Journal articles on the topic 'Prediction of binding affinity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Prediction of binding affinity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Debby D., Haoran Xie, and Hong Yan. "Proteo-chemometrics interaction fingerprints of protein–ligand complexes predict binding affinity." Bioinformatics 37, no. 17 (February 27, 2021): 2570–79. http://dx.doi.org/10.1093/bioinformatics/btab132.
Full textKondabala, Rajesh, Vijay Kumar, Amjad Ali, and Manjit Kaur. "A novel astrophysics-based framework for prediction of binding affinity of glucose binder." Modern Physics Letters B 34, no. 31 (July 25, 2020): 2050346. http://dx.doi.org/10.1142/s0217984920503467.
Full textAntunes, Dinler A., Jayvee R. Abella, Didier Devaurs, Maurício M. Rigo, and Lydia E. Kavraki. "Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes." Current Topics in Medicinal Chemistry 18, no. 26 (January 24, 2019): 2239–55. http://dx.doi.org/10.2174/1568026619666181224101744.
Full textKwon, Yongbeom, Woong-Hee Shin, Junsu Ko, and Juyong Lee. "AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks." International Journal of Molecular Sciences 21, no. 22 (November 10, 2020): 8424. http://dx.doi.org/10.3390/ijms21228424.
Full textShar, Piar Ali, Weiyang Tao, Shuo Gao, Chao Huang, Bohui Li, Wenjuan Zhang, Mohamed Shahen, Chunli Zheng, Yaofei Bai, and Yonghua Wang. "Pred-binding: large-scale protein–ligand binding affinity prediction." Journal of Enzyme Inhibition and Medicinal Chemistry 31, no. 6 (February 18, 2016): 1443–50. http://dx.doi.org/10.3109/14756366.2016.1144594.
Full textNguyen, Austin, Abhinav Nellore, and Reid F. Thompson. "Discordant results among major histocompatibility complex binding affinity prediction tools." F1000Research 12 (June 7, 2023): 617. http://dx.doi.org/10.12688/f1000research.132538.1.
Full textLangham, James J., Ann E. Cleves, Russell Spitzer, Daniel Kirshner, and Ajay N. Jain. "Physical Binding Pocket Induction for Affinity Prediction." Journal of Medicinal Chemistry 52, no. 19 (October 8, 2009): 6107–25. http://dx.doi.org/10.1021/jm901096y.
Full textÖztürk, Hakime, Arzucan Özgür, and Elif Ozkirimli. "DeepDTA: deep drug–target binding affinity prediction." Bioinformatics 34, no. 17 (September 1, 2018): i821—i829. http://dx.doi.org/10.1093/bioinformatics/bty593.
Full textWang, Xun, Dayan Liu, Jinfu Zhu, Alfonso Rodriguez-Paton, and Tao Song. "CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction." Biomolecules 11, no. 5 (April 27, 2021): 643. http://dx.doi.org/10.3390/biom11050643.
Full textPantsar, Tatu, and Antti Poso. "Binding Affinity via Docking: Fact and Fiction." Molecules 23, no. 8 (July 30, 2018): 1899. http://dx.doi.org/10.3390/molecules23081899.
Full textKappel, Kalli, Inga Jarmoskaite, Pavanapuresan P. Vaidyanathan, William J. Greenleaf, Daniel Herschlag, and Rhiju Das. "Blind tests of RNA–protein binding affinity prediction." Proceedings of the National Academy of Sciences 116, no. 17 (April 8, 2019): 8336–41. http://dx.doi.org/10.1073/pnas.1819047116.
Full textKim, Ryangguk, and Jeffrey Skolnick. "Assessment of programs for ligand binding affinity prediction." Journal of Computational Chemistry 29, no. 8 (2008): 1316–31. http://dx.doi.org/10.1002/jcc.20893.
Full textMarshall, K. W., K. J. Wilson, J. Liang, A. Woods, D. Zaller, and J. B. Rothbard. "Prediction of peptide affinity to HLA DRB1*0401." Journal of Immunology 154, no. 11 (June 1, 1995): 5927–33. http://dx.doi.org/10.4049/jimmunol.154.11.5927.
