Academic literature on the topic 'Prediction of survival'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Prediction of survival.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Prediction of survival"
Rau, Cheng-Shyuan, Shao-Chun Wu, Jung-Fang Chuang, Chun-Ying Huang, Hang-Tsung Liu, Peng-Chen Chien, and Ching-Hua Hsieh. "Machine Learning Models of Survival Prediction in Trauma Patients." Journal of Clinical Medicine 8, no. 6 (June 5, 2019): 799. http://dx.doi.org/10.3390/jcm8060799.
Full textRiviere, Paul, Christopher Tokeshi, Jiayi Hou, Vinit Nalawade, Reith Sarkar, Anthony J. Paravati, Melody Schiaffino, Brent Rose, Ronghui Xu, and James D. Murphy. "Claims-Based Approach to Predict Cause-Specific Survival in Men With Prostate Cancer." JCO Clinical Cancer Informatics, no. 3 (December 2019): 1–7. http://dx.doi.org/10.1200/cci.18.00111.
Full textCopeland-Fields, L., T. Griffin, T. Jenkins, M. Buckley, and LC Wise. "Comparison of outcome predictions made by physicians, by nurses, and by using the Mortality Prediction Model." American Journal of Critical Care 10, no. 5 (September 1, 2001): 313–19. http://dx.doi.org/10.4037/ajcc2001.10.5.313.
Full textKarakiewicz, Pierre I., Alberto Briganti, Felix K. H. Chun, Quoc-Dien Trinh, Paul Perrotte, Vincenzo Ficarra, Luca Cindolo, et al. "Multi-Institutional Validation of a New Renal Cancer–Specific Survival Nomogram." Journal of Clinical Oncology 25, no. 11 (April 10, 2007): 1316–22. http://dx.doi.org/10.1200/jco.2006.06.1218.
Full textSchumacher, M., E. Graf, and T. Gerds. "How to Assess Prognostic Models for Survival Data: A Case Study in Oncology." Methods of Information in Medicine 42, no. 05 (2003): 564–71. http://dx.doi.org/10.1055/s-0038-1634384.
Full textZeng, Yuan, Wenhua Liang, and Jian He. "Association of postoperative radiotherapy with survival in patients with completely resected pathologic N2 non-small cell lung cancer treated with chemotherapy." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e21008-e21008. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e21008.
Full textHansen, Maiken B., Lone Ross Nylandsted, Morten A. Petersen, Mathilde Adsersen, Leslye Rojas-Concha, and Mogens Groenvold. "Patient-reported symptoms and problems at admission to specialized palliative care improved survival prediction in 30,969 cancer patients: A nationwide register-based study." Palliative Medicine 34, no. 6 (March 18, 2020): 795–805. http://dx.doi.org/10.1177/0269216320908488.
Full textChowdary, Raj P., Sean P. Campbell, Michael Rosenberg, and Norman E. Hugo. "Dermofluorometric Prediction of Flap Survival." Annals of Plastic Surgery 19, no. 2 (August 1987): 154–57. http://dx.doi.org/10.1097/00000637-198708000-00008.
Full textFricker, Janet. "Survival prediction with neuroendocrine differentiation?" Lancet Oncology 7, no. 11 (November 2006): 891. http://dx.doi.org/10.1016/s1470-2045(06)70921-4.
Full textTuhrim, Stanley, James M. Dambrosia, Thomas R. Price, Jay P. Mohr, Philip A. Wolf, Albert Heyman, and Carlos S. Kase. "Prediction of intracerebral hemorrhage survival." Annals of Neurology 24, no. 2 (August 1988): 258–63. http://dx.doi.org/10.1002/ana.410240213.
Full textDissertations / Theses on the topic "Prediction of survival"
Parast, Layla. "Landmark Prediction of Survival." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10085.
Full textJones, Margaret. "Point prediction in survival time models." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340616.
Full textAparicio, Vázquez Ignacio. "Venn Prediction for Survival Analysis : Experimenting with Survival Data and Venn Predictors." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278823.
