Academic literature on the topic 'Prediction models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Prediction models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Prediction models"
Geweke, John, and Gianni Amisano. "Prediction with Misspecified Models." American Economic Review 102, no. 3 (May 1, 2012): 482–86. http://dx.doi.org/10.1257/aer.102.3.482.
Full textArcher, Graeme, Michael Balls, Leon H. Bruner, Rodger D. Curren, Julia H. Fentem, Hermann-Georg Holzhütter, Manfred Liebsch, David P. Lovell, and Jacqueline A. Southee. "The Validation of Toxicological Prediction Models." Alternatives to Laboratory Animals 25, no. 5 (September 1997): 505–16. http://dx.doi.org/10.1177/026119299702500507.
Full textStenhaug, Benjamin A., and Benjamin W. Domingue. "Predictive Fit Metrics for Item Response Models." Applied Psychological Measurement 46, no. 2 (February 13, 2022): 136–55. http://dx.doi.org/10.1177/01466216211066603.
Full textAnsah, Kwabena, Ismail Wafaa Denwar, and Justice Kwame Appati. "Intelligent Models for Stock Price Prediction." Journal of Information Technology Research 15, no. 1 (January 2022): 1–17. http://dx.doi.org/10.4018/jitr.298616.
Full textKarpac, Dusan, and Viera Bartosova. "The verification of prediction and classification ability of selected Slovak prediction models and their emplacement in forecasts of financial health of a company in aspect of globalization." SHS Web of Conferences 74 (2020): 06010. http://dx.doi.org/10.1051/shsconf/20207406010.
Full textMartínez-Fernández, Pelayo, Zulima Fernández-Muñiz, Ana Cernea, Juan Luis Fernández-Martínez, and Andrzej Kloczkowski. "Three Mathematical Models for COVID-19 Prediction." Mathematics 11, no. 3 (January 17, 2023): 506. http://dx.doi.org/10.3390/math11030506.
Full textPace, Michael L. "Prediction and the aquatic sciences." Canadian Journal of Fisheries and Aquatic Sciences 58, no. 1 (January 1, 2001): 63–72. http://dx.doi.org/10.1139/f00-151.
Full textBen-Haim, Yakov, and François M. Hemez. "Robustness, fidelity and prediction-looseness of models." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2137 (September 14, 2011): 227–44. http://dx.doi.org/10.1098/rspa.2011.0050.
Full textGenç, Onur, Bilal Gonen, and Mehmet Ardıçlıoğlu. "A comparative evaluation of shear stress modeling based on machine learning methods in small streams." Journal of Hydroinformatics 17, no. 5 (April 28, 2015): 805–16. http://dx.doi.org/10.2166/hydro.2015.142.
Full textKappen, Teus H., and Linda M. Peelen. "Prediction models." Current Opinion in Anaesthesiology 29, no. 6 (December 2016): 717–26. http://dx.doi.org/10.1097/aco.0000000000000386.
Full textDissertations / Theses on the topic "Prediction models"
Haider, Peter. "Prediction with Mixture Models." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/6961/.
