Academic literature on the topic 'Prediction of survival; Probability; Time models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Prediction of survival; Probability; Time models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Prediction of survival; Probability; Time models"
Lan, Yu, and Daniel F. Heitjan. "Adaptive parametric prediction of event times in clinical trials." Clinical Trials 15, no. 2 (January 29, 2018): 159–68. http://dx.doi.org/10.1177/1740774517750633.
Full textGensheimer, Michael F., and Balasubramanian Narasimhan. "A scalable discrete-time survival model for neural networks." PeerJ 7 (January 25, 2019): e6257. http://dx.doi.org/10.7717/peerj.6257.
Full textRen, Kan, Jiarui Qin, Lei Zheng, Zhengyu Yang, Weinan Zhang, Lin Qiu, and Yong Yu. "Deep Recurrent Survival Analysis." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4798–805. http://dx.doi.org/10.1609/aaai.v33i01.33014798.
Full textLi, Kan, and Sheng Luo. "Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer’s disease." Statistical Methods in Medical Research 28, no. 2 (July 28, 2017): 327–42. http://dx.doi.org/10.1177/0962280217722177.
Full textAlemazkoor, Negin, Conrad J. Ruppert, and Hadi Meidani. "Survival analysis at multiple scales for the modeling of track geometry deterioration." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 232, no. 3 (March 9, 2017): 842–50. http://dx.doi.org/10.1177/0954409717695650.
Full textSun, Zhaohong, Wei Dong, Jinlong Shi, Kunlun He, and Zhengxing Huang. "Attention-Based Deep Recurrent Model for Survival Prediction." ACM Transactions on Computing for Healthcare 2, no. 4 (October 31, 2021): 1–18. http://dx.doi.org/10.1145/3466782.
Full textTan, Ping, Lu Yang, Hang Xu, and Qiang Wei. "Novel perioperative parameters-based nomograms for survival outcomes in upper tract urothelial carcinoma after radical nephroureterectomy." Journal of Clinical Oncology 37, no. 7_suppl (March 1, 2019): 414. http://dx.doi.org/10.1200/jco.2019.37.7_suppl.414.
Full textLiu, Xing-Rong, Yudi Pawitan, and Mark Clements. "Parametric and penalized generalized survival models." Statistical Methods in Medical Research 27, no. 5 (September 1, 2016): 1531–46. http://dx.doi.org/10.1177/0962280216664760.
Full textAndrinopoulou, Eleni-Rosalina, D. Rizopoulos, Johanna JM Takkenberg, and E. Lesaffre. "Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data." Statistical Methods in Medical Research 26, no. 4 (June 9, 2015): 1787–801. http://dx.doi.org/10.1177/0962280215588340.
Full textLiu, Chuchu, Anja J. Rueten-Budde, Andreas Ranft, Uta Dirksen, Hans Gelderblom, and Marta Fiocco. "Dynamic prediction of overall survival: a retrospective analysis on 979 patients with Ewing sarcoma from the German registry." BMJ Open 10, no. 10 (October 2020): e036376. http://dx.doi.org/10.1136/bmjopen-2019-036376.
Full textDissertations / Theses on the topic "Prediction of survival; Probability; Time models"
Ripley, Ruth Mary. "Neural network models for breast cancer prognosis." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244721.
Full textJones, Margaret. "Point prediction in survival time models." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340616.
Full textKaponen, Martina. "Prediction of survival time of prostate cancer patients using Cox regression." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-354482.
Full textRodrigo, Hansapani Sarasepa. "Bayesian Artificial Neural Networks in Health and Cybersecurity." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6940.
Full textBegum, Mubeena. "Gene expression profiles and clinical parameters for survival prediction in stage II and III colorectal cancer." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001554.
Full textYang, Lili. "Joint models for longitudinal and survival data." Thesis, 2014. http://hdl.handle.net/1805/4666.