Full textMålet med detta arbete är att utöka kunskapen om området för Venn Prediction som används med överlevnadsdata. Standard Venn Predictors har använts med slumpmässiga skogar och binära klassificeringsuppgifter. De har emellertid inte använts för att förutsäga händelser med överlevnadsdata eller i kombination med Random Survival Forests. Med hjälp av en datatransformation omvandlas överlevnadsprediktion till flera binära klassificeringsproblem. En viktig aspekt av Venn Prediction är kategorierna. Standardantalet kategorier är två, en för varje klass. I detta arbete undersöks användningen av tio kategorier och resultatskillnaderna mellan två och tio kategorier undersöks. Sju datamängder används i en utvärdering där resultaten presenteras för två och tio kategorier. För prestandamåtten Brier Score och Reliability Score gav två kategorier de bästa resultaten, medan för Quality presterade tio kategorier bättre. Ibland är modellerna för optimistiska. Venn Predictors korrigerar denna prestanda och producerar välkalibrerade sannolikheter.
Negassa, Abdissa. "Validation of tree-structured prediction for censored survival data." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40407.
Full textBackground. In the tree-growing literature, a number of computationally inexpensive model selection criteria were suggested; however, none of them were systematically investigated for their performance. RECursive Partition and AMalgamation (RECPAM) is one of the existing tree-growing algorithms that provide such built-in model selection criteria. Application of RECPAM's different model selection criteria leads to a wide range of models (40). Since RECPAM is an exploratory data analysis tool, it is desirable to reduce its computational cost and establish the general properties of its model selection criteria so that clear guidelines can be suggested.
Methods. A computationally efficient tree-growing algorithm for prognostic classification and subgroup analysis is developed by employing the Cox score statistic and the Mantel-Haenszel estimator of the relative hazard. Two validation schemes, restricting validation to pruning and parameter estimation and validating the whole process of tree growing, are implemented and evaluated in simulation. Three model selection criteria--the elbow approach, minimum Akaike Information Criterion (AIC), and the one standard error (ISE) rule--were compared to cross-validation under a broad range of scenarios using simulation. Examples of medical data analyses are presented.
Conclusions. A gain in computational efficiency is achieved while obtaining the same result as the original RECPAM approach. The restricted validation scheme is computationally less expensive, however, it is biased. In the case of subgroup analysis, to adjust properly for influential prognostic factors, we suggest constructing a prognostic classification on such factors and using the resulting classification as strata in conducting the subgroup analysis. None of the model selection criteria studied exhibit a consistently superior performance over the range of scenarios considered here. Therefore, we propose a two-stage model selection strategy in which cross-validation is employed at the first step, and if according to this step there is evidence of structure in the data set, then the elbow rule is recommended in the second step.
Zhang, Haonan. "Machine Learning Approaches for Prediction of Kidney Transplant Survival." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1555953011881185.
Full textSpencer, David James. "Predicting early failure on probation using survival analysis and psychological predictor variables /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Full textRaoufi-Danner, Torrin. "Effects of Missing Values on Neural Network Survival Time Prediction." Thesis, Linköpings universitet, Statistik och maskininlärning, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150339.
Full textTian, Shaonan. "Essays on Corporate Default Prediction." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352403546.
Full textOrth, Walter [Verfasser]. "Multi-Period Credit Default Prediction : A Survival Analysis Approach / Walter Orth." Aachen : Shaker, 2012. http://d-nb.info/1066196826/34.
Full textKaponen, Martina. "Prediction of survival time of prostate cancer patients using Cox regression." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-354482.
Full textBooks on the topic "Prediction of survival"
Hein, Putter, ed. Dynamic prediction in clinical survival analysis. Boca Raton: CRC Press, 2012.
Find full textScience of survival: Prediction of human behavior. Los Angeles, Calif: Bridge Publications, 2001.
Find full textRon, Hubbard L. Science of survival: Prediction of human behavior. Copenhagen K, Denmark: New Era Publications International Aps, 1993.
Find full textPeter, Schmidt. Predicting recidivism using survival models. New York: Springer-Verlag, 1988.
Find full textSmith, Charles Hugh. Survival +: Structuring prosperity for yourself and the nation. Berkeley, Calif: Oftwominds, 2009.
