Journal articles on the topic 'Predictive and Adaptive Control'

To see the other types of publications on this topic, follow the link: Predictive and Adaptive Control.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Predictive and Adaptive Control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ray, W. D. "Adaptive prediction and predictive control." International Journal of Forecasting 12, no. 4 (December 1996): 566. http://dx.doi.org/10.1016/s0169-2070(96)00688-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clarke, D. W. "Adaptive predictive control." Annual Reviews in Control 20 (January 1996): 83–94. http://dx.doi.org/10.1016/s1367-5788(97)00007-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clarke, D. "Adaptive predictive control." Annual Review in Automatic Programming 20 (1996): 83–94. http://dx.doi.org/10.1016/s0066-4138(97)00007-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Clarke, D. W. "Adaptive Predictive Control." IFAC Proceedings Volumes 28, no. 13 (June 1995): 43–54. http://dx.doi.org/10.1016/s1474-6670(17)45325-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Esteban, Segundo, Jesus Μ. de la Cruz, and Jose Μ. Girón-sierra. "Adaptive Predictive Flight Control." IFAC Proceedings Volumes 33, no. 13 (June 2000): 239–44. http://dx.doi.org/10.1016/s1474-6670(17)37196-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rao, G. P. "Adaptive prediction and predictive control [Book Reviews]." IEEE Transactions on Automatic Control 44, no. 7 (July 1999): 1482–83. http://dx.doi.org/10.1109/tac.1999.774128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Flor Unda, Omar. "Adaptive control systems for solar collectors." Athenea 2, no. 4 (June 15, 2021): 19–25. http://dx.doi.org/10.47460/athenea.v2i4.18.

Full text
Abstract:
En este trabajo se presentan las estrategias de control del flujo de aceite mediante la técnica de Control Predictivo basado en Modelo, para el mecanismo de control del campo de colectores solares cilindros parabólicos. Se analiza el comportamiento dinámico del sistema con el uso del modelo matemático, una técnicade control self-tunning y controlador predictivo basado en modelo para el control de plantas tipo ACUREX. Keywords: Automation, Modernization, ControlLogix, Supervisory System, Mimic Panel. References [1]Arahal, M. R., Berenguel, M. & Camacho, E. F., 1997. Nonlinear neural model-based predictive control of a solar plant. In Proc. European Control Conf. ECC'97. Brussels, Belgium, Volumen TH-E I2, p. paper 264. [2]Arahal, M. R., Berenguel, M. & Camacho, E. F., 1998a. Comparison of RBF algorithms for output temperature prediction of a solar plant.. In Proc. CONTROLO'98, 9-11 September. [3]Arahal, M. R., Berenguel, M. & Camacho, E. F., 1998b. Neural identification applied to predictive control of solar plant. Control Engineering Practice, Volumen 6, pp. pp. 333-344. [4]Aström, K. J. & Wittenmark, B., 1989. Adaptative Control. Aström, K. J. & Wittermark, B., 1984. Computed controlles Systems, Theory and Design. Englewood Cliffs, NJ: Prentice Hall. [5]Barão, M., 2000. Dynamic and no-linear control of a solar collector field. Thesis (in Portuguese). Universidade Técnica de Lisboa, Instituto Superior Técnico. [6]Barão, M., Lemos, J. M. & Silva, R. N., 2002. Reduced complexity adaptative nonlinear control of a distribuited collector solar field. J. of Process Control, Volumen 12(1), pp. pp. 131-141. [7]Berenguel, M., Arahal, M. R. & Camacho, E. F., 1998. Modeling free responses of a solar plant for predictive control. Control Engineering Practice, Volumen 6, pp. pp. 1257-1266. [8]Berenguel, M., Camacho, E. F. & Rubio, F. R., 1994. Simulation software package for the Acurex field.. Departamento de Ingeniería y Automática. [9]Berenguel, M., Camacho, E. F. & Rubio, F. R., 1997. Advanced Control of Solar Plants. Londres: Springer-Verlag.
APA, Harvard, Vancouver, ISO, and other styles
8