Full textDas Lernen eines Modells für den Zusammenhang zwischen den Eingabeattributen und annotierten Zielattributen von Dateninstanzen dient zwei Zwecken. Einerseits ermöglicht es die Vorhersage des Zielattributs für Instanzen ohne Annotation. Andererseits können die Parameter des Modells nützliche Einsichten in die Struktur der Daten liefern. Wenn die Daten eine inhärente Partitionsstruktur besitzen, ist es natürlich, diese Struktur im Modell widerzuspiegeln. Solche Mischmodelle generieren Vorhersagen, indem sie die individuellen Vorhersagen der Mischkomponenten, welche mit den Partitionen der Daten korrespondieren, kombinieren. Oft ist die Partitionsstruktur latent und muss beim Lernen des Mischmodells mitinferiert werden. Eine direkte Evaluierung der Genauigkeit der inferierten Partitionsstruktur ist in vielen Fällen unmöglich, weil keine wahren Referenzdaten zum Vergleich herangezogen werden können. Jedoch kann man sie indirekt einschätzen, indem man die Vorhersagegenauigkeit des darauf basierenden Mischmodells misst. Diese Arbeit beschäftigt sich mit dem Zusammenspiel zwischen der Verbesserung der Vorhersagegenauigkeit durch das Aufdecken latenter Partitionierungen in Daten, und der Bewertung der geschätzen Struktur durch das Messen der Genauigkeit des resultierenden Vorhersagemodells. Bei der Anwendung des Filterns unerwünschter E-Mails sind die E-Mails in der Trainingsmende latent in Werbekampagnen partitioniert. Das Aufdecken dieser latenten Struktur erlaubt das Filtern zukünftiger E-Mails mit sehr niedrigen Falsch-Positiv-Raten. In dieser Arbeit wird ein Bayes'sches Partitionierunsmodell entwickelt, um diese Partitionierungsstruktur zu modellieren. Das Wissen über die Partitionierung von E-Mails in Kampagnen hilft auch dabei herauszufinden, welche E-Mails auf Veranlassen des selben Netzes von infiltrierten Rechnern, sogenannten Botnetzen, verschickt wurden. Dies ist eine weitere Schicht latenter Partitionierung. Diese latente Struktur aufzudecken erlaubt es, die Genauigkeit von E-Mail-Filtern zu erhöhen und sich effektiv gegen verteilte Denial-of-Service-Angriffe zu verteidigen. Zu diesem Zweck wird in dieser Arbeit ein diskriminatives Partitionierungsmodell hergeleitet, welches auf dem Graphen der beobachteten E-Mails basiert. Die mit diesem Modell inferierten Partitionierungen werden via ihrer Leistungsfähigkeit bei der Vorhersage der Kampagnen neuer E-Mails evaluiert. Weiterhin kann bei der Klassifikation des Inhalts einer E-Mail statistische Information über den sendenden Server wertvoll sein. Ein Modell zu lernen das diese Informationen nutzen kann erfordert Trainingsdaten, die Serverstatistiken enthalten. Um zusätzlich Trainingsdaten benutzen zu können, bei denen die Serverstatistiken fehlen, wird ein Modell entwickelt, das eine Mischung über potentiell alle Einsetzungen davon ist. Eine weitere Anwendung ist die Vorhersage des Navigationsverhaltens von Benutzern einer Webseite. Hier gibt es nicht a priori eine Partitionierung der Benutzer. Jedoch ist es notwendig, eine Partitionierung zu erzeugen, um verschiedene Nutzungsszenarien zu verstehen und verschiedene Layouts dafür zu entwerfen. Der vorgestellte Ansatz optimiert gleichzeitig die Fähigkeiten des Modells, sowohl die beste Partition zu bestimmen als auch mittels dieser Partition Vorhersagen über das Verhalten zu generieren. Jedes Modell wird auf realen Daten evaluiert und mit Referenzmethoden verglichen. Die Ergebnisse zeigen, dass das explizite Modellieren der Annahmen über die latente Partitionierungsstruktur zu verbesserten Vorhersagen führt. In den Fällen bei denen die Vorhersagegenauigkeit nicht direkt optimiert werden kann, erweist sich die Hinzunahme einer kleinen Anzahl von übergeordneten, direkt einstellbaren Parametern als nützlich.
Vaidyanathan, Sivaranjani. "Bayesian Models for Computer Model Calibration and Prediction." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1435527468.
Full textCharraud, Jocelyn, and Saez Adrian Garcia. "Bankruptcy prediction models on Swedish companies." Thesis, Umeå universitet, Företagsekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185143.
Full textRice, Nigel. "Multivariate prediction models in medicine." Thesis, Keele University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314647.
Full textBrefeld, Ulf. "Semi-supervised structured prediction models." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2008. http://dx.doi.org/10.18452/15748.
Full textLearning mappings between arbitrary structured input and output variables is a fundamental problem in machine learning. It covers many natural learning tasks and challenges the standard model of learning a mapping from independently drawn instances to a small set of labels. Potential applications include classification with a class taxonomy, named entity recognition, and natural language parsing. In these structured domains, labeled training instances are generally expensive to obtain while unlabeled inputs are readily available and inexpensive. This thesis deals with semi-supervised learning of discriminative models for structured output variables. The analytical techniques and algorithms of classical semi-supervised learning are lifted to the structured setting. Several approaches based on different assumptions of the data are presented. Co-learning, for instance, maximizes the agreement among multiple hypotheses while transductive approaches rely on an implicit cluster assumption. Furthermore, in the framework of this dissertation, a case study on email batch detection in message streams is presented. The involved tasks exhibit an inherent cluster structure and the presented solution exploits the streaming nature of the data. The different approaches are developed into semi-supervised structured prediction models and efficient optimization strategies thereof are presented. The novel algorithms generalize state-of-the-art approaches in structural learning such as structural support vector machines. Empirical results show that the semi-supervised algorithms lead to significantly lower error rates than their fully supervised counterparts in many application areas, including multi-class classification, named entity recognition, and natural language parsing.
Asterios, Geroukis. "Prediction of Linear Models: Application of Jackknife Model Averaging." Thesis, Uppsala universitet, Statistiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297671.
Full textShrestha, Rakshya. "Deep soil mixing and predictive neural network models for strength prediction." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607735.
Full textGrant, Stuart William. "Risk prediction models in cardiovascular surgery." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/risk-prediction-models-in-cardiovascular-surgery(1befbc5d-2aa6-4d24-8c32-e635cf55e339).html.
Full textJones, Margaret. "Point prediction in survival time models." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340616.
Full textMonsch, Matthieu (Matthieu Frederic). "Large scale prediction models and algorithms." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84398.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 129-132).
Over 90% of the data available across the world has been produced over the last two years, and the trend is increasing. It has therefore become paramount to develop algorithms which are able to scale to very high dimensions. In this thesis we are interested in showing how we can use structural properties of a given problem to come up with models applicable in practice, while keeping most of the value of a large data set. Our first application provides a provably near-optimal pricing strategy under large-scale competition, and our second focuses on capturing the interactions between extreme weather and damage to the power grid from large historical logs. The first part of this thesis is focused on modeling competition in Revenue Management (RM) problems. RM is used extensively across a swathe of industries, ranging from airlines to the hospitality industry to retail, and the internet has, by reducing search costs for customers, potentially added a new challenge to the design and practice of RM strategies: accounting for competition. This work considers a novel approach to dynamic pricing in the face of competition that is intuitive, tractable and leads to asymptotically optimal equilibria. We also provide empirical support for the notion of equilibrium we posit. The second part of this thesis was done in collaboration with a utility company in the North East of the United States. In recent years, there has been a number of powerful storms that led to extensive power outages. We provide a unified framework to help power companies reduce the duration of such outages. We first train a data driven model to predict the extent and location of damage from weather forecasts. This information is then used in a robust optimization model to optimally dispatch repair crews ahead of time. Finally, we build an algorithm that uses incoming customer calls to compute the likelihood of damage at any point in the electrical network.
by Matthieu Monsch.
Ph.D.
Books on the topic "Prediction models"
Steyerberg, E. W. Clinical Prediction Models. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-77244-8.
Full textSteyerberg, Ewout W. Clinical Prediction Models. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16399-0.
Full textSpectral numerical weather prediction models. Philadelphia: Society for Industrial and Applied Mathematics, 2012.
Find full textAuerbach, Jonathan Lyle. Some Statistical Models for Prediction. [New York, N.Y.?]: [publisher not identified], 2020.
Find full textR, Wilcock Peter, Iverson Richard Matthew, AGU Fall Meeting, and American Geophysical Union, eds. Prediction in geomorphology. Washington, D.C: American Geophysical Union, 2003.
Find full textR, Wilcock Peter, and Iverson Richard Matthew, eds. Prediction in geomorphology. Washington, D.C: American Geophysical Union, 2002.
Find full textRick, Archer, and U.S. Army Research Institute for the Behavioral and Social Sciences., eds. Improving soldier factors in prediction models. Alexandria, Va: U.S. Army Research Institute for the Behavioral and Social Sciences, 2002.
Find full textBuilding and Fire Research Laboratory (U.S.) and Factory Mutual Research Corporation, eds. Prediction of fire dynamics. Gaithersburg, MD: The Institute, 1997.
Find full textR, Robinson Allan, and Lee Ding 1925-, eds. Oceanography and acoustics: Prediction and propagation models. New York: American Institute of Physics, 1994.
Find full text1952-, Hadorn David C., United States. Health Care Financing Administration., and Rand/UCLA/Harvard Center for Health Care Financing Policy Research., eds. Assessing the performance of mortality prediction models. Santa Monica, CA: RAND, 1993.
Find full textBook chapters on the topic "Prediction models"
Deistler, Manfred, and Wolfgang Scherrer. "Prediction." In Time Series Models, 29–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13213-1_2.
Full textBacmeister, Julio T. "Weather Prediction Models weather prediction model." In Encyclopedia of Sustainability Science and Technology, 12062–79. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_362.
Full textLefebvre, Cedric W., Jay P. Babich, James H. Grendell, James H. Grendell, John E. Heffner, Ronan Thibault, Claude Pichard, et al. "Prediction Models." In Encyclopedia of Intensive Care Medicine, 1803. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_2077.
Full textMontesinos López, Osval Antonio, Abelardo Montesinos López, and Jose Crossa. "Linear Mixed Models." In Multivariate Statistical Machine Learning Methods for Genomic Prediction, 141–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89010-0_5.
Full textFaraway, Julian J. "Prediction." In Linear Models with Python, 53–60. 10th ed. First edition. | Boca Raton : CRC Press, 2021. | Series: Chapman & Hall/CRC texts in statistical science: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781351053419-4.
Full textden Brinker, Albertus C., and Harm J. W. Belt. "Using Kautz Models in Model Reduction." In Signal Analysis and Prediction, 185–96. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-1768-8_13.
Full textPourbafrani, Mahsa, Shreya Kar, Sebastian Kaiser, and Wil M. P. van der Aalst. "Remaining Time Prediction for Processes with Inter-case Dynamics." In Lecture Notes in Business Information Processing, 140–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98581-3_11.
Full textDodla, Venkata Bhaskar Rao. "Hierarchy of Atmospheric Models." In Numerical Weather Prediction, 29–66. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003354017-2.
Full textVaseghi, Saeed V. "Linear Prediction Models." In Advanced Signal Processing and Digital Noise Reduction, 185–213. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-92773-6_7.
Full textBacmeister, Julio T. "Weather Prediction Models." In Climate Change Modeling Methodology, 89–114. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5767-1_5.
Full textConference papers on the topic "Prediction models"
Zou, Qiaosha, and Yuan Xie. "Compact Models and Model Standard for 2.5D and 3D Integration." In SLIP (System Level Interconnect Prediction). New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2633948.2633955.
Full textBen-Haim, Yakov, and Franc¸ois M. Hemez. "Robustness, Fidelity and Prediction-Looseness of Models." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58008.
Full textBrockhoff, Tobias, Malte Heithoff, Istvan Koren, Judith Michael, Jerome Pfeiffer, Bernhard Rumpe, Merih Seran Uysal, Wil M. P. Van Der Aalst, and Andreas Wortmann. "Process Prediction with Digital Twins." In 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE, 2021. http://dx.doi.org/10.1109/models-c53483.2021.00032.