Find full textCooper, Arnold C. A resource-based prediction of new venture survival and growth. West Lafayette, Ind: Institute for Research in the Behavioral, Economic, and Management Sciences, Krannert Graduate School of Management, Purdue University, 1991.
Find full textCherdanceva, Tat'yana, Vladimir Klimechev, and Igor' Bobrov. Pathological and molecular biological analysis of renal cell carcinoma. Diagnosis and prognosis. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1020785.
Full textSchmidt, Peter, and Ann Dryden Witte. Predicting Recidivism Using Survival Models. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3772-3.
Full textHurd, Michael D. The predictive validity of subjective probabilities of survival. Cambridge, MA: National Bureau of Economic Research, 1997.
Find full textChow, Edward. A predictive model for survival in metastatic cancer patients attending an out-patient palliative radiotherapy clinic. Ottawa: National Library of Canada, 2001.
Find full textBook chapters on the topic "Prediction of survival"
Shboul, Zeina A., Mahbubul Alam, Lasitha Vidyaratne, Linmin Pei, and Khan M. Iftekharuddin. "Glioblastoma Survival Prediction." In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 508–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11726-9_45.
Full textJohnson, Wesley O. "Survival Analysis for Interval Data." In Diagnosis and Prediction, 75–90. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1540-0_5.
Full textShboul, Zeina A., Lasitha Vidyaratne, Mahbubul Alam, and Khan M. Iftekharuddin. "Glioblastoma and Survival Prediction." In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 358–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75238-9_31.
Full textEmura, Takeshi, Shigeyuki Matsui, and Virginie Rondeau. "Personalized Dynamic Prediction of Survival." In Survival Analysis with Correlated Endpoints, 77–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3516-7_5.
Full textRajput, Snehal, Rupal Agravat, Mohendra Roy, and Mehul S. Raval. "Glioblastoma Multiforme Patient Survival Prediction." In Lecture Notes in Electrical Engineering, 47–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3880-0_6.
Full textKim, Sundong, Hwanjun Song, Sejin Kim, Beomyoung Kim, and Jae-Gil Lee. "Revisit Prediction by Deep Survival Analysis." In Advances in Knowledge Discovery and Data Mining, 514–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47436-2_39.
Full textAgravat, Rupal R., and Mehul S. Raval. "Brain Tumor Segmentation and Survival Prediction." In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 338–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46640-4_32.
Full textAkbar, Agus Subhan, Chastine Fatichah, and Nanik Suciati. "Modified MobileNet for Patient Survival Prediction." In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 374–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72087-2_33.
Full textJohnson, Wesley O. "Predictive Influence in the Log Normal Survival Model." In Modelling and Prediction Honoring Seymour Geisser, 104–21. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-2414-3_6.
Full textValentini, Vincenzo, Andrea Damiani, Andre Dekker, and Nicola Dinapoli. "Statistics of Survival Prediction and Nomogram Development." In Decision Tools for Radiation Oncology, 7–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/174_2013_854.
Full textConference papers on the topic "Prediction of survival"
Bostrom, Henrik, Lars Asker, Ram Gurung, Isak Karlsson, Tony Lindgren, and Panagiotis Papapetrou. "Conformal Prediction Using Random Survival Forests." In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2017. http://dx.doi.org/10.1109/icmla.2017.00-57.
Full textHuang, Chenglong, Albert Zhang, and Guanghua Xiao. "Deep Integrative Analysis for Survival Prediction." In Pacific Symposium on Biocomputing 2018. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813235533_0032.
Full textSokota, Samuel, Ryan D'Orazio, Khurram Javed, Humza Haider, and Russell Greiner. "Simultaneous Prediction Intervals for Patient-Specific Survival Curves." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/828.
Full textSoria, E., J. D. Martin, J. Caravaca, A. J. Serrano, M. Martinez, R. Magdalena, J. Gomez, M. Heras, and G. Sanz. "Survival prediction in patients undergoing ischemic cardiopathy." In 2009 International Joint Conference on Neural Networks (IJCNN 2009 - Atlanta). IEEE, 2009. http://dx.doi.org/10.1109/ijcnn.2009.5178839.