Geng, Tao, and Jin Zhao. "Adaptive Cascade Generalized Predictive Control." International Journal of Intelligence Science 04, no. 03 (2014): 70–79. http://dx.doi.org/10.4236/ijis.2014.43009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Wei, and Rolf Henriksen. "Direct adaptive generalized predictive control." Modeling, Identification and Control: A Norwegian Research Bulletin 14, no. 4 (1993): 181–91. http://dx.doi.org/10.4173/mic.1993.4.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MeVay, A. C. H., and R. Sarpeshkar. "Predictive comparators with adaptive control." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 50, no. 9 (September 2003): 579–88. http://dx.doi.org/10.1109/tcsii.2003.815026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wong, C. H., S. L. Shah, M. M. Bourke, and D. G. Fisher. "Adaptive fuzzy relational predictive control." Fuzzy Sets and Systems 115, no. 2 (October 2000): 247–60. http://dx.doi.org/10.1016/s0165-0114(98)00295-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zanini, A., R. Bocanera, and R. Cordes. "Adaptive Predictive Control: Practical Aspects." IFAC Proceedings Volumes 28, no. 19 (September 1995): 241–47. http://dx.doi.org/10.1016/s1474-6670(17)45087-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Monti, F., A. Zanini, R. Cordes, and R. Bocanera. "Switching Model Adaptive Predictive Control." IFAC Proceedings Volumes 31, no. 22 (August 1998): 47–52. http://dx.doi.org/10.1016/s1474-6670(17)35919-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Heirung, Tor Aksel N., B. Erik Ydstie, and Bjarne Foss. "Dual adaptive model predictive control." Automatica 80 (June 2017): 340–48. http://dx.doi.org/10.1016/j.automatica.2017.01.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Krener, Arthur J. "Adaptive Horizon Model Predictive Control." IFAC-PapersOnLine 51, no. 13 (2018): 31–36. http://dx.doi.org/10.1016/j.ifacol.2018.07.250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

McDermott, Patrick E. "Adaptive multivariable optimal predictive control." International Journal of Adaptive Control and Signal Processing 1, no. 2 (November 1987): 111–28. http://dx.doi.org/10.1002/acs.4480010203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Marino, Francesco, Fabio Leccese, and Stefano Pizzuti. "Adaptive Street Lighting Predictive Control." Energy Procedia 111 (March 2017): 790–99. http://dx.doi.org/10.1016/j.egypro.2017.03.241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kokko, T., P. Lautala, and T. Huhtelin. "ADAPTIVE MODEL PREDICTIVE CONTROL OF CONSISTENCY." IFAC Proceedings Volumes 35, no. 1 (2002): 73–78. http://dx.doi.org/10.3182/20020721-6-es-1901.01565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tsai, Ching-Chih, Chien-Cheng Yu, and Chia-Ta Tsai. "Adaptive ORFWNN-Based Predictive PID Control." International Journal of Fuzzy Systems 21, no. 5 (May 16, 2019): 1544–59. http://dx.doi.org/10.1007/s40815-019-00650-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Matko, D. "Continuous-Time Generalized Predictive Adaptive Control." IFAC Proceedings Volumes 24, no. 1 (January 1991): 41–46. http://dx.doi.org/10.1016/s1474-6670(17)51294-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pavlechko, P. D., M. C. Wellons, and T. F. Edgar. "An Approach for Adaptive-Predictive Control." IFAC Proceedings Volumes 18, no. 15 (October 1985): 39–44. http://dx.doi.org/10.1016/b978-0-08-033431-8.50012-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

MARTIN SANCHEZ, JUAN M., and JOSE RODELLAR. "ADAPTIVE PREDICTIVE CONTROL: LIMITS OF STABILITY." International Journal of Adaptive Control and Signal Processing 11, no. 4 (June 1997): 263–83. http://dx.doi.org/10.1002/(sici)1099-1115(199706)11:4<263::aid-acs431>3.0.co;2-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Romanov, Anton A., Aleksey A. Filippov, and Nadezhda G. Yarushkina. "Adaptive Fuzzy Predictive Approach in Control." Mathematics 11, no. 4 (February 9, 2023): 875. http://dx.doi.org/10.3390/math11040875.