Full textEpidemiologic and clinical studies routinely collect longitudinal measures of multiple outcomes. These longitudinal outcomes can be used to establish the temporal order of relevant biological processes and their association with the onset of clinical symptoms. In the first part of this thesis, we proposed to use bivariate change point models for two longitudinal outcomes with a focus on estimating the correlation between the two change points. We adopted a Bayesian approach for parameter estimation and inference. In the second part, we considered the situation when time-to-event outcome is also collected along with multiple longitudinal biomarkers measured until the occurrence of the event or censoring. Joint models for longitudinal and time-to-event data can be used to estimate the association between the characteristics of the longitudinal measures over time and survival time. We developed a maximum-likelihood method to joint model multiple longitudinal biomarkers and a time-to-event outcome. In addition, we focused on predicting conditional survival probabilities and evaluating the predictive accuracy of multiple longitudinal biomarkers in the joint modeling framework. We assessed the performance of the proposed methods in simulation studies and applied the new methods to data sets from two cohort studies.
National Institutes of Health (NIH) Grants R01 AG019181, R24 MH080827, P30 AG10133, R01 AG09956.
Yuan, Yan. "Prediction Performance of Survival Models." Thesis, 2008. http://hdl.handle.net/10012/3974.
Full textLi-Yuan, Chang, and 張瓈元. "An Empirical Study on Default Probability Models- Comparing Discrete-Time Survival Model and Merton's Model." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/65281870518653699527.
Full text國立交通大學
財務金融研究所
95
Based on the data of Taiwan corporations trading in TSE and OTC,this study used factor analysis to choose variables and according to stock data to construct financial distress prediction models, such as discrete-time survival model and Merton’ s model and then estimated the default probability when company went into bankruptcy. Furthermore, I compared the accuracy of two models. This study classified the variables into four categories, which are financial structure、ability to pay、efficiency of administration and ability to profit. The methods used in analyzing the Models’ prediction accuracy are K-S test、ROC curve and AUC. The empirical results showed that these two models can both validate the distribution of independent variables of non-default group differ from that of default group and the discrete-time survival model actually predict the default probability better than Merton’s model. Keywords: Merton;Discrete-Time Survival;ROC Curve;AUC;Factor Analysis
Kusiak, Caroline. "Real-Time Dengue Forecasting In Thailand: A Comparison Of Penalized Regression Approaches Using Internet Search Data." 2018. https://scholarworks.umass.edu/masters_theses_2/708.
Full textΣτεφάνου, Παύλος. "Development of scale-bridging methodologies and algorithms founded on the outcome of detailed atomistic simulations for the reliable prediction of the viscoelastic properties of polymer melts." Thesis, 2011. http://nemertes.lis.upatras.gr/jspui/handle/10889/4563.
Full textΣτα πλαίσια της παρούσας διατριβής σχεδιάσαμε και αναπτύξαμε αλγορίθμους πρόβλεψης της ρεολογικής συμπεριφοράς πολυμερικών τηγμάτων βασιζόμενοι στα αποτελέσματα λεπτομερών ατομιστικών προσομοιώσεων, καθοδηγούμενοι όμως από Θεωρίες της Δυναμικής των Πολυμερών αλλά και από θεμελιώδεις αρχές της Επιστήμης της Θερμοδυναμικής Εκτός Ισορροπίας. Πιο συγκεκριμένα: 1) Προτείνουμε αρχικά ένα νέο ρεολογικό καταστατικό μοντέλο για τη χρονική εξέλιξη του τανυστή διαμορφώσεων C των αλυσίδων σε ένα πολυμερικό τήγμα (και κατ’ επέκταση για τον τανυστή των τάσεων τ) κάνοντας χρήση του φορμαλισμού των γενικευμένων αγκυλών των Beris και Edwards. Το νέο καταστατικό μοντέλο περιλαμβάνει όρους που περιγράφουν ένα ολόκληρο φάσμα φαινομένων και χρησιμοποιήθηκε με επιτυχία για την περιγραφή των ρεολογικών ιδιοτήτων εμπορικών ρητινών πολυαιθυλενίου. 2) Αναπτύξαμε μια καινούργια μεθοδολογία που επιτρέπει την άμεση σύνδεση των αποτελεσμάτων των ατομιστικών προσομοιώσεων με τη μοριακή θεωρία του ερπυσμού για διαπλεγμένα πολυμερή. Το τελικό αποτέλεσμα της μεθοδολογίας είναι ο υπολογισμός της συνάρτησης ψ(s,t) που εκφράζει την πιθανότητα το σημείο s κατά μήκος του περιγράμματος του πρωτογενούς δρόμου των αλυσίδων να παραμένει στον αρχικό σωλήνα μετά από χρόνο t. Επεκτείναμε τη θεωρία Rouse και για συστήματα πολυμερικών αλυσίδων δίχως άκρα, όπως αυτά των πολυμερικών δακτυλίων. Παρότι στίγματα της θεωρίας είχαν παρουσιαστεί και σε προηγούμενες εργασίες από άλλους ερευνητές, στην παρούσα διατριβή αναπτύξαμε τη θεωρία στην ολότητά της.