Full textGim, Mogan, Junseok Choe, Seungheun Baek, Jueon Park, Chaeeun Lee, Minjae Ju, Sumin Lee, and Jaewoo Kang. "ArkDTA: attention regularization guided by non-covalent interactions for explainable drug–target binding affinity prediction." Bioinformatics 39, Supplement_1 (June 1, 2023): i448—i457. http://dx.doi.org/10.1093/bioinformatics/btad207.
Full textWalpoth, Belinda Nazan, and Burak Erman. "Regulation of ryanodine receptor RyR2 by protein-protein interactions: prediction of a PKA binding site on the N-terminal domain of RyR2 and its relation to disease causing mutations." F1000Research 4 (January 28, 2015): 29. http://dx.doi.org/10.12688/f1000research.5858.1.
Full textHenrich, Stefan, Isabella Feierberg, Ting Wang, Niklas Blomberg, and Rebecca C. Wade. "Comparative binding energy analysis for binding affinity and target selectivity prediction." Proteins: Structure, Function, and Bioinformatics 78, no. 1 (August 17, 2009): 135–53. http://dx.doi.org/10.1002/prot.22579.
Full textLimbu, Sarita, and Sivanesan Dakshanamurthy. "A New Hybrid Neural Network Deep Learning Method for Protein–Ligand Binding Affinity Prediction and De Novo Drug Design." International Journal of Molecular Sciences 23, no. 22 (November 11, 2022): 13912. http://dx.doi.org/10.3390/ijms232213912.
Full textOUYANG, XUCHANG, STEPHANUS DANIEL HANDOKO, and CHEE KEONG KWOH. "CSCORE: A SIMPLE YET EFFECTIVE SCORING FUNCTION FOR PROTEIN–LIGAND BINDING AFFINITY PREDICTION USING MODIFIED CMAC LEARNING ARCHITECTURE." Journal of Bioinformatics and Computational Biology 09, supp01 (December 2011): 1–14. http://dx.doi.org/10.1142/s021972001100577x.
Full textPandey, Mohit, Mariia Radaeva, Hazem Mslati, Olivia Garland, Michael Fernandez, Martin Ester, and Artem Cherkasov. "Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks." Molecules 27, no. 16 (August 11, 2022): 5114. http://dx.doi.org/10.3390/molecules27165114.
Full textKalemati, Mahmood, Mojtaba Zamani Emani, and Somayyeh Koohi. "BiComp-DTA: Drug-target binding affinity prediction through complementary biological-related and compression-based featurization approach." PLOS Computational Biology 19, no. 3 (March 31, 2023): e1011036. http://dx.doi.org/10.1371/journal.pcbi.1011036.
Full textUsha, Singaravelu, and Samuel Selvaraj. "Prediction of kinase-inhibitor binding affinity using energetic parameters." Bioinformation 12, no. 3 (June 15, 2016): 172–81. http://dx.doi.org/10.6026/97320630012172.
Full textDas, Sourav, Michael P. Krein, and Curt M. Breneman. "Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures." Journal of Chemical Information and Modeling 50, no. 2 (January 22, 2010): 298–308. http://dx.doi.org/10.1021/ci9004139.
Full textYugandhar, K., and M. Michael Gromiha. "Protein–protein binding affinity prediction from amino acid sequence." Bioinformatics 30, no. 24 (August 28, 2014): 3583–89. http://dx.doi.org/10.1093/bioinformatics/btu580.
Full textO'Donnell, Timothy J., Alex Rubinsteyn, Maria Bonsack, Angelika B. Riemer, Uri Laserson, and Jeff Hammerbacher. "MHCflurry: Open-Source Class I MHC Binding Affinity Prediction." Cell Systems 7, no. 1 (July 2018): 129–32. http://dx.doi.org/10.1016/j.cels.2018.05.014.
Full textFan, Cong, Ping-pui Wong, and Huiying Zhao. "DStruBTarget: Integrating Binding Affinity with Structure Similarity for Ligand-Binding Protein Prediction." Journal of Chemical Information and Modeling 60, no. 1 (December 13, 2019): 400–409. http://dx.doi.org/10.1021/acs.jcim.9b00717.
Full textChen, Zihao, Long Hu, Bao-Ting Zhang, Aiping Lu, Yaofeng Wang, Yuanyuan Yu, and Ge Zhang. "Artificial Intelligence in Aptamer–Target Binding Prediction." International Journal of Molecular Sciences 22, no. 7 (March 30, 2021): 3605. http://dx.doi.org/10.3390/ijms22073605.
Full textZeng, Haoyang, and David K. Gifford. "DeepLigand: accurate prediction of MHC class I ligands using peptide embedding." Bioinformatics 35, no. 14 (July 2019): i278—i283. http://dx.doi.org/10.1093/bioinformatics/btz330.
Full textLi, Min, Zhangli Lu, Yifan Wu, and YaoHang Li. "BACPI: a bi-directional attention neural network for compound–protein interaction and binding affinity prediction." Bioinformatics 38, no. 7 (January 19, 2022): 1995–2002. http://dx.doi.org/10.1093/bioinformatics/btac035.
Full textBae, Haelee, and Hojung Nam. "GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity." Biomedicines 11, no. 1 (December 27, 2022): 67. http://dx.doi.org/10.3390/biomedicines11010067.
Full textZhang, Xianfeng, Yanhui Gu, Guandong Xu, Yafei Li, Jinlan Wang, and Zhenglu Yang. "HaPPy: Harnessing the Wisdom from Multi-Perspective Graphs for Protein-Ligand Binding Affinity Prediction (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (June 26, 2023): 16384–85. http://dx.doi.org/10.1609/aaai.v37i13.27052.
Full textAnnala, Matti, Kirsti Laurila, Harri Lähdesmäki, and Matti Nykter. "A Linear Model for Transcription Factor Binding Affinity Prediction in Protein Binding Microarrays." PLoS ONE 6, no. 5 (May 26, 2011): e20059. http://dx.doi.org/10.1371/journal.pone.0020059.
Full textZhao, Huiying, Yuedong Yang, Mark von Itzstein, and Yaoqi Zhou. "Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction." Journal of Computational Chemistry 35, no. 30 (September 15, 2014): 2177–83. http://dx.doi.org/10.1002/jcc.23730.
Full textStrack, Rita. "Predicting RNA–protein binding affinity." Nature Methods 16, no. 6 (May 30, 2019): 460. http://dx.doi.org/10.1038/s41592-019-0445-4.
Full textGhimire, Ashutosh, Hilal Tayara, Zhenyu Xuan, and Kil To Chong. "CSatDTA: Prediction of Drug–Target Binding Affinity Using Convolution Model with Self-Attention." International Journal of Molecular Sciences 23, no. 15 (July 30, 2022): 8453. http://dx.doi.org/10.3390/ijms23158453.
Full textWang, Debby D., Moon-Tong Chan, and Hong Yan. "Structure-based protein–ligand interaction fingerprints for binding affinity prediction." Computational and Structural Biotechnology Journal 19 (2021): 6291–300. http://dx.doi.org/10.1016/j.csbj.2021.11.018.
Full textHanai, Toshihiko, A. Koseki, R. Yoshikawa, M. Ueno, T. Kinoshita, and H. Homma. "Prediction of human serum albumin–drug binding affinity without albumin." Analytica Chimica Acta 454, no. 1 (March 2002): 101–8. http://dx.doi.org/10.1016/s0003-2670(01)01515-x.
Full textZhu, Fangqiang, Xiaohua Zhang, Jonathan E. Allen, Derek Jones, and Felice C. Lightstone. "Binding Affinity Prediction by Pairwise Function Based on Neural Network." Journal of Chemical Information and Modeling 60, no. 6 (April 27, 2020): 2766–72. http://dx.doi.org/10.1021/acs.jcim.0c00026.
Full textRizzi, Andrea, Steven Murkli, John N. McNeill, Wei Yao, Matthew Sullivan, Michael K. Gilson, Michael W. Chiu, et al. "Overview of the SAMPL6 host–guest binding affinity prediction challenge." Journal of Computer-Aided Molecular Design 32, no. 10 (October 2018): 937–63. http://dx.doi.org/10.1007/s10822-018-0170-6.