Full text
Abstract:
This article studies the approach to solving the problem of controlling the complex organizational and technical systems based on hybrid models. We propose a new component of intelligent decision support that is integrated with control systems. The proposed component is based on fuzzy logic and knowledge engineering. We present a model of ontology to form the context of data analysis and time series modeling. The ontological context allows us to represent trends of the analyzed object indicators. An expert can add a set of fuzzy rules to the ontology for systems control based on the fuzzy inference. The proposed approach allows reducing the time of analysis and interpretation of the results. Experimental results confirm the correctness and effectiveness of the approach proposed in this article.
APA, Harvard, Vancouver, ISO, and other styles
24

G.S.S.S.S.V., Krishna Mohan. "Auto-tuning Smith-predictive Control of Delayed Processes based on Model Reference Adaptive Controller." Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (March 31, 2020): 1224–30. http://dx.doi.org/10.5373/jardcs/v12sp4/20201597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Vojtesek, Jiri, Petr Dostal, and Vladimir Bobal. "Control of Nonlinear System – Adaptive and Predictive Control." IFAC Proceedings Volumes 42, no. 11 (2009): 898–903. http://dx.doi.org/10.3182/20090712-4-tr-2008.00147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yin, Fang Chen, Geng Sheng Ma, Ya Feng Ji, Jia Xue Yu, De Hao Gu, and Dian Hua Zhang. "Fuzzy Adaptive Direct Generalized Predictive Control Algorithm in the Application of AWC Control." Advanced Materials Research 945-949 (June 2014): 2529–32. http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.2529.

Full text
Abstract:
Using the characteristics of prediction model, rolling optimization and feedback correction, a AWC system based on generalized predictive control was designed, and its control performance was simulated based on a hot strip continuous mill. The results show that generalized predictive controller achieves better control effects than the normal PID on response time and steady precision with matching model; when model mismatching is caused by inaccuracy of plastic coefficient and pure delay time, the normal PID is overshot or even oscillation, but the control performance of the generalized predictive controller is not influenced by model parameter variations .
APA, Harvard, Vancouver, ISO, and other styles
27

Kandare, G., and A. Nevado Reviriego. "Adaptive predictive expert control of dissolved oxygen concentration in a wastewater treatment plant." Water Science and Technology 64, no. 5 (September 1, 2011): 1130–36. http://dx.doi.org/10.2166/wst.2011.276.

Full text
Abstract:
In this paper we present the application of adaptive predictive expert controllers to dissolved oxygen (DO) control in the aerobic reactors of a wastewater treatment plant. The control system described in this paper consists of adaptive predictive expert control loops complemented by optimisation logic. The controllers successfully cope with nonlinearity and changing operating conditions of the process by predicting the evolution of the controlled variable and adapting to changes in the process dynamics. This results in more precise and stable DO control, offering many benefits. The complementary optimisation logic maintains the air pressure in the common collector at the lowest possible level, enabling adequate DO control and thus considerably reducing energy consumption.
APA, Harvard, Vancouver, ISO, and other styles
28

白家納, 白家納, and 黃崇能 Pachara Opattrakarnkul. "以深度學習模式估測控制之駕駛輔助系統的研發." 理工研究國際期刊 12, no. 1 (April 2022): 015–24. http://dx.doi.org/10.53106/222344892022041201002.

