Academic literature on the topic 'Predicting model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Predicting model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Predicting model"
Siek, M., and D. P. Solomatine. "Nonlinear chaotic model for predicting storm surges." Nonlinear Processes in Geophysics 17, no. 5 (September 6, 2010): 405–20. http://dx.doi.org/10.5194/npg-17-405-2010.
Full textCarlsson, Leo S., Mikael Vejdemo-Johansson, Gunnar Carlsson, and Pär G. Jönsson. "Fibers of Failure: Classifying Errors in Predictive Processes." Algorithms 13, no. 6 (June 23, 2020): 150. http://dx.doi.org/10.3390/a13060150.
Full textPrédhumeau, Manon, Lyuba Mancheva, Julie Dugdale, and Anne Spalanzani. "Agent-Based Modeling for Predicting Pedestrian Trajectories Around an Autonomous Vehicle." Journal of Artificial Intelligence Research 73 (April 19, 2022): 1385–433. http://dx.doi.org/10.1613/jair.1.13425.
Full textSiemens, Angela, Spencer J. Anderson, S. Rod Rassekh, Colin J. D. Ross, and Bruce C. Carleton. "A Systematic Review of Polygenic Models for Predicting Drug Outcomes." Journal of Personalized Medicine 12, no. 9 (August 27, 2022): 1394. http://dx.doi.org/10.3390/jpm12091394.
Full textLyu, Xiaozhong, Cuiqing Jiang, Yong Ding, Zhao Wang, and Yao Liu. "Sales Prediction by Integrating the Heat and Sentiments of Product Dimensions." Sustainability 11, no. 3 (February 11, 2019): 913. http://dx.doi.org/10.3390/su11030913.
Full textWang, Chun Sheng. "Information-Entropy-Based Integrated Model for Predicting Burn-Through Point in Lead-Zinc Sintering Process." Advanced Materials Research 396-398 (November 2011): 40–43. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.40.
Full textCarton, Quinten, Bart Merema, and Hilde Breesch. "Recommendations for model identification for MPC of an all-Air HVAC system." E3S Web of Conferences 246 (2021): 11006. http://dx.doi.org/10.1051/e3sconf/202124611006.
Full textMotesharei, Arman, Cecile Batailler, Daniele De Massari, Graham Vincent, Antonia F. Chen, and Sébastien Lustig. "Predicting robotic-assisted total knee arthroplasty operating time." Bone & Joint Open 3, no. 5 (May 1, 2022): 383–89. http://dx.doi.org/10.1302/2633-1462.35.bjo-2022-0014.r1.
Full textTang, Li, Ping He Pan, and Yong Yi Yao. "EPAK: A Computational Intelligence Model for 2-level Prediction of Stock Indices." International Journal of Computers Communications & Control 13, no. 2 (April 13, 2018): 268–79. http://dx.doi.org/10.15837/ijccc.2018.2.3187.
Full textRather, Akhter Mohiuddin. "A Hybrid Intelligent Method of Predicting Stock Returns." Advances in Artificial Neural Systems 2014 (September 7, 2014): 1–7. http://dx.doi.org/10.1155/2014/246487.
Full textDissertations / Theses on the topic "Predicting model"
Andeta, Jemal Ahmed. "Road-traffic accident prediction model : Predicting the Number of Casualties." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20146.
Full textli, yiwen. "Predicting Hearing Loss Using Auditory Steady-State Responses." Digital WPI, 2009. https://digitalcommons.wpi.edu/etd-theses/84.
Full textKingwell, Stephen. "Predicting Complications After Spinal Surgery: Surgeons’ Aided and Unaided Predictions." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41559.
Full textDegerman, Engfeldt Johnny. "Predicting Electrochromic Smart Window Performance." Licentiate thesis, KTH, Tillämpad elektrokemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-95167.
Full textByggnadssektorn är en av de största energiförbrukarna, där kylningen av byggnader står för en stor del av den totala energikonsumtionen. Elektrokroma (EC) smarta fönster har en stor potential för att öka inomhuskomforten och spara stora mängder energi för byggnader. Ett elektrokromt fönster kan ses som ett tunnfilmsbatteri vars laddningsnivå yttrar sig i dess optiska absorption, d.v.s. den optiska absorptionen ökar med ökad laddningsnivå och vice versa. Det är EC-teknologins unika egenskaper att kunna kontrollera absorptionen (transmittansen) av solenergi och synligt ljus i fönster med liten energiinsats som kan minska byggnaders kylningsbehov. EC-teknologin används idag till att producera små fönster och bilbackspeglar, men för att nå byggnadsmarknaden är det nödvändigt att kunna producera stora EC-anordningar med fullgod prestanda. En välkänd utmaning med uppskalning är att utforma EC-systemet med snabb och jämn infärgning (laddning) och urblekning (urladdning), vilket även innebär att uppskalning är en stor ekonomisk risk på grund av den dyra produktionsutrustningen. Trots att detta är välkända problem har lite arbete gjorts för att lösa dessa. Denna avhandling introducerar ett kostnadseffektivt tillvägagångssätt, validerat med experimentella data, kapabelt till att förutsäga och optimera ECsystems prestanda för anordningar med stor area, såsom elektrokroma smarta fönster. Detta tillvägagångssätt består av en experimentell uppställning, experiment och en tvådimensionell strömfördelningsmodell. Den experimentella uppställningen, baserad på kamerateknik, används i de experimentella tillvägagångssätten så att modellen kan utvecklas och valideras. Den tvådimensionella strömfördelningsmodellen inkluderar sekundär strömfördelning med laddningsöverföringsmotstånd, ohmska och tidsberoende effekter. Modellsimuleringarna görs genom att numeriskt lösa en modells differentialekvationer med hjälp av en finita-element-metod. Tillvägagångssättet är validerat med experiment gjorda på stora EC anordningar. För att visa fördelarna med att använda en väl fungerande strömfördelningsmodell som ett designverktyg, har några prediktioner av infärgning och urblekning av EC-fönster inkluderats. Dessa prediktioner visar att den transparenta strömtilledarresistansen har stor påverkan på EC-fönsters prestanda.
Barnhart, Gregory J. "Predicting hail size using model vertical velocities." Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://bosun.nps.edu/uhtbin/hyperion-image.exe/08Mar%5FBarnhart.pdf.
Full textThesis Advisor(s): Nuss, Wendell. "March 2008." Description based on title screen as viewed on April 25, 2008. Includes bibliographical references (p. 47-49). Also available in print.
Sofi, Backman. "A model for predicting robot dresspack damage." Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149369.
Full textMcClain, Michael Patrick. "A micromechanical model for predicting tensile strength." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-10052007-143117/.
Full textGao, Zhiyuan, and Likai Qi. "Predicting Stock Price Index." Thesis, Halmstad University, Applied Mathematics and Physics (CAMP), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-3784.
Full textThis study is based on three models, Markov model, Hidden Markov model and the Radial basis function neural network. A number of work has been done before about application of these three models to the stock market. Though, individual researchers have developed their own techniques to design and test the Radial basis function neural network. This paper aims to show the different ways and precision of applying these three models to predict price processes of the stock market. By comparing the same group of data, authors get different results. Based on Markov model, authors find a tendency of stock market in future and, the Hidden Markov model behaves better in the financial market. When the fluctuation of the stock price index is not drastic, the Radial basis function neural network has a nice prediction.
Seidu, Mohammed Nazib. "Predicting Bankruptcy Risk: A Gaussian Process Classifciation Model." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119120.
Full textChen, Dong. "Neural network model for predicting performance of projects." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0021/MQ48059.pdf.
Full textBooks on the topic "Predicting model"
Ferguson, Dennis E. Predicting regeneration establishment with the prognosis model. [Ogden, Utah?]: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1993.
Find full textFerguson, Dennis E. Predicting regeneration establishment with the prognosis model. [Ogden, Utah?]: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1993.
Find full textFerguson, Dennis E. Predicting regeneration establishment with the prognosis model. [Ogden, Utah?]: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1993.
Find full textUnited States. National Aeronautics and Space Administration., ed. Development of a model for predicting NASA/MSFC project success. [Huntsville, Ala.]: Dept. of Industrial and Systems Engineering, University of Alabama in Huntsville, 1990.
Find full textWard, S. C. Validation of a CFD model for predicting film cooling performance. Washington, D. C: American Institute of Aeronautics and Astronautics, 1993.
Find full textWeber, Randal S. A model for predicting transfusion requirements in head and neck surgery. St. Louis, MO: American Laryngological, Rhinological and Otological Society, 1995.
Find full textMaurice, Clark Robert, and Risk Reduction Engineering Laboratory (U.S.), eds. Predicting the inactivation of giardia lamblia: A mathematical and statistical model. Cincinnati, Ohio: U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, 1990.
Find full textEskridge, Robert E. ROADWAY--a numerical model for predicting air pollutants near highways: User's guide. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1987.
Find full textEskridge, Robert E. ROADWAY--a numerical model for predicting air pollutants near highways: User's guide. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1987.
Find full textGentry, James A. Predicting industrial bond ratings with a probit model and funds flow components. [Urbana, Ill.]: College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, 1985.
Find full textBook chapters on the topic "Predicting model"
Halbrügge, Marc. "Model-Based UI Development (MBUID)." In Predicting User Performance and Errors, 19–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60369-8_3.
Full textWasserman, Theodore, and Lori Wasserman. "Predicting Errors and Motivation." In Motivation, Effort, and the Neural Network Model, 77–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58724-6_6.
Full textMcMillan, David G. "Forecast and Market Timing Power of the Model and the Role of Inflation." In Predicting Stock Returns, 103–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69008-7_6.
Full textBalaniuk, Remis, Hercules Antonio do Prado, Renato da Veiga Guadagnin, Edilson Ferneda, and Paulo Roberto Cobbe. "Predicting Evasion Candidates in Higher Education Institutions." In Model and Data Engineering, 143–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24443-8_16.
Full textQian, Shenghua. "Vehicle Collision Prediction Model on the Internet of Vehicles." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 518–30. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_53.
Full textStephan, Blossom Christa Maree. "Models for Predicting Risk of Dementia: Predictive Accuracy and Model Complexity." In International Perspectives on Aging, 141–59. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06650-9_10.
Full textGeisser, Seymour. "Selecting a statistical model and predicting." In Predictive Inference: An Introduction, 88–117. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-4467-2_4.
Full textOliveira, Nelson, Joana Costa, Catarina Silva, and Bernardete Ribeiro. "Retweet Predictive Model for Predicting the Popularity of Tweets." In Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018), 185–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17065-3_19.
Full textMounter, William, Huda Dawood, and Nashwan Dawood. "The Impact of Data Segmentation in Predicting Monthly Building Energy Use with Support Vector Regression." In Springer Proceedings in Energy, 69–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_9.
Full textPoovammal, E., Mayank Kumar Nagda, and K. Annapoorani. "Predicting Property Prices: A Universal Model." In EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing, 259–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19562-5_26.
Full textConference papers on the topic "Predicting model"
Knight, Michael, Ghousia Saeed, Yu-Horng Chen, and Andre G. P. Brown. "Remote Location in an Urban Digital Model." In eCAADe 2007: Predicting the Future. eCAADe, 2007. http://dx.doi.org/10.52842/conf.ecaade.2007.581.
Full textHuang, Chuen-huei (Joseph), and Robert J. Krawczyk. "A Choice Model of Consumer Participatory Design for Modular Houses." In eCAADe 2007: Predicting the Future. eCAADe, 2007. http://dx.doi.org/10.52842/conf.ecaade.2007.679.
