied the problem of improving the enzymatic hydrolysis efficiency, with the following contributions: 1) optimization of enzyme loading by using modeling techniques based on neural networks, 2) substitution of a model with limited representation capacity of the experimental points which was obtained by using experimental design by the response surface model of a neural network that allows the exploration of the space of factors and responses. The results show: 1) good accuracy in locating the coordinates of the optimum working region, 2) the mapping of the evolution of the process with the location of the global optimum by using genetic algorithms and evolutionary computing techniques. In case of the production of first generation ethanol was studied the problem of the control with process model of a fermentation process with continuous extraction of ethanol by using a vacuum system when there is no a phenomenological model available with the following contributions and results: 1) It was developed an approach in which were integrated artificial neural networks with model predictive control (MPC). 2) It were developed empirical process models by using artificial neural networks 3) It was developed an approach that uses the "learned knowledge" by neural networks which is stored in synaptic weights and bias. 4) It were developed several empirical models of neural networks for monitoring concentrations of ethanol that can be used to develop software sensors. 5) It were implemented different predictive control structures with different internal models based on neural networks for controllers with linear and non-linear optimizer to be applied on the case of study. In the different chapters in which were implemented control structures by integrating neural networks with MPC technology, it was showed that the developed approach is efficient to be applied in the designs of control systems with empirical model
Doutorado
Desenvolvimento de Processos Químicos
Doutor em Engenharia Química
Tamagnini, Filippo. "EKF based State Estimation in a CFI Copolymerization Reactor including Polymer Quality Information." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20235/.
Full textAl, Seyab Rihab Khalid Shakir. "Nonlinear model predictive control using automatic differentiation." Thesis, Cranfield University, 2006. http://hdl.handle.net/1826/1491.
Full textRosdal, David. "Missilstyrning med Model Predictive Control." Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2748.
Full textThis thesis has been conducted at Saab Bofors Dynamics AB. The purpose was to investigate if a non-linear missile model could be stabilized when the optimal control signal is computed considering constraints on the control input. This is particularly interesting because the missile is controlled with rudders that have physical bounds. This strategy is called Model Predictive Control. Simulations are conducted to compare this strategy with others; firstly simulations with step responses and secondly simulations when the missile is supposed to hit a moving target. The latter is performed to show that the missile can be stabilized in its whole area of operation. The simulations show that the controller indeed can stabilize the missile for the given scenarios. However, this control strategy does not show any obvious improvements in comparison with alternative ones.
Books on the topic "Predictive control ; Process control ; Automatic control"
Haber, Robert. Predictive control in process engineering: From the basics to the applications. Weinheim: Wiley-VCH, 2011.
Find full textKöln), Process Automation Workshop (2008 Fachhochschule. Control and monitoring algorithms in process automation applications: Extended proceedings of the Process Automation Workshop 2008 at the Cologne University of Applied Sciences. Aachen: Shaker Verlag, 2012.
Find full textMcMillan, Gregory K. Models unleashed: Virtual plant and model predictive control applications : a pocket guide. Research Triangle Park, NC: ISA, 2004.
Find full text1967-, Tan Kok Kiong, and Lee Tong Heng 1958-, eds. Applied predictive control. London: Springer, 2002.
Find full textHaber, Robert, Ruth Bars, and Ulrich Schmitz. Predictive Control in Process Engineering. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636242.
Full textBook chapters on the topic "Predictive control ; Process control ; Automatic control"
Corriou, Jean-Pierre. "Generalized Predictive Control." In Process Control, 611–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61143-3_15.
Full textCorriou, Jean-Pierre. "Model Predictive Control." In Process Control, 631–77. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61143-3_16.
Full textCorriou, Jean-Pierre. "Generalized Predictive Control." In Process Control, 555–73. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3848-8_15.
Full textCorriou, Jean-Pierre. "Model Predictive Control." In Process Control, 575–615. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3848-8_16.