Full text
Abstract:
<p>Adaptive cruise control (ACC) systems are designed to provide longitudinal assistance to enhance safety and driving comfort by adjusting vehicle velocity to maintain a safe distance between the host vehicle and the preceding vehicle. Generally, using model predictive control (MPC) in ACC systems provides high responsiveness and lower discomfort by solving real-time constrained optimization problems but results in computational load. This paper presents an architecture of deep learning based on model predictive control in ACC systems to avoid real-time optimization problems required by MPC, which in turn, reduces computational load. The learning dataset is acquired from the simulation data of the input/output of the MPC controller. We designed the proposed deep learning controller using long short-term memory networks (LSTMs) and simulated it in MATLAB/Simulink using the vehicle’s characteristics from the advanced vehicle simulator (ADVISOR). Finally, the safety and driving comfort are compared with the PID-based control to demonstrate the performance of the proposed deep-learning architecture.</p> <p>&nbsp;</p>
APA, Harvard, Vancouver, ISO, and other styles
29

Lopes, António, and Rui Esteves Araújo. "Model-based Predictive Control implementation for Cooperative Adaptive Cruise Control." U.Porto Journal of Engineering 2, no. 1 (March 19, 2018): 1–10. http://dx.doi.org/10.24840/2183-6493_002.001_0001.

Full text
Abstract:
The automation of road vehicles has become a necessity to improve the efficiency and safety of this system. In a vehicle formation it is important to maintain a safety distance between the vehicles. The control of a vehicle spacing distance and longitudinal velocity can be achieved through the implementation of a model-based predictive controller. This implementation of a cooperative adaptive cruise control allows the access of another vehicle state information through vehicular communication technology and promote state prediction and ultimately system stability. The optimization algorithm performs the computation of the control input in a control horizon window and ensures that the spacing error takes only positive values. The results of the proposed controller are evaluated through the computational tool Simulink in the two-vehicle platoon. The controller is implemented in the precedent vehicle. To assess the performance of the proposed controller different control parameters and constraints were used.
APA, Harvard, Vancouver, ISO, and other styles
30

Chen, Zai Ping, and Xue Wang. "Research on Networked Control Systems Based on Adaptive Predictive Control." Applied Mechanics and Materials 441 (December 2013): 833–36. http://dx.doi.org/10.4028/www.scientific.net/amm.441.833.