Full textHuang, Chuen-huei (Joseph), and Robert J. Krawczyk. "A Choice Model of Consumer Participatory Design for Modular Houses." In eCAADe 2007: Predicting the Future. eCAADe, 2007. http://dx.doi.org/10.52842/conf.ecaade.2007.679.
Full textSchlueter, Arno, and Tobias Bonwetsch. "The M.ANY Project - Exploring a Matrix Model for a Fully Digital Workflow in Architectural Design." In eCAADe 2007: Predicting the Future. eCAADe, 2007. http://dx.doi.org/10.52842/conf.ecaade.2007.895.
Full textAman, Fazal, Azhar Rauf, Rahman Ali, Farkhund Iqbal, and Asad Masood Khattak. "A Predictive Model for Predicting Students Academic Performance." In 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, 2019. http://dx.doi.org/10.1109/iisa.2019.8900760.
Full textLiangfang, Lin, Zeng Tao, Yu Yongquan, and Lin Shangfang. "Extension Cluster Prediction Model Used in Predicting Wastewater Emissions." In 2008 International Symposium on Computer Science and Computational Technology. IEEE, 2008. http://dx.doi.org/10.1109/iscsct.2008.179.
Full textElmore, Emily, Khalid Al-Mutairi, Bilal Hussain, and A. Sherif El-Gizawy. "Development of Analytical Model for Predicting Dual-Phase Ejector Performance." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65844.
Full textKARANKA, J., and D. LUQUE. "PREDICTING COLLISION: A CONNECTIONIST MODEL." In Proceedings of the Eighth Neural Computation and Psychology Workshop. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702784_0004.
Full textNishimura, Tomoki, Akiyoshi Hara, Hiroki Miyamoto, Masahiro Furukawa, and Taro Maeda. "Mutual Prediction Model for Predicting Information for Human Motion Generation." In 2020 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2020. http://dx.doi.org/10.1109/sii46433.2020.9026182.
Full textHinkel, Georg, and Misha Strittmatter. "Predicting the Perceived Modularity of MOF-based Metamodels." In 6th International Conference on Model-Driven Engineering and Software Development. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006539300480058.
Full textReports on the topic "Predicting model"
Barnes, Graham. Predicting Flare Properties Using the Minimum Current Corona Model. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada503355.
Full textScharine, Angelique A., Paula P. Henry, Mohan D. Rao, and Jason T. Dreyer. A Model for Predicting Intelligibility of Binaurally Perceived Speech. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada466840.
Full textLevine, Daniel B., John J. Cloos, James Perry, Thomas C. Varley, and Stanley A. Horowitz. A Model for Predicting the Inventory of Navy Spares. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada243087.
Full textDunn, Stuart, Douglas Coats, Gary Nickerson, Samuel Sopok, and Peter O'Hara. Unified Computer Model for Predicting Thermochemical Erosion in Gun Barrels. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada420028.
Full textAllen, D. H., and W. E. Haisler. A Model for Predicting Thermomechanical Response of Large Space Structures. Fort Belvoir, VA: Defense Technical Information Center, June 1985. http://dx.doi.org/10.21236/ada162139.
Full textAllen, D. H., and W. E. Haisler. A Model for Predicting Thermomechanical Response of Large Space Structures. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada172966.
Full textMeidani, Hadi, and Amir Kazemi. Data-Driven Computational Fluid Dynamics Model for Predicting Drag Forces on Truck Platoons. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-036.
Full textYoo, Junsoo. Development of a Mechanistic Model for Predicting Sliding Vapor Bubble Growth. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1468535.
Full textKumar, A., P. G. Young, and M. B. Chadwick. Assessment of some optical model potentials in predicting neutron cross sections. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/572672.
Full textVitek, J. M., Y. S. Iskander, E. M. Oblow, S. S. Babu, and S. A. David. Neural network model for predicting ferrite number in stainless steel welds. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/290929.
Full text