Academic literature on the topic 'Preclinical cancer models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Preclinical cancer models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Preclinical cancer models"
KARNEZIS, ANTHONY N., and KATHLEEN R. CHO. "Preclinical Models of Ovarian Cancer." Clinical Obstetrics and Gynecology 60, no. 4 (December 2017): 789–800. http://dx.doi.org/10.1097/grf.0000000000000312.
Full textSedlack, Andrew J. H., Samual J. Hatfield, Suresh Kumar, Yasuhiro Arakawa, Nitin Roper, Nai-Yun Sun, Naris Nilubol, et al. "Preclinical Models of Adrenocortical Cancer." Cancers 15, no. 11 (May 23, 2023): 2873. http://dx.doi.org/10.3390/cancers15112873.
Full textSewduth, Raj N., and Konstantina Georgelou. "Relevance of Carcinogen-Induced Preclinical Cancer Models." Journal of Xenobiotics 14, no. 1 (January 5, 2024): 96–109. http://dx.doi.org/10.3390/jox14010006.
Full textJeon, Min Ji, and Bryan R. Haugen. "Preclinical Models of Follicular Cell-Derived Thyroid Cancer: An Overview from Cancer Cell Lines to Mouse Models." Endocrinology and Metabolism 37, no. 6 (December 31, 2022): 830–38. http://dx.doi.org/10.3803/enm.2022.1636.
Full textMcIntyre, Rebecca E., Simon J. A. Buczacki, Mark J. Arends, and David J. Adams. "Mouse models of colorectal cancer as preclinical models." BioEssays 37, no. 8 (June 26, 2015): 909–20. http://dx.doi.org/10.1002/bies.201500032.
Full textZhu, Shaoming, Zheng Zhu, Ai-Hong Ma, Guru P. Sonpavde, Fan Cheng, and Chong-xian Pan. "Preclinical Models for Bladder Cancer Research." Hematology/Oncology Clinics of North America 35, no. 3 (June 2021): 613–32. http://dx.doi.org/10.1016/j.hoc.2021.02.007.
Full textRodriguez, Cynthia, Paloma Valenzuela, Natzidielly Lerma, and Giulio Francia. "Preclinical Models to Study Breast Cancer." Clinical Cancer Drugs 1, no. 2 (May 31, 2014): 90–99. http://dx.doi.org/10.2174/2212697x113026660005.
Full textKim, Minlee, Andrea L. Kasinski, and Frank J. Slack. "MicroRNA therapeutics in preclinical cancer models." Lancet Oncology 12, no. 4 (April 2011): 319–21. http://dx.doi.org/10.1016/s1470-2045(11)70067-5.
Full textJoshi, Kirtan, Tejas Katam, Akshata Hegde, Jianlin Cheng, Randall S. Prather, Kristin Whitworth, Kevin Wells, et al. "Pigs: Large Animal Preclinical Cancer Models." World Journal of Oncology 15, no. 2 (April 2024): 149–68. http://dx.doi.org/10.14740/wjon1763.
Full textSedlack, Andrew J. H., Kimia Saleh-Anaraki, Suresh Kumar, Po Hien Ear, Kate E. Lines, Nitin Roper, Karel Pacak, et al. "Preclinical Models of Neuroendocrine Neoplasia." Cancers 14, no. 22 (November 17, 2022): 5646. http://dx.doi.org/10.3390/cancers14225646.
Full textDissertations / Theses on the topic "Preclinical cancer models"
Chaffee, Beth K. "Preclinical Modeling of Musculoskeletal Cancer." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376844544.
Full textDelgado, San Martin Juan A. "Mathematical models for preclinical heterogeneous cancers." Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=230139.
Full textPEDERZOLI, FILIPPO. "Microbiome and bladder cancer." Doctoral thesis, Università Vita-Salute San Raffaele, 2021. http://hdl.handle.net/20.500.11768/121778.