Full textKetata, Aymen, Carlos Moreno, Sebastian Fischmeister, Jia Liang, and Krzysztof Czarnecki. "Performance prediction upon toolchain migration in model-based software." In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 2015. http://dx.doi.org/10.1109/models.2015.7338261.
Full textTran, Ke M., Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight. "Unsupervised Neural Hidden Markov Models." In Proceedings of the Workshop on Structured Prediction for NLP. Stroudsburg, PA, USA: Association for Computational Linguistics, 2016. http://dx.doi.org/10.18653/v1/w16-5907.
Full textBjegovic, D. "Models for service life prediction." In 2nd International RILEM Workshop on Life Prediction and Aging Management of Concrete Structures. RILEM Publications SARL, 2003. http://dx.doi.org/10.1617/2912143780.002.
Full textScheffer, L. "Session details: Models and metrics of interconnect performance." In SLIP04: International Workshop on System Level Interconnect Prediction. New York, NY, USA: ACM, 2004. http://dx.doi.org/10.1145/3248398.
Full textYu, Shipeng, Alexander van Esbroeck, Faisal Farooq, Glenn Fung, Vikram Anand, and Balaji Krishnapuram. "Predicting Readmission Risk with Institution Specific Prediction Models." In 2013 IEEE International Conference on Healthcare Informatics (ICHI). IEEE, 2013. http://dx.doi.org/10.1109/ichi.2013.57.
Full textXie, Yanwen, Dan Feng, Fang Wang, Xuehai Tang, Jizhong Han, and Xinyan Zhang. "DFPE: Explaining Predictive Models for Disk Failure Prediction." In 2019 35th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 2019. http://dx.doi.org/10.1109/msst.2019.000-3.
Full textNezhad Karim Nobakht, B., and M. Christie. "Model Prediction under Uncertainty Using Hierarchical Models." In 79th EAGE Conference and Exhibition 2017. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701024.
Full textReports on the topic "Prediction models"
Pompeu, Gustavo, and José Luiz Rossi. Real/Dollar Exchange Rate Prediction Combining Machine Learning and Fundamental Models. Inter-American Development Bank, September 2022. http://dx.doi.org/10.18235/0004491.
Full textSrikant, Rayadurgam, and Bruce Hajek. Reduced-Complexity Models for Network Performance Prediction. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada435841.
Full textChung, C. F., and J. M. Shaw. Quantitative prediction models for landslide hazard assessment. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/210202.
Full textMurphy, D. D., W. M. Thomas, W. M. Evanco, and W. W. Agresti. Procedures for Applying Ada Quality Prediction Models. Fort Belvoir, VA: Defense Technical Information Center, December 1992. http://dx.doi.org/10.21236/ada264730.
Full textIskandarani, Mohamed, Omar Knio, Ashwanth Srinivasan, and William C. Thacker. Quantifying Prediction Fidelity in Ocean Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada590693.
Full textIskandarani, Mohamed, Omar Knio, Ashwanth Srinivasan, and William C. Thacker. Quantifying Prediction Fidelity in Ocean Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada601423.
Full textDassanayake, Wajira, Chandimal Jayawardena, Iman Ardekani, and Hamid Sharifzadeh. Models Applied in Stock Market Prediction: A Literature Survey. Unitec ePress, March 2019. http://dx.doi.org/10.34074/ocds.12019.
Full textPrzystupa, Marek A., Jimin Zhang, and Annetta J. Luevano. Development of the Microstructure Based Stochastic Life Prediction Models. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada269880.
Full textPrzystupa, M. A., and A. K. Vasudevan. Development of the Microstructure Based Stochastic Life Prediction Models. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada270453.
Full textDinda, Peter A., and David R. O'Hallaron. An Evaluation of Linear Models for Host Load Prediction. Fort Belvoir, VA: Defense Technical Information Center, November 1998. http://dx.doi.org/10.21236/ada358577.
Full text