Books on the topic "Prediction of survival; Probability; Time models"
Life time data: Statistical models and methods. Singapore: World Scientific, 2006.
Find full textBox, George E. P. Time series analysis: Forecasting and control. 4th ed. Hoboken, N.J: John Wiley, 2008.
Find full textBox, George E. P. Time series analysis: Forecasting and control. 3rd ed. Englewood Cliffs, N.J: Prentice Hall, 1994.
Find full textBox, George E. P. Time series analysis: Forecasting and control. 4th ed. Hoboken, N.J: John Wiley, 2008.
Find full textLifetime Data: Statistical Models and Methods. World Scientific Publishing Co Pte Ltd, 2015.
Find full textBox, George E. P. Time Series Analysis: Forecasting and Control (Wiley Series in Probability and Statistics). 4th ed. Wiley-Interscience, 2008.
Find full textDeshpande, Jayant V., and Sudha G. Purohit. Life-time Data: Statistical Models And Methods (Quality, Reliability and Engineering Statistics) (Quality, Reliabiltiy & Engineering Statistics). World Scientific Publishing Company, 2006.
Find full textBox, George E. P. Time Series Analysis: Forecasting & Control. Pearson Education Asia Limited, 2005.
Find full textJenkins, Gwilym M., Gregory C. Reinsel, and George E. P. Box. Time Series Analysis: Forecasting and Control. Wiley & Sons, Incorporated, John, 2011.
Find full textJenkins, Gwilym M., Gregory C. Reinsel, and George E. P. Box. Time Series Analysis: Forecasting and Control. Wiley & Sons, Incorporated, John, 2013.
Find full textBook chapters on the topic "Prediction of survival; Probability; Time models"
"Identification of Prognostic Factors Related to Survival Time: Nonproportional Hazards Models." In Wiley Series in Probability and Statistics, 339–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471458546.ch13.
Full text"u = 1 u = 1.5u = 2 u = 3 u = 4 u = 5.5u = 6.5u = 7.9 u = 8.9u = 10.7 Survival Probability." In Joint Models for Longitudinal and Time-to-Event Data, 210–11. Chapman and Hall/CRC, 2012. http://dx.doi.org/10.1201/b12208-24.
Full textDiao, Qian, Jianye Lu, Wei Hu, Yimin Zhang, and Gary Bradski. "DBN Models for Visual Tracking and Prediction." In Bayesian Network Technologies, 176–93. IGI Global, 2007. http://dx.doi.org/10.4018/978-1-59904-141-4.ch009.
Full text"Patient 25 Patient 25 Patient 25 Extra 1 year Extra 2 years Extra 4 years Patient 2 Patient 2 Patient 2 Extra 1 year Extra 2 years Extra 4 years Survival Probability." In Joint Models for Longitudinal and Time-to-Event Data, 198–203. Chapman and Hall/CRC, 2012. http://dx.doi.org/10.1201/b12208-21.
Full textGodara, Deepa, Amit Choudhary, and Rakesh Kumar Singh. "Predicting Change Prone Classes in Open Source Software." In Research Anthology on Usage and Development of Open Source Software, 653–75. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-9158-1.ch034.
Full textKlepac, Goran. "Data Mining Models as a Tool for Churn Reduction and Custom Product Development in Telecommunication Industries." In Handbook of Research on Novel Soft Computing Intelligent Algorithms, 511–37. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4450-2.ch017.
Full textKlepac, Goran. "Data Mining Models as a Tool for Churn Reduction and Custom Product Development in Telecommunication Industries." In Business Intelligence, 430–57. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9562-7.ch023.
