Academic literature on the topic 'Précurseurs des cellules dendritiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Précurseurs des cellules dendritiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Précurseurs des cellules dendritiques"
Marmey, B., C. Boix, J. B. Barbaroux, J. Diebold, J. Audouin, W. H. Fridman, C. G. Mueller, and T. J. Molina. "Les cellules CD14+ dérivées de la lignée monocytaire s’accumulent préférentiellement dans le microenvironnement des lymphomes diffus à grandes cellules B et représentent des précurseurs potentiels de cellules dendritiques." Annales de Pathologie 24 (November 2004): 145. http://dx.doi.org/10.1016/s0242-6498(04)94159-4.
Full textNeau-Cransac, M., J. Foucher, P. H. Bernard, D. Neau, and P. Blanco. "CA45 - Étude prospective des précurseurs sanguins des cellules dendritiques chez des malades infectés par le virus de l’hépatite c et traités par IFN pégylé et ribavirine." Gastroentérologie Clinique et Biologique 29, no. 8-9 (August 2005): 922. http://dx.doi.org/10.1016/s0399-8320(05)86442-5.
Full textHosmalin, A. "Cellules dendritiques." La Revue de Médecine Interne 16, no. 7 (July 1995): 555–57. http://dx.doi.org/10.1016/0248-8663(96)80754-5.
Full textVoisine, Cécile, Benjamin Trinité, and Régis Josien. "Les cellules dendritiques." Revue Française des Laboratoires 2002, no. 341 (March 2002): 31–42. http://dx.doi.org/10.1016/s0338-9898(02)80179-2.
Full textHaegel-Kronenberger, H., A. Bohbot, J. Galon, H. de la Salle, and D. Hanau. "Cytokines et cellules dendritiques." médecine/sciences 14, no. 4 (1998): 429. http://dx.doi.org/10.4267/10608/1058.
Full textSegura, Élodie, and Sebastian Amigorena. "Les cellules dendritiques inflammatoires." médecine/sciences 30, no. 1 (January 2014): 64–68. http://dx.doi.org/10.1051/medsci/20143001015.
Full textFontaine, C., and P. Demoly. "Histamine et cellules dendritiques." Revue Française d'Allergologie et d'Immunologie Clinique 46, no. 5 (September 2006): 480–83. http://dx.doi.org/10.1016/j.allerg.2006.01.006.
Full textBouloc, A. "Les cellules dendritiques cutanées humaines." médecine/sciences 17, no. 4 (2001): 465. http://dx.doi.org/10.4267/10608/1946.
Full textFutsch, Nicolas, Renaud Mahieux, and Hélène Dutartre. "HTLV-1 et cellules dendritiques." médecine/sciences 34, no. 2 (February 2018): 117–20. http://dx.doi.org/10.1051/medsci/20183402005.
Full textBantsimba-Malanda, C. "Cellules dendritiques et fibrose pulmonaire." Revue des Maladies Respiratoires 23, no. 2 (April 2006): 176. http://dx.doi.org/10.1016/s0761-8425(06)71488-7.
Full textDissertations / Theses on the topic "Précurseurs des cellules dendritiques"
Bêchetoille, Nicolas. "Les monocytes, précurseurs des cellules dendritriques cutanées : utilisation en génie cellulaire et tissulaire." Lyon 1, 2003. http://www.theses.fr/2003LYO10180.
Full textKwan, Wing Hong. "Le rôle des cellules mono-macrophagiques dermiques CD14+ dans la régulation de l'immunité." Paris 6, 2006. http://www.theses.fr/2006PA066516.