Full textRao, Ming, Qijun Xia, and Yiqun Ying. "Predictive Control." In Modeling and Advanced Control for Process Industries, 71–122. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-2094-0_4.
Full textRengaswamy, Raghunathan, Babji Srinivasan, and Nirav Pravinbhai Bhatt. "Model Predictive Control." In Process Control Fundamentals, 229–50. First edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367433437-8.
Full textTatjewski, Piotr, and Maciej Ławryńczuk. "Nonlinear Predictive Control." In Automatic Control, Robotics, and Information Processing, 189–228. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48587-0_7.
Full textWeik, Martin H. "automatic process control." In Computer Science and Communications Dictionary, 86. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1125.
Full textKalbasenka, Alex N., Adrie E. M. Huesman, and Herman J. M. Kramer. "Model Predictive Control." In Industrial Crystallization Process Monitoring and Control, 185–201. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645206.ch16.
Full textChristofides, Panagiotis D., Jinfeng Liu, and David Muñoz de la Peña. "Networked Predictive Process Control." In Networked and Distributed Predictive Control, 47–98. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-582-8_3.
Full textConference papers on the topic "Predictive control ; Process control ; Automatic control"
Suwannik, Podcharapol, Tanagorn Jennawasin, and David Banjerdpongchai. "Design of linear model predictive control for level control process with output feedback from wireless transmitter." In 2016 International Automatic Control Conference (CACS). IEEE, 2016. http://dx.doi.org/10.1109/cacs.2016.7973897.
Full textEfheij, Hafed, Abdulgani Albagul, and Nabela Ammar Albraiki. "Comparison of Model Predictive Control and PID Controller in Real Time Process Control System." In 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). IEEE, 2019. http://dx.doi.org/10.1109/sta.2019.8717271.
Full textYe Yanfei, Wang Bailin, Shao Mingheng, and Zhang Yongqi. "Improved generalized predictive control in polymerization process." In 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5987195.
Full textLiang Wang and Jingtao Hu. "Fuzzy predictive R2R control to CMP process." In 2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE, 2011. http://dx.doi.org/10.1109/csae.2011.5952412.
Full textNg, James, Stevan Dubljevic, and Ilyasse Aksikas. "Model predictive control of Czochralski crystal growth process." In Automation (MED 2011). IEEE, 2011. http://dx.doi.org/10.1109/med.2011.5983228.
Full textCao, Gang, Edmund M.-K. Lai, and Fakhrul Alam. "Gaussian Process Model Predictive Control of unmanned quadrotors." In 2016 2nd International Conference on Control, Automation and Robotics (ICCAR). IEEE, 2016. http://dx.doi.org/10.1109/iccar.2016.7486726.
Full textTohidi, Akbar, and Hadi Hajieghrary. "Self-Tuning Adaptive Multiple Model Predictive Control with application to pH Control process." In 2016 IEEE International Conference on Automation Science and Engineering (CASE). IEEE, 2016. http://dx.doi.org/10.1109/coase.2016.7743545.
Full textLao, Liangfeng, Matthew Ellis, and Panagiotis D. Christofides. "Economic model predictive control of a transport-reaction process." In 2013 21st Mediterranean Conference on Control & Automation (MED). IEEE, 2013. http://dx.doi.org/10.1109/med.2013.6608742.
Full text"MULTI-OBJECTIVE PREDICTIVE CONTROL: APPLICATION FOR AN UNCERTAIN PROCESS." In 2nd International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2005. http://dx.doi.org/10.5220/0001181602330238.
Full textKun Qian and YuMing Zhang. "Optimal model predictive control of plasma pipe welding process." In 2008 IEEE International Conference on Automation Science and Engineering (CASE 2008). IEEE, 2008. http://dx.doi.org/10.1109/coase.2008.4626562.
Full textReports on the topic "Predictive control ; Process control ; Automatic control"
Feierl, Lukas, and Peter Luidolt. Automated monitoring, failure detection of key components, control strategies and self-learning controls of key components. IEA SHC Task 55, September 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0005.
Full text