Full text
Abstract:
According to the random time-delay exist in sensor-controller channel and controller-actuator channel in networked control systems, an adaptive predictive control strategy was proposed. In this control strategy, an improved generalized predictive control algorithm is adopted to compensate the networked random time-delay. In addition, using the recursive least squares with a variable forgetting factor algorithm to indentify the model parameters of controlled object on-line, through the way, it could adjust the systems with unknown parameters adaptively. Simulation results show that the adaptive predictive control proposed could solve random time-delay of networked control systems effectively.
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Y., Y. Zhang, Y. Fu, T. Chai, and J. Fu. "Adaptive decoupling switching control based on generalised predictive control." IET Control Theory & Applications 6, no. 12 (August 16, 2012): 1828–41. http://dx.doi.org/10.1049/iet-cta.2011.0053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hartwich, Arndt, Martin Schlegel, Lynn Würth, and Wolfgang Marquardt. "Adaptive control vector parameterization for nonlinear model-predictive control." International Journal of Robust and Nonlinear Control 18, no. 8 (2008): 845–61. http://dx.doi.org/10.1002/rnc.1246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mizumoto, Ikuro, Yotaro Fujimoto, and Masataka Ikejiri. "Adaptive output predictor based adaptive predictive control with ASPR constraint." Automatica 57 (July 2015): 152–63. http://dx.doi.org/10.1016/j.automatica.2015.04.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chisci, L., G. Zappa, and E. Mosca. "On the implementation of predictive adaptive control by adaptive predictors." International Journal of Adaptive Control and Signal Processing 4, no. 3 (May 1990): 187–206. http://dx.doi.org/10.1002/acs.4480040302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sun, Guang, Jialei Chen, Yingqiong Yong, and Yongyuan Li. "Generalized predictive control of spacecraft attitude with adaptive predictive period." International Journal of Adaptive Control and Signal Processing 36, no. 3 (November 23, 2021): 596–606. http://dx.doi.org/10.1002/acs.3358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dozal-Mejorada, Eduardo J., Priyesh Thakker, and B. Erik Ydstie. "SUPERVISED ADAPTIVE PREDICTIVE CONTROL USING DUAL MODELS." IFAC Proceedings Volumes 40, no. 5 (2007): 107–12. http://dx.doi.org/10.3182/20070606-3-mx-2915.00136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cai, Zicheng, and B. Erik Ydstie. "Dual Adaptive Model Predictive Control with Disturbances." IFAC-PapersOnLine 54, no. 3 (2021): 206–11. http://dx.doi.org/10.1016/j.ifacol.2021.08.243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mosca, E. "Optimal, Predictive, and Adaptive Control, Book Review." IEEE Control Systems 15, no. 6 (December 1995): 92. http://dx.doi.org/10.1109/mcs.1995.476395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Nazaruddin, Yul Y., and M. Aria. "ADAPTIVE-PREDICTIVE CONTROL WITH INTELLIGENT VIRTUAL SENSOR." IFAC Proceedings Volumes 38, no. 1 (2005): 263–68. http://dx.doi.org/10.3182/20050703-6-cz-1902.01122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lie Tang and Robert G. Landers. "Predictive Contour Control With Adaptive Feed Rate." IEEE/ASME Transactions on Mechatronics 17, no. 4 (August 2012): 669–79. http://dx.doi.org/10.1109/tmech.2011.2119324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Eure, Kenneth, Jer‐Nan Juang, and Richard Silcox. "Direct adaptive predictive control using gradient descent." Journal of the Acoustical Society of America 105, no. 2 (February 1999): 1300. http://dx.doi.org/10.1121/1.424826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dumitrache, Ion, Nicolae Constantin, and Monica Dragoicea. "Adaptive Predictive Control Based on Neural Networks." IFAC Proceedings Volumes 33, no. 25 (September 2000): 335–39. http://dx.doi.org/10.1016/s1474-6670(17)39362-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Szuda, J., M. Antoniová, B. Rohal’-Il’kiv, and G. Hulkó. "Adaptive Predictive Control of Distributed Parameter Systems." IFAC Proceedings Volumes 30, no. 21 (September 1997): 487–93. http://dx.doi.org/10.1016/s1474-6670(17)41486-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, D. H., and C. B. Soh. "Adaptive neural model-based decentralized predictive control." International Journal of Systems Science 31, no. 1 (January 2000): 119–30. http://dx.doi.org/10.1080/002077200291523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yoon, Tae-Woong, and D. W. Clarke. "Adaptive Predictive Control of the Benchmark Plant." IFAC Proceedings Volumes 26, no. 2 (July 1993): 125–28. http://dx.doi.org/10.1016/s1474-6670(17)48909-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Xiao-hui, YANG, LIU He-sheng, and LIU Guo-ping. "An Adaptive Teleoperation Based On Predictive Control." Procedia Engineering 16 (2011): 151–56. http://dx.doi.org/10.1016/j.proeng.2011.08.1065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Akouz, K., A. Benhammou, and P. O. Malaterre. "Adaptive Predictive Control of an Irrigation Channel." IFAC Proceedings Volumes 30, no. 5 (May 1997): 239–44. http://dx.doi.org/10.1016/s1474-6670(17)44439-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, G. P., and S. Daley. "Adaptive Predictive Control of Combustor NOx Emissions." IFAC Proceedings Volumes 32, no. 2 (July 1999): 7208–13. http://dx.doi.org/10.1016/s1474-6670(17)57230-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Liu, G. P., and S. Daley. "Adaptive predictive control of combustor NOx emissions." Control Engineering Practice 9, no. 6 (June 2001): 631–38. http://dx.doi.org/10.1016/s0967-0661(01)00019-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Huang, Hsiao Ping, Yung Cheng Chao, and Pea Hsien Liu. "Predictive adaptive control system for unmeasured disturbances." Industrial & Engineering Chemistry Process Design and Development 24, no. 3 (July 1985): 666–73. http://dx.doi.org/10.1021/i200030a023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography