Dissertations / Theses on the topic 'Prediction Motion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Prediction Motion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lee, Suk Jin. "PREDICTION OF RESPIRATORY MOTION." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/336.
Full textChibisov, Dmitry. "Design of algorithms for motion planning and motion prediction." kostenfrei, 2009. https://mediatum2.ub.tum.de/node?id=958521.
Full textRanvik, Arne. "Slip Prediction Based on Manipulator Motion." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26705.
Full textBraun, Jennifer L. "The Prediction of Motion Sickness Through People's Perception of Postural Motion." Miami University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=miami1353943941.
Full textWiest, Jürgen [Verfasser]. "Statistical long-term motion prediction / Jürgen Wiest." Ulm : Universität Ulm, 2017. http://d-nb.info/1128728931/34.
Full textChung, Hing-yip Ronald, and 鍾興業. "Fast motion estimation with search center prediction." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31220721.
Full textTavakoli, Behrooz. "Prediction of Strong Ground Motion and Hazard Uncertainties." Doctoral thesis, Uppsala University, Department of Earth Sciences, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3535.
Full textThe purpose of this thesis is to provide a detailed description of recent methods and scientific basis for characterizing earthquake sources within a certain region with distinct tectonic environments. The focus will be on those characteristics that are most significant to the ground-shaking hazard and on how we can incorporate our current knowledge into hazard analyses for engineering design purposes. I treat two particular geographical areas where I think current hazard analysis methods are in need of significant improvement, and suggest some approaches that have proven to be effective in past applications elsewhere. A combined hazard procedure is used to estimate seismicity in northern Central America, where there appear to be four tectonic environments for modeling the seismogenic sources and in Iran, where the large earthquakes usually occur on known faults. A preferred seismic hazard model for northern Central America and the western Caribbean plate based on earthquake catalogs, geodetic measurements, and geological information is presented. I used the widely practiced method of relating seismicity data to geological data to assess the various seismic hazard parameters and test parameter sensitivities.
The sensitivity and overall uncertainty in peak ground acceleration (PGA) estimates are calculated for northwestern Iran by using a specific randomized blocks design. A Monte Carlo approach is utilized to evaluate the ground motion hazard and its uncertainties in northern Central America. A set of new seismic hazard maps, exhibiting probabilistic values of peak ground acceleration (PGA) with 50%, 10%, and 5% probabilities of exceedance (PE) in 50 years, is presented for the area of relevance. Disaggregation of seismic hazard is carried out for cities of San Salvador and Guatemala by using a spatial distribution of epicenters around these sites to select design ground motion for seismic risk decisions.
In conclusion, consideration of the effect of parameters such as seismic moment, fault rupture, rupture directivity and stress drop are strongly recommended in estimating the near field ground motions. The rupture process of the 2002 Changureh earthquake (Mw = 6.5), Iran, was analyzed by using the empirical Green’s function (EGF) method. This method simulates strong ground motions for future large earthquakes at particular sites where no empirical data are available.
Fromreide, Mads. "Motion Prediction by Optimal Paths Through Disordered Landscapes." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-24781.
Full textBackman, Anton. "Motion prediction of ego vehicle in complex scenarios." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278497.
Full textDetta examensarbete handlar om att tackla problemet med att prediktera bratrajektorier av egofordonet, det vill säga att ”gissa” vart egofordonet kommer attåka i nära framtiden. Genom att använda maskininlärning istället för att göra modeller på det traditionella sättet så har det blivit enklare att använda andra kännetäcken, såsom kontextuell information från omgivningen, i modellerna. Dessa kännetäcken hjälper modellerna att göra bra prediktioner eftersom de ger ledtrådar om vilken situation egofordonet är i. Maskininlärning kan också vara det bättre alternativet eftersom maskininlärningsmodeller kan potentiellt se mönster som de traditionella metoderna inte kan se.LSTM modeller som använder olika kännetäcken har skapats. Dessa har evaluerats för att undersöka vilka kännetäcken som, till synes, verkar vara de viktigaste för prediktionerna. Modellerna har ställts mot en nollte ordningens model som är satt som en baslinje. Alla modeller har evaluerats på ett helt test dataset. De har också blivit evaluerade på specfika, komplexa, testfall. Resultaten visar att de förslagna modellerna är generellt bättre än nollte ordningens modellen samt att maskininlärningmodellernas RMSE är halverad i många kom-plexa testfall, vilket antyder en förbättring.
Vatis, Yuri. "Non-symmetric adaptive interpolation filter for motion compensated prediction /." Düsseldorf : VDI-Verl, 2009. http://d-nb.info/998470724/04.
Full textMazzon, Riccardo. "Motion prediction and interaction localisation of people in crowds." Thesis, Queen Mary, University of London, 2013. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8605.
Full textConte, Dean Edward. "Autonomous Robotic Escort Incorporating Motion Prediction with Human Intention." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/102581.
Full textMaster of Science
This thesis presents a method for a mobile robot to escort a human to their destination successfully and efficiently. The proposed technique uses human intention to predict the walk path allowing the robot to be in front of the human while walking. Human intention is inferred by the head direction, an effective past-proven indicator of intention, and is combined with conventional motion prediction. The robot motion is then determined from the predicted human position allowing for anticipative autonomous escorting. Experimental analysis shows that the incorporation of the proposed human intention reduces human position prediction error by approximately 35% when turning. Furthermore, experimental validation with an mobile robotic platform shows escorting up to 50% more accurate compared to the conventional techniques, while achieving 97% success rate. The unique escorting interaction method proposed has applications such as touch-less shopping cart robots, exercise companions, collaborative rescue robots, and sanitary transportation for hospitals.
Vasquez, Govea Alejandro Dizan. "Incremental learning for motion prediction of pedestrians and vehicles." Grenoble INPG, 2007. https://tel.archives-ouvertes.fr/tel-00155274.
Full textThe main subject of this thesis is motion prediction. The problem is studied on the basis of the assumption that pedestrians and vehicles do not move randomly but follow typical "motion patterns" which may be learned and then user in a prediction phase. The approach addresses three fundamental questions: Modelling: This work is based in the utilisation of a probabilistic model, Hidden Markov Models, to represent typical motion patterns. Learning: This thesis proposes an extension to Hidden Markov Models that allows to learn the structure and parameters of the model in an incremental fashion. Prediction: Prediction is done using exact Bayesian inference. Thanks to the properties of the learned structure, the complexity of inference is linear with respect to the number of states in the model
Yang, Tao. "visual tracking and object motion prediction for intelligent vehicles." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCA005.
Full textObject tracking and motion prediction are important for autonomous vehicles and can be applied in many other fields. First, we design a single object tracker using compressive tracking to correct the optical flow tracking in order to achieve a balance between performance and processing speed. Considering the efficiency of compressive feature extraction, we apply this tracker to multi-object tracking to improve the performance without slowing down too much speed. Second, we improve the DCF based single object tracker by introducing multi-layer CNN features, spatial reliability analysis (through a foreground mask) and conditionally model updating strategy. Then, we apply the DCF based CNN tracker to multi-object tracking. The pre-trained VGGNet-19 and DCFNet are tested as feature extractors respectively. The discriminative model achieved by DCF is considered for data association. Third, two proposed LSTM models (seq2seq and seq2dense) for motion prediction of vehicles and pedestrians in the camera coordinate are proposed. Based on visual data and 3D points cloud (LiDAR), a Kalman filter based multi-object tracking system with a 3D detector are used to generate the object trajectories for testing. The proposed models, and polynomial regression model, considered as baseline, are compared for evaluation
Bataineh, Mohammad Hindi. "New neural network for real-time human dynamic motion prediction." Thesis, The University of Iowa, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3711174.
Full textArtificial neural networks (ANNs) have been used successfully in various practical problems. Though extensive improvements on different types of ANNs have been made to improve their performance, each ANN design still experiences its own limitations. The existing digital human models are mature enough to provide accurate and useful results for different tasks and scenarios under various conditions. There is, however, a critical need for these models to run in real time, especially those with large-scale problems like motion prediction which can be computationally demanding. For even small changes to the task conditions, the motion simulation needs to run for a relatively long time (minutes to tens of minutes). Thus, there can be a limited number of training cases due to the computational time and cost associated with collecting training data. In addition, the motion problem is relatively large with respect to the number of outputs, where there are hundreds of outputs (between 500-700 outputs) to predict for a single problem. Therefore, the aforementioned necessities in motion problems lead to the use of tools like the ANN in this work.
This work introduces new algorithms for the design of the radial-basis network (RBN) for problems with minimal available training data. The new RBN design incorporates new training stages with approaches to facilitate proper setting of necessary network parameters. The use of training algorithms with minimal heuristics allows the new RBN design to produce results with quality that none of the competing methods have achieved. The new RBN design, called Opt_RBN, is tested on experimental and practical problems, and the results outperform those produced from standard regression and ANN models. In general, the Opt_RBN shows stable and robust performance for a given set of training cases.
When the Opt_RBN is applied on the large-scale motion prediction application, the network experiences a CPU memory issue when performing the optimization step in the training process. Therefore, new algorithms are introduced to modify some steps of the new Opt_RBN training process to address the memory issue. The modified steps should only be used for large-scale applications similar to the motion problem. The new RBN design proposes an ANN that is capable of improved learning without needing more training data. Although the new design is driven by its use with motion prediction problems, the consequent ANN design can be used with a broad range of large-scale problems in various engineering and industrial fields that experience delay issues when running computational tools that require a massive number of procedures and a great deal of CPU memory.
The results of evaluating the modified Opt_RBN design on two motion problems are promising, with relatively small errors obtained when predicting approximately 500-700 outputs. In addition, new methods for constraint implementation within the new RBN design are introduced. Moreover, the new RBN design and its associated parameters are used as a tool for simulated task analysis. This work initiates the idea that output weights (W) can be used to determine the most critical basis functions that cause the greatest reduction in the network test error. Then, the critical basis functions can specify the most significant training cases that are responsible for the proper performance achieved by the network. The inputs with the most change in value can be extracted from the basis function centers (U) in order to determine the dominant inputs. The outputs with the most change in value and their corresponding key body degrees-of-freedom for a motion task can also be specified using the training cases that are used to create the network's basis functions.
Sheikh, M. S. "Prediction of particle residence times in cascading rotary dryers." Thesis, Teesside University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378933.
Full textMatsangas, Panagiotis. "A linear physiological visual-vestibular interaction model for the prediction of motion sickness incidence." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Sep%5FMatsangas.pdf.
Full textThesis Advisor(s): Michael McCauley, Nita Miller. Includes bibliographical references (p. 149-162). Also available online.
Volz, Claudius. "Concealment of Video Transmission Packet Losses Based on Advanced Motion Prediction." Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1771.
Full textRecent algorithms for video coding achieve a high-quality transmission at moderate bit rates. On the other hand, those coders are very sensitive to transmission errors. Many research projects focus on methods to conceal such errors in the decoded video sequence.
Motion compensated prediction is commonly used in video coding to achieve a high compression ratio. This thesis proposes an algorithm which uses the motion compensated prediction of a given video coder to predict a sequence of several complete frames, based on the last correctly decoded images, during a transmission interruption. The proposed algorithm is evaluated on a video coder which uses a dense motion field for motion compensation.
A drawback of predicting lost fields is the perceived discontinuity when the decoder switches back from the prediction to a normal mode of operation. Various approaches to reduce this discontinuity are investigated.
Alnowami, Majdi Rashed S. "Adaptive modelling and prediction of respiratory motion in external beam radiotherapy." Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582747.
Full textSalui, Kumar Bappaditya. "Prediction of hydrodynamic coefficients during roll motion of ship using RANSE." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431847.
Full textKhays, Samir. "Motion Prediction of Surrounding Vehicles in Highway Scenarios With Deep Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254408.
Full textAtt kunna förutse framtida rörelser av kringliggande fordon är en viktig uppgiftför att ett autonomt fordon ska kunna köra säkert. För att kunna förutspå komplexamanövreringar för längre tidshorisonter, behövs ett ramverk baserat påavancerade egenskaper hos rörelser och som kan integrera t.ex. kontextuell information.I detta examensarbete betraktas problemet att förutspå trajektorierav kringliggande fordon på motorväg med hjälp av maskininlärning. Målet äratt utvärdera prestandan av recurrent neural networks för denna uppgift, specifiktlong-short term memory neural networks. Målet är också att undersöka omkontextuell information kan förbättra prediktionerna.Problemet att prediktera framtida trajektorier är löst genom att användatvå olika tillvägagångssätt. Det ena tillvägagångssättet är baserat på fordonstillståndenav de kringliggande fordonen relativt ego-fordonet, där referenssystemetär i ego-fordonet. Det andra tillvägagångssättet är baserat på hastigheternaav fordonen relativt marken, där referenssystemet är i marken. Resultatetvisar att det sistnämnda tillvägagångssättet resulterar i ett lägre RMSE i denlongitudinella riktningen, med den föreslagna arkitekturen, jämfört med detförstnämnda. Resultaten visar även att de framtagna modellerna, totalt sett,presterar bättre än en simpel modell som är baserad på polynomanpassning,speciellt i lateral riktning där de framtagna modellerna är betydligt bättreän polynomanpassningarna. Det visar sig också att kontextuell informationinte förbättrar prediktionerna signifikant, däremot indikerar resultaten att detpåverkar prediktionerna positivt i specifika scenarier.
Sapankevych, Nicholas. "Constrained Motion Particle Swarm Optimization for Non-Linear Time Series Prediction." Scholar Commons, 2015. https://scholarcommons.usf.edu/etd/5569.
Full textLasota, Przemyslaw A. (Przemyslaw Andrzej). "Robust human motion prediction for safe and efficient human-robot interaction." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122497.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 175-188).
From robotic co-workers in factories to assistive robots in homes, human-robot interaction (HRI) has the potential to revolutionize a large array of domains by enabling robotic assistance where it was previously not possible. Introducing robots into human-occupied domains, however, requires strong consideration for the safety and efficiency of the interaction. One particularly effective method of supporting safe an efficient human-robot interaction is through the use of human motion prediction. By predicting where a person might reach or walk toward in the upcoming moments, a robot can adjust its motions to proactively resolve motion conflicts and avoid impeding the person's movements. Current approaches to human motion prediction, however, often lack the robustness required for real-world deployment. Many methods are designed for predicting specific types of tasks and motions, and do not necessarily generalize well to other domains.
It is also possible that no single predictor is suitable for predicting motion in a given scenario, and that multiple predictors are needed. Due to these drawbacks, without expert knowledge in the field of human motion prediction, it is difficult to deploy prediction on real robotic systems. Another key limitation of current human motion prediction approaches lies in deficiencies in partial trajectory alignment. Alignment of partially executed motions to a representative trajectory for a motion is a key enabling technology for many goal-based prediction methods. Current approaches of partial trajectory alignment, however, do not provide satisfactory alignments for many real-world trajectories. Specifically, due to reliance on Euclidean distance metrics, overlapping trajectory regions and temporary stops lead to large alignment errors.
In this thesis, I introduce two frameworks designed to improve the robustness of human motion prediction in order to facilitate its use for safe and efficient human-robot interaction. First, I introduce the Multiple-Predictor System (MPS), a datadriven approach that uses given task and motion data in order to synthesize a high performing predictor by automatically identifying informative prediction features and combining the strengths of complementary prediction methods. With the use of three distinct human motion datasets, I show that using the MPS leads to lower prediction error in a variety of HRI scenarios, and allows for accurate prediction for a range of time horizons. Second, in order to address the drawbacks of prior alignment techniques, I introduce the Bayesian ESTimator for Partial Trajectory Alignment (BEST-PTA).
This Bayesian estimation framework uses a combination of optimization, supervised learning, and unsupervised learning components that are trained and synthesized based on a given set of example trajectories. Through an evaluation on three human motion datasets, I show that BEST-PTA reduces alignment error when compared to state-of-the-art baselines. Furthermore, I demonstrate that this improved alignment reduces human motion prediction error. Lastly, in order to assess the utility of the developed methods for improving safety and efficiency in HRI, I introduce an integrated framework combining prediction with robot planning in time. I describe an implementation and evaluation of this framework on a real physical system. Through this demonstration, I show that the developed approach leads to automatically derived adaptive robot behavior. I show that the developed framework leads to improvements in quantitative metrics of safety and efficiency with the use of a simulated evaluation.
"Funded by the NASA Space Technology Research Fellowship Program and the National Science Foundation"--Page 6
by Przemyslaw A. Lasota.
Ph. D. in Autonomous Systems
Ph.D.inAutonomousSystems Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Rai, Manisha. "Topographic Effects in Strong Ground Motion." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/56593.
Full textPh. D.
Pei, Jiantao, and n/a. "The Accuracy of Time-to-Contact Estimation in the Prediction Motion Paradigm." University of Canberra. Applied Science, 2002. http://erl.canberra.edu.au./public/adt-AUC20050627.143329.
Full textKelling, Nicholas J. "An investigation of human capability to predict the future location of objects in motion." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28103.
Full textCommittee Chair: Dr. Gregory M. Corso; Committee Member: Dr. Arthur D. Fisk; Committee Member: Dr. Bruce Walker; Committee Member: Dr. Lawrence R. James; Committee Member: Dr. Paul Corballis; Committee Member: Dr. Robert Gregor
DAK, HAZIRBABA YILDIZ. "IMAGE-BASED MODELING AND PREDICTION OF NON-STATIONARY GROUND MOTIONS." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1008.
Full textPatrick, Timothy. "The Influence of Attentional Entrainment on Temporal and Spatial Predictions of Inferred Motion." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1562538488263969.
Full textWang, Anqi. "Prediction of Human Hand Motions based on Surface Electromyography." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78289.
Full textMaster of Science
Lenkic, Peter Jordan. "Motion enhances or reduces target visibility, depending on prediction and postdiction of shape." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/37054.
Full textVerveniotis, Christos S. "Prediction of motion sickness on high-speed passenger vessels : a human-oriented approach." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415297.
Full textPetersamer, Matthias. "Prediction of motion trajectories based on motor imagery by a brain computer interface." Master's thesis, Pontificia Universidad Católica del Perú, 2017. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11605.
Full textEl objetivo de esta Tesis de Maestría fue desarrollar un interfaz cerebro computador controlable naturalmente que pueda predecir trayectorias de movimiento imaginadas. El enfoque para alcanzar este objetivo fue encontrar una correlación entre el movimiento y los datos cerebrales que puedan ser utilizados posteriormente para la predicción de las trayectorias de movimiento sólo por medio de señales cerebrales. Para encontrar esta correlación, se realizó un experimento, en cual un participante tuvo que realizar movimientos desencadenados con su brazo derecho a cuatro puntos diferentes. Durante el examen de los movimientos, se registraron los datos cinemáticos y de EEG del participante. Después de una etapa de pre-procesamiento, se calcularon las velocidades en las direcciones x y y, de los datos cinemáticos, y la potencia de la banda, de los datos EEG en diferentes rangos de frecuencia, y se utilizaron como características para el cálculo de la correlación mediante con una regresión lineal múltiple. Al aplicar el parámetro de regresión resultante para predecir trayectorias a partir de señales de EEG, las mejores precisiones estuvieron en el rango de frecuencia mu e inferior en beta, como se esperaba. Sin embargo, los resultados no fueron suficientemente precisos como para usarlas para el control de una aplicación.
Tesis
Callh, Sebastian. "Trajectory-based Arrival Time Prediction using Gaussian Processes : A motion pattern modeling approach." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158623.
Full textBahrampouri, Mahdi. "Ground Motion Prediction Equations for Non-Spectral Parameters using the KiK-net Database." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/87704.
Full textSugito, Masata. "EARTHQUAKE MOTION PREDICTION, MICROZONATION, AND BURIED PIPE RESPONSE FOR URBAN SEISMIC DAMAGE ASSESSMENT." Kyoto University, 1987. http://hdl.handle.net/2433/138405.
Full textFan, Zheyu Jerry. "Kalman Filter Based Approach : Real-time Control-based Human Motion Prediction in Teleoperation." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189210.
Full textDetta arbete fokuserar på att undersöka prestandan hos två Kalman Filter Algoritmer, nämligen Linear Kalman Filter och Extended Kalman Filter som används i realtids uppskattningar av kontrollbaserad mänsklig rörelse i teleoperationen. Dessa Kalman Filter Algoritmer har används i stor utsträckning forskningsområden i rörelsespårning och GPS-navigering. Emellertid är potentialen i uppskattning av mänsklig rörelse genom att utnyttja denna algoritm sällan nämnas. Genom att kombinera med det kända problemet – fördröjningsproblem i dagens teleoperation tjänster beslutar författaren att bygga en prototyp av en enkel teleoperation modell vilket är baserad på Kalman Filter algoritmen i syftet att eliminera icke-synkronisering mellan användarens inmatningssignaler och visuella information, där alla data överfördes via nätverket. I den första delen av avhandlingen appliceras både Kalman Filter Algoritmer på prototypen för att uppskatta rörelsen av robotarmen baserat på användarens rörelse som anbringas på en haptik enhet. Jämförelserna i prestandan bland de Kalman Filter Algoritmerna har också fokuserats. I den andra delen fokuserar avhandlingen på att optimera uppskattningar av rörelsen som baserat på resultaten av Kalman-filtrering med hjälp av en utjämningsalgoritm. Den sista delen av avhandlingen undersökes begräsning av prototypen, som till exempel hur mycket fördröjningar accepteras och hur snabbt den haptik enheten kan vara, för att kunna erhålla skäliga uppskattningar med acceptabel felfrekvens. Resultaten visar att den Extended Kalman Filter har bättre prestandan i rörelse uppskattningarna än den Linear Kalman Filter under experimenten. Det icke-synkroniseringsproblemet har förbättrats genom att tillämpa de Kalman Filter Algoritmerna på både statliga och värderingsmodeller när latensen är inställd på under 200 millisekunder. Den extra utjämningsalgoritmen ökar ytterligare noggrannheten. Denna algoritm löser också det skakande problem hos de visuella bilder på robotarmen som orsakas av den vågiga egenskapen hos Kalman Filter Algoritmen. Dessutom effektivt synkroniserar den optimeringsmetoden tidpunkten när robotarmen berör objekten i uppskattningarna. Den metod som används i denna forskning kan vara en god referens för framtida undersökningar i kontrollbaserad rörelse- spåning och uppskattning.
Boonpratatong, Amaraporn. "Motion prediction and dynamic stability analysis of human walking : the effect of leg property." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/motion-prediction-and-dynamic-stability-analysis-of-human-walking-the-effect-of-leg-property(f36922af-1231-4dac-a92f-a16cbed8d701).html.
Full textSharma, Yachna. "Surgical skill assessment using motion texture analysis." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51890.
Full textHürtgen, Gisela [Verfasser], Achim [Akademischer Betreuer] Stahl, and Michael J. [Akademischer Betreuer] Eble. "Determination of lung tumour motion from PET raw data used for accelerometer based motion prediction / Gisela Hürtgen ; Achim Stahl, Michael J. Eble." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1171323948/34.
Full textZhang, Harley (Harley H. ). "Analysis of one-dimensional transforms in coding motion compensation prediction residuals for video applications." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66707.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 49).
In video coding, motion compensation prediction provides significant increases in overall compression efficiency. The prediction residuals are typically treated as images and compressed by applying two-dimensional transforms such as the two-dimensional discrete cosine transform (2D-DCT). Previous work has found that the use of direction-adaptive one-dimensional discrete cosine transforms (1D-DCTs) in coding motion compensation residuals can provide significant additional bitrate savings. However, this requires optimization over all of the available transforms to minimize the overall bitrate, which can be expensive in terms of time and computation. In this thesis, we examine the use of only the horizontal and vertical 1D-DCTs in addition to the 2D-DCT for coding motion compensation residuals. By reducing the number of available transforms, the amount of required computation decreases significantly, with a potential cost in performance. We perform experiments using a modified H.264/AVC codec to compare the performance of using different sets of available transforms. The results indicate that for typical applications of video coding, most of the performance benefit from using directional 1D-DCTs can be retained by keeping only the horizontal and vertical 1D-DCTs.
by Harley Zhang.
M.Eng.
Hayes, E. R. "The prediction of droplet motion and breakup using a vortex model for turbulent flows." Thesis, Cranfield University, 1988. http://dspace.lib.cranfield.ac.uk/handle/1826/10285.
Full textArango-Gaviria, Maria Cristina. "Ground-motion prediction for subduction-zone earthquakes : insights from South and Central American data." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5631.
Full textAryawan, Iwan Darajat. "Development of analysis methods for the assessment of hull girder loading and strength of a turret moored FPSO." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327278.
Full textDavuluri, Pavani. "Prediction of Breathing Patterns Using Neural Networks." VCU Scholars Compass, 2008. http://scholarscompass.vcu.edu/etd/718.
Full textBaier, Volker [Verfasser]. "Motion perception and prediction / Volker Baier." 2006. http://d-nb.info/985175052/34.
Full textLei, Chun Chou, and 周雷峻. "A Dynamic Vector Motion Prediction Algorithm." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/20994717687114093180.
Full text詹文志. "Mobile Motion Prediction and QoS Improvement." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/02417103242283851294.
Full text國立中正大學
資訊管理學系
92
There are many way to lower handoff drop rate, one of them is prediction. If we can predict the next cell which people will move in, we could preserve bandwidth for him or her, when people move in that cell, the phone call will not drop because of bandwidth reservation. Many people had develop their method to predict the user moving direction, but most of them use sophisticate stochastic processes or they need record huge data to complete the job. We are trying to use simple calculation and a little extract data to predict the user moving direction. What we are trying to do is using less cost to achieve the same, even better performance. Our prediction method keeps track of user mobility patterns and traffic patterns between cells. With the easy path comparing, we can derivate condition probability and the next target cell, the target cell will informed to reserve bandwidth basis of this probability. Through adjusting the reserved bandwidth dynamically, we could maintain the handoff drop rate under target value, mean while, using bandwidths efficiently and improving the quality of services.
Uou, Sheng-Tsang, and 游勝滄. "MOTION VECTOR PREDICTION Using CANDIDATE SET." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/17265310302118610621.
Full text國立臺灣海洋大學
資訊工程學系
102
For video coding standards with high compression ratio and quality, prediction is an essential step. If the prediction is more accurate, then lower bit-rate will be achieved. In this paper, a method is proposed to improve the coding efficiency for motion vectors using predicted motion vector candidate set (PMVCS). PMVCS consists of the motion vectors of blocks, which are the spatial and temporal neighbors of an encoding block. Using the proposed method, a better predicted motion vector can be obtained, which lead to fewer bits allocated for motion vectors. Compared with JM18.4, the proposed method can reduce the bit allocation for motion vectors by 1.37% in average using the image sequence “Bus.” The proposed method can reduce the bit allocation for motion vector of error correction technique by about 0.31% using the same image sequence.
Chibisov, Dmitry [Verfasser]. "Design of algorithms for motion planning and motion prediction / Dmitry Chibisov." 2009. http://d-nb.info/1000381056/34.
Full textChien, Cheng-hui, and 簡誠輝. "Motion Estimation for Inter Prediction in HEVC." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/94610595021564910069.
Full text國立中央大學
通訊工程學系
101
Inter Prediction of HEVC standard structure includes both Merge Mode Decision and Inter Mode Decision. Reviewing the previous work, someone exploited Template Matching algorithm which employs encoded information to predict in Inter Prediction. Under the condition that it is not necessary to transit header, decoder can reconstruct pictures to reach a reduction of bitrate. In this work, we utilize the same concept to apply on Inter Mode Decision. We proposed Template Matching algorithm in Uni-prediction and use both SABPD and Template Matching algorithm in Bi-prediction. Similarly, under the condition of without transition of header with motion vector, decoder can reconstruct pictures. The lower corrected probability of prediction results in worse encoding performance. We combine advantages of our proposed algorithm, SABPD and Template Matching, with advantages of HEVC standard structure. Finally, we combine Merge Mode Decision and Inter Mode Decision. In the same picture quality, the reduction of bitrate reaches 1.581%. The experiment results show that our proposed algorithm applying on HEVC standard structure can achieve better encoding performance.