Full text"T cu im rre e n tl Sycahleeasd ) qu aas rte wreeldlaatst he thLeammounltt -i D na oth io e n rt aylEIaR rt I h , odtrhoeurgm ht ajporrem di ocd ti eolnprw ob il llem re s q . u T ir hee the resolution of hOabvseearnva im to p ry o rt oafntCcooluupm le bdiamoUdneilvecrosm ity p . onTehnet, sea lt ehfo fo urgthsp ex hteernes , io onntaogfloorbeaclasdto in mga , in boatnhdth th eseeaorcee dva saonlnacn es diantcm lu odse m in acn lu ydeodf ( t C he a rs toyn pe 1s9o 98 f ) m . ethods discussed above are uomciesamnatacnhdbaettmwoesepnhtehree . fl Fuo xe rsmaatntyhearbeoaus, n d th atr io ie nsoofftthhee rep F li o ca rtE in NgSaOn , d c , ur in re nstom co eupclaesdesm , oidmep ls roav re in cgapoanb le thoefo of frtehaelsie st iwcillalnrde -q suuirrfeacse ig coupling may be ess eenatd ia dli . tiA on ll tshue cc ecsusrroefnetmgpein ri ecraalt / isotn at i o st ficcaolumpe le th dom ds o . dFeo ls rirnesptlain ca ctee , a model parameterisatio nificant improvements in the SST anomaly patterns in the equatorial Pacific that th ry elraeyqeu rs ir , ecd lo m ud osd , erlad im inasp ti oonf , saun rf dacceonpv ro ecce ti sosn es, bound have many characteristics in common with observed to a quick solution, but, ro g v iv eemnetnhtesiam re p o li rktealny . N to onye ie o ld flEeN ss SsO uc cceosm sf puolsiin te tsh . eCm ur orreentdim ffi ocduelltspa ro re blceomnso id ferreapblliy imp Iatcsthoofud ld ronuogthbte , they are worth pursuing. ce of the p ca hteirnigcc th ir ecuslpae ti c o if n ic peav tt oelruntsioinnoafgtihve en SESNTSaOndepaitsm od oes . tehxe prospects for im forgotten, however, that not all of However, it is precisely this problem that must be no ctlufsuilv ly eluynodnersse ta a n so pnraolvteidmde ro sc uag le hst . p A re l dictions reside solved. Just as the ‘average’ daily weather is rarely of climate variabilit d y , th th eem re u l is ti aanmnpulaelteo th doeucgahdawles ca dloeo ce bpsteuravleda , idthteo ‘ ucnadneornsitcaanl’ diEnNgS th Oan id aeauissefm ul orceonastcroun ct e2x .1 is c t ) e nc aend -e th .g e . , sien the time series o vidence for its for prediction. To reach their full potential, coupled distributions of rai cnuflaalrl ( cFhiagnugrees2i . n2ftrhae in f p al rlob (F ab ig il uir ty eim nd oidveildsun al eepdas to t E be N S ab O le etpoisroedpe li scaa te ndt he th eeivroleuv ti ooln vi nogfnoefw co duep velopments in data an ). Very recently, extratropical atmospheric and ocean interactions. There is lesdommeoedveildsehnacveeosftd ar etaeld ys t is oaonpdeinn the accuracy The most optimistic expectation is that once that may have a somewhat c ad d a if lfv er aern ia t t io unpstihnisEN fie S ld O . cEoNuSpO le , d th m ey odw el i s ll bheavaeb le cotnoqhueelrped id etnhtei fy chaanld le npg re edio ct ftmheeasiun red by the ocean s character, as other modes of climate variability. This may include Zhang te ertananl. ua1l99 ti 7 m , eFoslc la al neusr fa ( cKeleteemmapne ra et tures, from links between ENSO and the climate system not yet are now beginning to fin ddeatanlu . m1b9e9r8 ) o . M al. od1e9 ll 9e6 rs , m dis ocdoevlesremdaiyntahiediimnpienrv fe ecsttiogbaste io rv nast io onfaplodsastiab . lIemcplriomvaetdem ab e il cih ty anoin sm th seinde th ca edN al otrothmaun lt d i tropic f potential modes that link ocean basins, such as ENSO-and Barnett 1996). There is adlescoad ev aalltiPm ac eifsiccaf le o r ( vari related variations of SST in the tropical North Atlantic, ENSO links to rainfall may come an id dengcoed th ep aetnsLoam ti e f rece In n tl aydddiistc io u n ss etdoboycE ea n n fi -e altdmaonsdphMea re y er c o ( u1p9l9 in 7 g ). , new nointutdheeo se fcE ul N ar S O va riitas bility in the str ding generations of models need to include realistic