Full textGuangliang Gao, Zhan Bu, Lingbo Liu, Jie Cao, and Zhiang Wu. "A survival analysis method for stock market prediction." In 2015 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC). IEEE, 2015. http://dx.doi.org/10.1109/besc.2015.7365968.
Full textZhou, Mu, Lawrence O. Hall, and Dmitry B. Goldgof. "Exploring Brain Tumor Heterogeneity for Survival Time Prediction." In 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014. http://dx.doi.org/10.1109/icpr.2014.110.
Full textFulian, Yin, Jiang Yueqi, Su Pei, and Su Ge. "Research on Video Ratings Prediction and Survival Analysis." In 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC). IEEE, 2017. http://dx.doi.org/10.1109/iccsec.2017.8446821.
Full textZhu, Qianwen, Jiaxing Shang, Xinjun Cai, Linli Jiang, Feiyi Liu, and Baohua Qiang. "CoxRF: Employee Turnover Prediction Based on Survival Analysis." In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019. http://dx.doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00212.
Full textAgravat, Rupal R., and Mehul S. Raval. "Prediction of Overall Survival of Brain Tumor Patients." In TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). IEEE, 2019. http://dx.doi.org/10.1109/tencon.2019.8929497.
Full textMalik, Vidhi, Shayoni Dutta, Yogesh Kalakoti, and Durai Sundar. "Multi-omics Integration based Predictive Model for Survival Prediction of Lung Adenocarcinaoma." In 2019 Grace Hopper Celebration India (GHCI). IEEE, 2019. http://dx.doi.org/10.1109/ghci47972.2019.9071831.
Full textReports on the topic "Prediction of survival"
Lukaszek, W., W. Dixon, M. Vella, C. Messick, S. Reno, and J. Shideler. Characterization of wafer charging mechanisms and oxide survival prediction methodology. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10118587.
Full textTsodikov, Alexander. Short- and Long-Term Effects in Prostate Cancer Survival: Analysis of Treatment Efficacy and Risk Prediction. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada437726.
Full textTsodikov, Alexander D. Short- and Long-Term Effects in Prostate Cancer Survival: Analysis of Treatment Efficacy and Risk Prediction. Fort Belvoir, VA: Defense Technical Information Center, March 2006. http://dx.doi.org/10.21236/ada455402.
Full textTsodikov, Alexander. Short- and Long-Term Effects in Prostate Cancer Survival: Analysis of Treatment Efficacy and Risk Prediction. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada421695.
Full textHurd, Michael, and Kathleen McGarry. The Predictive Validity of Subjective Probabilities of Survival. Cambridge, MA: National Bureau of Economic Research, September 1997. http://dx.doi.org/10.3386/w6193.
Full textSchmidt, Peter, and Ann Dryden Witte. Predicting Criminal Recidivism Using "Split Population" Survival Time Models. Cambridge, MA: National Bureau of Economic Research, November 1987. http://dx.doi.org/10.3386/w2445.
Full textKeyomarsi, Khandan. Cyclin E, a Powerful Predictor of Survival in Breast Cancer - A Prospective Study. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada419793.
Full textSu, Tsung-Chow, R. Q. Robe, and Duncan J. Finlayson. On Predicting the Leeway and Drift of A Survival Suit Clad Person In-Water. Fort Belvoir, VA: Defense Technical Information Center, October 1997. http://dx.doi.org/10.21236/ada348357.
Full textPunglia, Rinaa, Natasha Stout, Angel Cronin, Hajime Uno, Elissa Ozanne, Michael Hassett, Elizabeth Frank, Deborah Schrag, Caprice Greenberg, and Djora Soeteman. Predicting the Impact of Treatment Options on Survival and Breast Conservation in Patients With Ductal Carcinoma In Situ(DCIS). Patient-Centered Outcomes Research Institute® (PCORI), January 2020. http://dx.doi.org/10.25302/1.2020.ce.12114173.
Full textBeer, W. Nicholas, Susannah Iltis, and James J. Anderson. Evaluation of the 2008 Predictions of Run-Timing and Survival of Wild Migrant Yearling Chinook and Steelhead on the Columbia and Snake Rivers. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/947611.
Full text