Full textThe role of CD14+ dermal cells in the immune system remains poorly understood due to the lack of in vitro model. We developped a CD14+ dermal cells population by the use of M-CSF and demonstrted that these cells are Dendritic Cells precursors (preDCs). Indeed the preDCs differentiated into dermal DCs in presence of GM-CSF and into Langerhans Cells with additional TGF. PreDCs can secrete the anti-inflammtory cytokine IL-10 upon LPS stimulation. This endogenous IL-10 can inhibit their own maturation and the bystander activation of DCs and T lymphocytes. As preDCs express DC-SIGN, they are permissive to HIV and Dengue virus infection. These results suggest that preDCs show a cellular plasticity and can inhibit the local inflammation. However, they can be targets of pathogens and could participate to viral escape
Rougier-Larzat, Nathalie. "Différenciation et fonction des cellules dendritiques générées in vitro à partir de précurseurs CD34+ du sang de cordon ombilical : modèle in vitro de sensibilisation de contact." Lyon 1, 1998. http://www.theses.fr/1998LYO1T252.
Full textLetscher, Hélène. "Étude des propriétés régulatrices d’une population de précurseurs de cellules dendritiques plasmacytoïdes conditionnée par le CpG dans le cadre de réponses auto-immune et allogénique Innate activation primes bone marrow plasmacytoid dendritic cell precursors for tolerance Rôle protecteur des CpG-pre-pDC dans le cadre d’une réponse allogénique : la maladie du greffon contre l’hôte." Thesis, Sorbonne Paris Cité, 2018. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=2171&f=13417.
Full textHematopoietic progenitors can sense innate signals. Their early education by such signals within the bone marrow, prior to their egress, may have considerable impact on the outcome of immune responses. While mature plasmacytoid dendritic cells (pDC) are known to either aggravate or ameliorate disease both auto-immune and allogeneic, it remains unknown whether immune regulatory function can be stably imprinted at the precursor stage in the pDC lineage onwards. We herein investigated whether activation with the oligonucleotide CpG, a Toll-like receptor-9 agonist, confers to bone marrow pDC precursors (CpG-prepDCs) characterized by the c-kit+Sca-1+B220intPDCA-1+ phenotype the capacity to protect against two kinds of murine immune pathologies: Experimental Autoimmune Encephalomyelitis (EAE), a model of multiple sclerosis which is an autoimmune disease and graft versus host disease (GVHD), an allogeneic response. We demonstrate that the adoptive transfer of relatively low number of CpG-pre-pDCs (80.000 in EAE and 200.000 in GVHD) was able to clinically reduce both diseases. Interestingly, CpG-pre-pDCs migrated to the spinal cord in EAE and to the spleen in GVHD where their progeny retained a relatively immature pDC phenotype. In EAE, the progeny of CpG-pre-pDCs massively produces IL-27 and TGFß and moderately GM-CSF. In the inflamed central nervous system, the progeny switches the immune response of infiltrating CD4+ T cells from pro-inflammatory (IFNy+ GM-CSF+ IL-17+) to anti-inflammatory (TGFß+, IL-27+, IL-17-, GM-CSFlo). The key role of TGFß and IL-27 was assessed using precursors incapacitated for the production of each of those cytokines. These experiments demonstrated that the two soluble factors acted sequentially: TGFß ensures early phases of the immunomodulation mediated by the CpG-pre-pDC while IL-27 is required for later protection. In GVHD, the mechanisms of protection are different yet similar in some ways. As for EAE, the progeny of CpG-pre-pDCs is still able to produce TGFß but this time in combination with IL-12, another cytokine from the IL-27 family. Additionally, those cells were able to reduce the IL-17 production by both pathogenic CD4+ and CD8+ T cells. The human equivalent of CpG-pre-pDC could be a new therapeutic tool in patients with multiple sclerosis or graft versus host disease either per se or enriched in the hematopoietic stem cell transfer already implemented to treat those two immune conditions
Niveau, Camille. "Impact des glycans tumoraux sur les propriétés phénotypiques, fonctionnelles et métaboliques des cellules dendritiques (cDC2, pDC, cDC1) humaines en contexte de mélanome." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALV022.