Full textThe microbiome has gained increasing momentum in cancer research, as it has become clear that microorganisms residing within our body are involved in mediating the cellular and tissue metabolism in health and disease. In bladder cancer research, there are different microbial communities that may mediate cancer pathobiology and response to therapy: the gut microbiome, the urinary microbiome, the urothelium-bound microbiome. These bacterial communities may mediate the processes of carcinogenesis or recurrence, modify the response to local intravesical therapies or influence the activity of systemic anticancer protocols. Based on these premises, my research project aimed to unveil the urinary and urothelium-bound microbiome in therapy-naïve bladder cancer patients, describing the differently enriched bacterial communities using a sex-based stratification. Compared to healthy controls, I found that the urine of men affected by bladder cancer were enriched in the order Opitutales and subordinate family Opitutaceae, together with the isolated class Acidobacteria-6, while in female patients I found enriched the genus Klebsiella. Notably, the bladder cancer tissue was enriched in the genus Burkholderia in both men and women, when compared to non-neoplastic, paired urothelium biopsies. Then, I also characterized the gut microbiome of bladder cancer patients undergoing neoadjuvant pembrolizumab to understand if the intestinal bacteria may influence the immune-mediated anticancer activity. In this set, I have reported that antibiotic therapy has a negative effect on immunotherapy efficacy. Second, the gut microbiome of patients not responding to neoadjuvant pembrolizumab was characterized by a higher abundance of Ruminococcus bromii, while patients who showed a response were enriched in the genus Sutterella. Lastly, I started the implementation of in vivo and in vitro systems to test the mechanistic role of the bacteria identified in human samples. This thesis work reported innovative data on the role of different microbial communities (urinary/urothelium-bound/fecal) in bladder cancer and bladder cancer therapy, and provided novel in vivo and in vitro models to validate those finding and uncover the complex microbiome-host cells crosstalk in bladder cancer patients.
Benoni, Alexandra. "Oxytocin, as a hormonal treatment for cachexia in preclinical models." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS290.pdf.
Full textOxytocin (OT), a neurohypophyseal hormone, affects the central nervous system (CNS), uterus, and mammary glands. OT has recently been shown to promote myogenic differentiation and muscle regeneration. Indeed, OT levels decrease with age and its exogenous administration counteracts sarcopenia in aged mice. Cachexia is a syndrome characterized by severe muscle wasting. We noticed lower levels of circulating OT in cachectic cancer patients. To prove that OT inhibits tumor-derived factors, we first performed in vitro experiments showing that the inhibition of myogenic differentiation exerted by C26 tumor-conditioned medium (CM) is reversed by co-treatment with OT. We confirmed in vivo that OT accelerated muscle regeneration following focal injury, inhibited by TNF. In a preclinical model, OT restored skeletal muscle mass, fiber size, and inhibited protein catabolism. We focused on the effects of tumor and OT on protein metabolism, specifically labeling newly synthesized proteins. In myoblasts co-cultured with tumor cells, we observed a decrease in newly synthesized proteins, counteracted by OT treatment. We show for the first time that OT is effective in counteracting the effects of tumor-derived factors
MINOLI, LUCIA. "TUMOR MICROENVIRONMENT IN EXPERIMENTAL PRECLINICAL MOUSE MODELS OF HUMAN CANCER: MORPHOLOGICAL APPROACH." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/704551.
Full textCasagrande, Naike. "Anticancer activity of liposomal cisplatin in preclinical models of cervical and ovarian cancer." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423785.