land-southern Europe (R eolpfe -le wes .g k . i , a in ndneonrg Ha th th lp e e rn an dAfm ri acga/ rae tm ali oss ti pchm er oedeclosuopflitnhge . la Snudch su rifm ac peroavnedmie ts ntvsegientvao ti lovneaThheeadp , r m ed aiyctaalbsio lity of ENS rt 1987). and adequate descriptions based on observed data of in Northern Hevm ar iyspohnerdeecOa sp d , rail on ntgiem ( e to s Ba c a ls a a le fse , w e sp se eacs ia oln ly strheep re isne it nitaal tio ve nge in ta t m io ondesltsa te is . c W ur orrekn tl oynbleainndg -s m ur afiancleym 19 e9a5n ) s . (i I . n e ., additio meda et al. driven by the development of coupled models for over several cdheacnagdenes , sis ) n ec a th u lso e la r ‘ itvnyfpairciaalbio li rty in the climate climate change projection over the next century conditional ENSO probability l u fo ernecceassetsxsi . m pe Fpcolteeds ’ e values (Dickinson et al. 1996). the Gulf Coast of the United States shows reaxaam sonal Significant advances in coupled model-based ENSO signal for both the first and second half s o tro p n le, f th g e." In Droughts, 65. Routledge, 2016. http://dx.doi.org/10.4324/9781315830896-45.
Full textConference papers on the topic "Prediction of survival; Probability; Time models"
Nemeth, Noel N., Osama M. Jadaan, Eric H. Baker, and John P. Gyekenyesi. "Lifetime Reliability Prediction of Ceramics Subjected to Thermal and Mechanical Cyclic Loads." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27047.
Full textYim, Solomon C., Tongchate Nakhata, and Erick T. Huang. "Coupled Nonlinear Barge Motions: Part II — Deterministic Models, Stochastic Models and Stability Analysis." In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51131.
Full textExarchos, Themis P., George Rigas, Yorgos Goletsis, Kostas Stefanou, Steven Jacobs, Maria-Giovanna Trivella, and Dimitrios I. Fotiadis. "A dynamic Bayesian network approach for time-specific survival probability prediction in patients after ventricular assist device implantation." In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944296.
Full textMak, Lawrence, Brian Farnworth, Eugene H. Wissler, Michel B. DuCharme, Wendell Uglene, Renee Boileau, Pete Hackett, and Andrew Kuczora. "Thermal Requirements for Surviving a Mass Rescue Incident in the Arctic: Preliminary Results." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49471.
Full textSokota, Samuel, Ryan D'Orazio, Khurram Javed, Humza Haider, and Russell Greiner. "Simultaneous Prediction Intervals for Patient-Specific Survival Curves." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/828.
Full textChen, Haibo, Torgeir Moan, Sverre Haver, and Kjell Larsen. "Prediction of Relative Motion and Probability of Contact Between FPSO and Shuttle Tanker in Tandem Offloading Operation." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28101.
Full textRahman, Tahrima, Shasha Jin, and Vibhav Gogate. "Cutset Bayesian Networks: A New Representation for Learning Rao-Blackwellised Graphical Models." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/797.
Full textKim, Taewung, Kyukwon Bang, Hyun-Yong Jeong, and Stephen Decker. "A Simple Vehicle Model for Path Prediction During Evasive Maneuvers and a Stochastic Analysis on the Crash Probability." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43334.
Full textArild, Øystein, Hans Petter Lohne, Hans Joakim Skadsem, Eric Patrick Ford, and Jon Tømmerås Selvik. "Time-to-Failure Estimation of Barrier Systems in Permanently Plugged and Abandoned Wells." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96546.
Full textXia, Henian, Nathan Keeney, Brian J. Daley, Adam Petrie, and Xiaopeng Zhao. "Prediction of ICU In-Hospital Mortality Using Artificial Neural Networks." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3768.
Full text