Full textDendritic cells (DCs), mostly consisting of BDCA1+ cDC2s, BDCA3+ cDC1s, and BDCA2+ pDCs are the conductors of immune responses. Their plasticity plays a crucial role in the orientation of immune responses, especially in the context of cancer. However, escape from immune surveillance is a key step for tumor development. In the context of melanoma, tumor-infiltrating and circulating DCs harbor an altered functionality, negatively linked with the clinical outcome of patients. The mechanisms employed by melanoma to modulate immunity are only partially deciphered. Immuno-metabolism emerges as a decisive factor for the orientation of immune responses in cancer. In parallel, tumor cells display aberrant glycans on surface protein and lipids that can be recognized by lectin receptors, expressed by DCs. Among them, C-type lectin receptors (CLRs) are crucial for DCs’ plasticity and the modeling of immune responses, and their expression is perturbed on DCs from melanoma patients. In addition, the tumor cells’ glycocode correlates with DC function and clinical outcome of patients. Nevertheless, influence of the various glycosylation motifs on immunity remains unknown in melanoma.We investigated the interactions of DC subsets with six glycans present on the surface of melanoma tumor cells (Gal, Man, GalNAc, s-Tn, Fuc, GlcNAc). We analyzed the effect of these glycans on the phenotype (activation status, immune checkpoints (ICP)), and the function (cytokines/chemokines) of DCs. In order to better understand DCs dysregulation in melanoma, we explored their metabolism among patients thanks to the SCENITH technique, and analyzed the correlation with their phenotype, their function and the clinical outcome of patients. We also assessed the impact of tumor cells and their glycocode on DCs’ metabolism, and we evaluated the possibility to modulate metabolic pathways with the aim of reverting the impact of glycans on DCs’ function.DCs are able to interact with and to internalize the studied glycans, at different intensities according to the DC subset and to the nature of the glycan. Fucose induces a remodeling of ICP expression and increases activation molecules, in addition to trigger the secretion of pro-inflammatory and pro-tumoral cytokines/chemokines. After activation, DC’s secretome is completely reshaped by glycan exposure, particularly with fucose. In parallel, we highlight major metabolic disturbances in DCs from patients’ blood and tumor compared to healthy donors. The expression of activation markers and ICPs by DCs as well as the clinical outcome of patients are linked with the metabolic profile of DCs. Moreover, DCs’ metabolism in co-culture with melanoma cells correlates with the expression of particular tumor glycans. Coherently, the studied glycans directly modulate DCs’ metabolism in addition to their phenotype and function. The blockade of the MCT-1 lactate transporter allows restoring DCs’ function altered by glycans.This study unveils the importance of glycan motifs in the modulation and regulation of DCs. The glycan-lectin-DC axis emerges as a new immune checkpoint in melanoma, linked with metabolism, and which could enable the restoration of anti-tumor immunity by preventing DC-glycan interactions or by acting on their metabolism. This axis opens the way for the development of new therapeutic strategies with the aim of improving clinical success for melanoma patients
Misery, Laurent. "Précurseurs des cellules de Langerhans." Lyon 1, 1995. http://www.theses.fr/1995LYO1T020.
Full textMohty, Mohamad. "Cellules dendritiques et leucémies myéloi͏̈des." Aix-Marseille 2, 2003. http://www.theses.fr/2003AIX20692.
Full textBen, Mami-Tabka Naïra. "Cellules dendritiques et leucémies lymphoïdes." Aix-Marseille 2, 2007. http://www.theses.fr/2007AIX20656.
Full textFrikeche, Jihane. "Cellules dendritiques et drogues immunomodulatrices." Nantes, 2011. https://archive.bu.univ-nantes.fr/pollux/show/show?id=b109d18c-8903-48ef-8352-d0a4c531d561.