Full textIl cisplatino è uno dei farmaci più utilizzati per il trattamento del carcinoma della cervice e dell‟ovaio. Purtroppo il suo utilizzo in chemioterapia presenta importanti limitazioni, quali l‟elevata tossicità e l‟insorgenza di resistenza intrinseca o acquisita. Il lipoplatino è una formulazione liposomiale del cisplatino (Regulon, Inc., Mt. View, U.S.A), sintetizzata allo scopo di ridurre la tossicità sistemica del cisplatino e contemporaneamente di incrementarne l‟accumulo nel tumore primario e nelle metastasi. Studi clinici di Fase II e III sono stati effettuati in diversi tumori ma non nel carcinoma della cervice uterina e dell‟ovaio. In questo lavoro è stata analizzata l‟attività antitumorale del lipoplatino in modelli preclinici di carcinoma della cervice uterina e carcinoma ovarico sensibili e resistenti al cisplatino. L‟attività antiproliferativa del lipoplatino è stata studiata nella linea cellulare derivata da carcinoma della cervice uterina ME-180 e nel suo clone resistente al cisplatino R-ME-180, come pure in un pannello di linee cellulari derivanti da carcinoma ovarico: A2780, il suo clone cisplatino-resistente A2780cis, MDAH, OVACR3, OVCAR5, SKOV3, e TOV21G. Il cisplatino è stato introdotto nello studio come farmaco di riferimento. I risultati hanno dimostrato che il lipoplatino esibisce una potente attività antitumorale in tutte le linee cellulari analizzate, incluse le cisplatino-resistenti, dimostrando assenza di cross-resistenza con il farmaco cisplatino. Il lipoplatino induce apoptosi, valutata tramite l‟esternalizzazione della fosfatidilserina (marcatore precoce di apoptosi) e la frammentazione del DNA. In particolare, il lipoplatino attiva la via mitocondriale dell'apoptosi, come dimostrato dalla depolarizzazione della membrana mitocondriale, il rilascio del citocromo-c , la diminuzione dell‟espressione della proteina anti-apoptotica Bcl-2, l‟incremento dell‟espressione della molecola pro-apoptotica Bax e l‟attivazione delle caspasi 9 e 3. Nelle stesse condizioni sperimentali il cisplatino attiva l‟apoptosi soltanto in cellule sensibili al cisplatino. L‟enzima tioredoxina reduttasi (TrxR) svolge una funzione ossidoriduttiva proteggendo la cellula da stress ossidativo. Un elevato livello dell‟enzima si osserva in diversi tipi di tumore e sembra essere associato alla resistenza al cisplatino. I miei studi hanno dimostrato che il lipoplatino, ma non il cisplatino, inibisce l‟attività enzimatica della TrxR incrementando la produzione di radicali liberi dell‟ossigeno (ROS). Inoltre il lipoplatino riduce l‟espressione del recettore del fattore di crescita dell‟epidermide (EGFR), un recettore di membrana over-espresso nei tumori, coinvolto nella proliferazione e nella migrazione delle cellule tumorali. Anche la migrazione e l‟invasione cellulare vengono ridotte dal trattamento con lipoplatino. Molto spesso in chemioterapia si somministra una combinazione di più farmaci (polichemioterapia) per ottenere un effetto additivo e/o sinergico. Si è quindi combinato il lipoplatino con i chemioterapici più utilizzati nel trattamento del carcinoma ovarico. La combinazione del lipoplatino con i farmaci doxorubicina e abraxane dimostra effetti sinergici, mentre la combinazione con docetaxel e paclitaxel è meno efficace con effetti quasi additivi. Nell‟ascite di pazienti affette da carcinoma ovarico si possono ritrovare aggregati multicellulari, o sferoidi, che sembrano essere coinvolti nella progressione tumorale. Gli sferoidi rappresentano un valido modello sperimentale con caratteristiche biologiche e molecolari simili ai tumori solidi, tra queste la presenza di cellule staminali cancerose, ossia cellule con grandi capacità rigenerative e di resistenza alle terapie in grado di alimentare la crescita del tumore. Il trattamento con lipoplatino diminuisce in maniera dose-dipendente i marcatori di staminalità e inibisce la formazione di sferoidi in entrambi i modelli sperimentali. Inoltre riduce la dimensione, la vitalità e la disseminazione di sferoidi di carcinoma ovarico. Infine il lipoplatino diminuisce la crescita di tumori xenografi derivanti da cellule di carcinoma della cervice uterina e dell‟ovaio con ridotta tossicità. Anche in seguito all‟interruzione del trattamento i tumori non riprendono la crescita. Concludendo il lipoplatino dimostra un‟attività antitumorale in colture cellulari tradizionali, in colture tridimensionali o sferoidi ed in vivo, sia di cellule derivanti da carcinoma della cervice uterina cisplatino-resistenti che da carcinoma ovarico. Questi risultati molto promettenti suggeriscono un potenziale utilizzo di questa formulazione liposomiale di cisplatino per il trattamento di pazienti affette dalle suddette patologie.
García, Parra Jetzabel 1983. "PARP1 expression in breast cancer and effects of its inhibition in preclinical models." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/84173.