Full textSuri, Sadhana, and Sivanesan Dakshanamurthy. "IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design Method." Vaccines 10, no. 10 (October 8, 2022): 1678. http://dx.doi.org/10.3390/vaccines10101678.
Full textSharabi, Oz, Jason Shirian, and Julia M. Shifman. "Predicting affinity- and specificity-enhancing mutations at protein–protein interfaces." Biochemical Society Transactions 41, no. 5 (September 23, 2013): 1166–69. http://dx.doi.org/10.1042/bst20130121.
Full textLiang, Yigao, Shaohua Jiang, Min Gao, Fengjiao Jia, Zaoyang Wu, and Zhijian Lyu. "GLSTM-DTA: Application of Prediction Improvement Model Based on GNN and LSTM." Journal of Physics: Conference Series 2219, no. 1 (April 1, 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2219/1/012008.
Full textZhao, Huiying, Yuedong Yang, and Yaoqi Zhou. "Highly accurate and high-resolution function prediction of RNA binding proteins by fold recognition and binding affinity prediction." RNA Biology 8, no. 6 (November 2011): 988–96. http://dx.doi.org/10.4161/rna.8.6.17813.
Full textFeng, Peiyuan, Jianyang Zeng, and Jianzhu Ma. "Predicting MHC-peptide binding affinity by differential boundary tree." Bioinformatics 37, Supplement_1 (July 1, 2021): i254—i261. http://dx.doi.org/10.1093/bioinformatics/btab312.
Full textFedyushkina, I. V., V. S. Skvortsov, I. V. Romero Reyes, and I. S. Levina. "Molecular docking and 3D-QSAR on 16a,17a-cycloalkanoprogesterone analogues as progesterone receptor ligands." Biomeditsinskaya Khimiya 59, no. 6 (2013): 622–35. http://dx.doi.org/10.18097/pbmc20135906622.
Full textMoshari, Mahshad, Qian Wang, Marek Michalak, Mariusz Klobukowski, and Jack Adam Tuszynski. "Computational Prediction and Experimental Validation of the Unique Molecular Mode of Action of Scoulerine." Molecules 27, no. 13 (June 21, 2022): 3991. http://dx.doi.org/10.3390/molecules27133991.
Full textLiu, Yang, Xia-hui Ouyang, Zhi-Xiong Xiao, Le Zhang, and Yang Cao. "A Review on the Methods of Peptide-MHC Binding Prediction." Current Bioinformatics 15, no. 8 (January 1, 2021): 878–88. http://dx.doi.org/10.2174/1574893615999200429122801.
Full textLi, Zhongyan, Qingqing Miao, Fugang Yan, Yang Meng, and Peng Zhou. "Machine Learning in Quantitative Protein–peptide Affinity Prediction: Implications for Therapeutic Peptide Design." Current Drug Metabolism 20, no. 3 (May 22, 2019): 170–76. http://dx.doi.org/10.2174/1389200219666181012151944.
Full textAgostino, Mark, and Sebastian Öther-Gee Pohl. "Wnt Binding Affinity Prediction for Putative Frizzled-Type Cysteine-Rich Domains." International Journal of Molecular Sciences 20, no. 17 (August 26, 2019): 4168. http://dx.doi.org/10.3390/ijms20174168.
Full textYuan, Hong, Jing Huang, and Jin Li. "Protein-ligand binding affinity prediction model based on graph attention network." Mathematical Biosciences and Engineering 18, no. 6 (2021): 9148–62. http://dx.doi.org/10.3934/mbe.2021451.
Full textAgrawal, Piyush, Pawan Kumar Raghav, Sherry Bhalla, Neelam Sharma, and Gajendra P. S. Raghava. "Overview of Free Software Developed for Designing Drugs Based on Protein-Small Molecules Interaction." Current Topics in Medicinal Chemistry 18, no. 13 (October 4, 2018): 1146–67. http://dx.doi.org/10.2174/1568026618666180816155131.
Full text