Full textThere is growing evidence for the role of epigenetic mechanisms in the development of cancer and autoimmune diseases. In most cases, the precise mechanism is not known, however, DNA hypomethylation and histone acetylation are commonly observed and have shown effects on the immune system. Dendritic cells (DC) are the professional antigen presenting cells that play a major role in the immune system. Thus, we thought it was important to assess the impact of two immunomodulatory drugs used in the routine clinic, namely the hypomethylating agent, 5-azacytidine (5-AZA) and the histone deacetylase inhibitor, valproic acid (VPA). The effects of these drugs were measured on phenotype and function of human monocyte-derived DC. In addition to its impact on DC maturation and secretion of IL-10 and IL-27, we observed an increase of Th17 response in patients treated with 5-AZA. On the other hand, VPA, significantly altered the phenotype and function of mature DC resulting in a decreased expression of costimulatory molecules, and decreased secretion of IL-12p70, IL-10, and IL-23. Consequently, the secretion of IFNγ by CD4+ T cells (Th1 profile) was also reduced suggesting a decreased of allo-stimulatory capacity of DC treated with VPA. Taken together, the latter findings suggest an important role of these epigenetic drugs for the manipulation of DC in the context of cancer immunotherapy or treatment of auto-immune diseases
Carbonneil, Cédric. "Caractérisation phénotypique et fonctionnelle de cellules dendritiques différenciées en présence de GM-CSF et d'Interféron-α, dérivées de monocytes issus de donneurs sains ou infectés par le VIH." Paris 5, 2003. http://www.theses.fr/2003PA05N081.
Full textIn these studies, we have demonstrated the ability of the GM-CSF/IFN-α combination to differentiate DC from monocytes isolated from healthy donors. These IFN-DCs stimulatemore efficiently CD8+T lymphocytes, stimulate as efficiently memory CD4+ T cells but stimulate weakly naive CD4+ T lymphocytes, as compared with IL-4-DC. IFN-DC also induce stronger generation of Th1 et Tr1 cells. When derived from monocytes isolated from HIV-infected patients, both population stimulate CD8+ T lymphocytes but weakly stimulate CD4+ T cells. In the presence of anti-il-10 neutralizing antibodies, the proliferation of CD4+ T cells induced by DC is significantly.
Books on the topic "Précurseurs des cellules dendritiques"
Lutz, Manfred B., Nikolaus Romani, and A. Steinkasserer. Handbook of dendritic cells: Biology, diseases, and therapies. Weinheim: Wiley-VCH, 2006.
Find full text(Editor), Manfred B. Lutz, Nikolaus Romani (Editor), Alexander Steinkasserer (Editor), and Ralph M. Steinman (Introduction), eds. Handbook of Dendritic Cells: Biology, Diseases and Therapies (3 Volume ). Wiley-VCH, 2006.
Find full textEduard W. A. Kamperdijk (Editor), Paul Nieuwenhuis (Editor), and Elizabeth C.M. Hoefsmit (Editor), eds. Dendritic Cells in Fundamental and Clinical Immunology: Volume 1 (Advances in Experimental Medicine and Biology). Springer, 1993.
Find full textRicciardi-Castagnoli, Paola. Dendritic Cells in Fundamental and Clinical Immunology: Volume 3. Springer London, Limited, 2013.
Find full textRicciardi-Castagnoli, Paola. Dendritic Cells in Fundamental and Clinical Immunology. Springer, 2013.
Find full textRicciardi-Castagnoli, Paola. Dendritic Cells in Fundamental and Clinical Immunology: Volume 3 (Advances in Experimental Medicine and Biology). Springer, 1997.
Find full textBook chapters on the topic "Précurseurs des cellules dendritiques"
Dalle, S., and T. Petrella. "Tumeur à cellules dendritiques plasmocytoïdes blastiques." In Les lymphomes cutanés, 239–46. Paris: Springer Paris, 2013. http://dx.doi.org/10.1007/978-2-8178-0354-8_23.
Full textYiou, R. "Les cellules précurseurs musculaires." In Les incontinences urinaires de l’homme, 331–38. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-287-99160-8_35.
Full textAspord, Caroline, Joël Plumas, and Laurence Chaperot. "6. Vaccination par cellules dendritiques." In Immunothérapie des cancers au troisième millénaire, 85–108. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1888-4-007.
Full textAspord, Caroline, Joël Plumas, and Laurence Chaperot. "6. Vaccination par cellules dendritiques." In Immunothérapie des cancers au troisième millénaire, 85–108. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1888-4.c007.
Full textConference papers on the topic "Précurseurs des cellules dendritiques"
Oujdad, S., S. Zafad, H. El Attar, and I. Ben Yahya. "Histiocytose langerhansienne de l’adulte : à propos d’un cas." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603013.
Full text