Full textEl càncer de mama és la principal causa de mort per càncer en dones. La millora dels tractaments i la detecció precoç estan reduint la taxa de mort, però segueix sent elevada. Identificar noves dianes per predir la resposta a tractaments és clau per millorar les teràpies contra aquest càncer i la supervivència. Els inhibidors de PARP van aparèixer com una teràpia prometedora, particularment en càncers BRCA-mutants, però, cal dur a terme més estudis preclínics i translacionals per fomentar un desenvolupament racional d’aquesta teràpia en càncer de mama. Aquest treball descriu l’expressió de PARP1 en mostres de tumors mamaris i caracteritza els efectes de la seva inhibició a models preclínics. Vam observar que la sobreexpressió nuclear de la proteïna PARP1 fou associada amb: la transformació maligna; mal pronòstic en càncer de mama; i fou més freqüent al subtipus triple-negatiu, però també es va detectar en un subgrup de càncers de mama receptors d’estrogen positius i HER2 positius. En models preclínics, PARP1 va exercir rols diferents als diferents subtipus de càncer de mama. Per altra banda, vam descriure que olaparib (inhibidor de PARP) té efectes antitumorals en els diversos subtipus, i combinat amb trastuzumab (anticòs anti-HER2) potencia els efectes antitumorals d’aquesta teràpia.
Jawad, Dhafer Sahib. "Chemopreventive effect of resveratrol in preclinical colorectal cancer models with different genetic drivers." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/40308.
Full textGronbach, Leonie [Verfasser]. "Organotypic head and neck cancer models for advanced preclinical drug testing / Leonie Gronbach." Berlin : Freie Universität Berlin, 2021. http://d-nb.info/1230407316/34.
Full textChen, Liu Qi. "Development and Application of AcidoCEST MRI for Evaluating Tumor Acidosis in Pre-Clinical Cancer Models." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/323450.
Full textBooks on the topic "Preclinical cancer models"
Tuli, Hardeep Singh, ed. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7586-0.
Full textA, Jones Peter, and Michael Lübbert. Epigenetic Therapy of Cancer: Preclinical Models and Treatment Approaches. Springer London, Limited, 2013.
Find full textA, Jones Peter, and Michael Lübbert. Epigenetic Therapy of Cancer: Preclinical Models and Treatment Approaches. Springer, 2016.
Find full textA, Jones Peter, and Michael Lübbert. Epigenetic Therapy of Cancer: Preclinical Models and Treatment Approaches. Springer, 2014.
Find full textTuli, Hardeep Singh. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Springer Singapore Pte. Limited, 2020.
Find full textTuli, Hardeep Singh. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Springer Singapore Pte. Limited, 2021.
Find full textFiebig, H. H. Revelance Of Tumor Models For Anticancer Drug Development (CONTRIBUTIONS TO ONCOLOGY). Edited by H. H. Fiebig. Karger, 1999.
Find full textLee, Gregory. Epitope/Peptide-Based Monoclonal Antibodies for Immunotherapy of Ovarian Cancer. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190248208.003.0007.
Full textPowell, Craig M. PTEN and Autism With Macrocepaly. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199744312.003.0010.
Full textBook chapters on the topic "Preclinical cancer models"
Mika, Joanna, Wioletta Makuch, and Barbara Przewlocka. "Preclinical Cancer Pain Models." In Cancer Pain, 71–93. London: Springer London, 2013. http://dx.doi.org/10.1007/978-0-85729-230-8_6.
Full textCheng, Menglin, and Kristine Glunde. "Magnetic Resonance Spectroscopy Studies of Mouse Models of Cancer." In Preclinical MRI, 331–45. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7531-0_20.
Full textTeicher, Beverly A. "Preclinical Tumor Response End Points." In Tumor Models in Cancer Research, 571–605. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-968-0_23.
Full textMorton, Christopher L., and Peter J. Houghton. "The Pediatric Preclinical Testing Program." In Tumor Models in Cancer Research, 195–213. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-968-0_8.
Full textBoss, Mary-Keara, Gregory M. Palmer, and Mark W. Dewhirst. "Imaging the Hypoxic Tumor Microenvironment in Preclinical Models." In Hypoxia and Cancer, 157–78. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9167-5_7.
Full textGerner, Eugene W., Natalia A. Ignatenko, and David G. Besselsen. "Preclinical Models for Chemoprevention of Colon Cancer." In Tumor Prevention and Genetics, 58–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55647-0_6.
Full textYang, Ying, Wen-Jian Meng, and Zi-Qiang Wang. "Preclinical Models in Colorectal Cancer Drug Discovery." In Handbook of Animal Models and its Uses in Cancer Research, 1097–106. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-3824-5_56.
Full textYang, Ying, Wen-Jian Meng, and Zi-Qiang Wang. "Preclinical Models in Colorectal Cancer Drug Discovery." In Handbook of Animal Models and its Uses in Cancer Research, 1–10. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1282-5_56-1.
Full textJuvekar, Aarti S., Joyce Thompson, Clinton F. Stewart, and Peter J. Houghton. "Preclinical Models for Evaluating Topoisomerase I-Targeted Drugs." In Camptothecins in Cancer Therapy, 127–51. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-866-8:127.
Full textCarbajal, Eletha, and Eric C. Holland. "Mouse Models in Preclinical Drug Development: Applications to CNS Models." In Genetically Engineered Mice for Cancer Research, 549–67. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-69805-2_26.
Full textConference papers on the topic "Preclinical cancer models"
Bouvet, Michael, and Robert M. Hoffman. "Preclinical fluorescent mouse models of pancreatic cancer." In Biomedical Optics (BiOS) 2007, edited by Samuel Achilefu, Darryl J. Bornhop, Ramesh Raghavachari, Alexander P. Savitsky, and Rebekka M. Wachter. SPIE, 2007. http://dx.doi.org/10.1117/12.708060.
Full textDuchamp, Olivier, Gael Krysa, Robin Artus, Hugo Quillery, Maxime Ramelet, Valerie Boullay, Laure Levenez, et al. "Abstract 5638: Liver preclinical models - acute, chronic and cancer models." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-5638.
Full textRosen, JM. "Abstract DL-1: Leveraging Preclinical Models of Breast Cancer." In Abstracts: 2017 San Antonio Breast Cancer Symposium; December 5-9, 2017; San Antonio, Texas. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.sabcs17-dl-1.
Full textBamberg, C., I. Witzel, A. Wöckel, S. Seiler, S. Loibl, K. Thiele, A. Diemert, and PC Arck. "Breast cancer during pregnancy: from preclinical models to clinical studies." In 64. Kongress der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe e. V. Georg Thieme Verlag, 2022. http://dx.doi.org/10.1055/s-0042-1756750.
Full textNguyen, Holly M., Colm Morrissey, Peter S. Nelson, Xiaotun Zhang, Paul H. Lange, Robert L. Vessella, and Eva Corey. "Abstract 1214: Preclinical models of prostate cancer: New patient-derived xenografts for preclinical studies and evaluation of prostate cancer biology." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1214.
Full textKHOO, Bee Luan, and Jing Zhang. "Anti-inflammatory combinatorial therapy to enhance killing efficacy with patient-derived preclinical models." In The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iecc2021-09204.
Full textTrachet, Erin E., Sumithra Urs, Alden Wong, Scott Wise, and Maryland Rosenfeld Franklin. "Abstract 1928: Radiation response in preclinical orthotopic models of brain cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1928.
Full textTrachet, Erin E., Sumithra Urs, Alden Wong, Scott Wise, and Maryland Rosenfeld Franklin. "Abstract 1928: Radiation response in preclinical orthotopic models of brain cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1928.
Full textShannon, Kevin. "Abstract IA14: Preclinical models for targeting oncogenic Ras signaling in cancer." In Abstracts: AACR Special Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies; September 20-23, 2014; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3265.hemmal14-ia14.
Full textFreed-Pastor, William A., Laurens Lambert, Ana P. Garcia, George Eng, Omer Yilmaz, and Tyler Jacks. "Abstract PR14: Preclinical models to dissect immune escape in pancreatic cancer." In Abstracts: AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; September 6-9, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.panca19-pr14.
Full textReports on the topic "Preclinical cancer models"
Gregerson, Karen A. Human-Compatible Animal Models for Preclinical Research on Hormones in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada574629.
Full textJiang, Weiqin, and Zongjian Zhu. Exploitation of Nontraditional Crop, Yacon, in Breast Cancer Prevention Using Preclinical Rat Model. Fort Belvoir, VA: Defense Technical Information Center, July 2010. http://dx.doi.org/10.21236/ada541863.
Full textAbate-Shen, Corry. Preclinical Studies of Signaling Pathways in a Mutant Mouse Model of Hormone-Refractory Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada549157.
Full textKumar, Aishani, Thendral Yalini, and Sunil Kumar C. Unlocking Cellular Control: The Promise of PROTACs in Disease Intervention. Science Reviews - Biology, May 2024. http://dx.doi.org/10.57098/scirevs.biology.3.2.1.
Full text