Academic literature on the topic 'Precision agriculture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Precision agriculture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Precision agriculture"
Bujdos, Ágnes. "Precision Agriculture." Hungarian Yearbook of International Law and European Law 6, no. 1 (December 2018): 371–88. http://dx.doi.org/10.5553/hyiel/266627012018006001022.
Full textGoss, Michael J. "Precision agriculture." Field Crops Research 55, no. 3 (February 1998): 285–87. http://dx.doi.org/10.1016/s0378-4290(97)00082-8.
Full textBranzova, Petia. "PRECISION AGRICULTURE: TECHNOLOGICAL INNOVATIONS FOR SUSTAINABLE AGRICULTURE." Economic Thought journal 69, no. 1 (May 14, 2024): 24–36. http://dx.doi.org/10.56497/etj2469102.
Full textŠilha, J., P. Hamouz, V. Táborský, K. Štípek, J. Šnobl, K. Voříšek, L. Růžek, L. Brodský, and K. Švec. "Case studies for precision agriculture." Plant Protection Science 38, SI 2 - 6th Conf EFPP 2002 (December 31, 2017): 704–10. http://dx.doi.org/10.17221/10595-pps.
Full textLoveleen, L., and S. Pillai. "Precision Agriculture Innovation in Agriculture." CARDIOMETRY, no. 25 (February 14, 2023): 678–84. http://dx.doi.org/10.18137/cardiometry.2022.25.678684.
Full textDr. V. B. Kirubanand, Dr Rohini v,. "Environment based Precision Agriculture." Psychology and Education Journal 58, no. 2 (February 17, 2021): 6157–64. http://dx.doi.org/10.17762/pae.v58i2.3133.
Full textRimpika, Anushi, S. Manasa, Anusha K. N., Sakshi Sharma, Abhishek Thakur, Shilpa, and Ankita Sood. "An Overview of Precision Farming." International Journal of Environment and Climate Change 13, no. 12 (December 21, 2023): 441–56. http://dx.doi.org/10.9734/ijecc/2023/v13i123701.
Full textMcClure, Julie. "Deconstructing Precision Agriculture." CSA News 60, no. 4 (April 2015): 26. http://dx.doi.org/10.2134/csa2015-60-4-15.
Full textBruce, D. M., J. W. Farrent, C. L. Morgan, and R. D. Child. "PA—Precision Agriculture." Biosystems Engineering 81, no. 2 (February 2002): 179–84. http://dx.doi.org/10.1006/bioe.2001.0002.
Full textSnell, H. G. J., C. Oberndorfer, W. Lücke, and H. F. A. Van den Weghe. "PA—Precision Agriculture." Biosystems Engineering 82, no. 3 (July 2002): 269–77. http://dx.doi.org/10.1006/bioe.2002.0074.
Full textDissertations / Theses on the topic "Precision agriculture"
Window, Marc. "Security in Precision Agriculture : Vulnerabilities and risks of agricultural systems." Thesis, Luleå tekniska universitet, Datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74309.
Full textBOTTA, ANDREA. "Agri.Q - Sustainable Rover for Precision Agriculture." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2963950.
Full textDiaz, John Faber Archila. "Design of a Rover to precision agriculture applications." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/18/18149/tde-21112017-160424/.
Full textO crescimento populacional associado à escassez de recursos naturais, a crescente demanda alimentar e a falta de mão de obra para as actividades agrícolas geram importantes desafios para a agricultura e a engenharia. Os desafios implicam a melhoria da produtividade com menos recursos. O cenário é constituido por parâmetros que geralmente estão em direções opostas. O trabalho apresenta o desenvolvimento de um rover para agricultura (R2A) para suportar tarefas de Scouting, tarefas que no futuro melhorarão a produtividade e permitirão o uso de menos subministros agrícolas. O estudo começa pela revisão bibliográfica de Robôs para agricultura, Rovers e Rovers agrícolas desenvolvidos por diferentes instituições de pesquisa. Apos a revisão é apresentada a metodologia do trabalho baseada nas metodologias de projeto mecânico e mecatrônico; no desenvolvimento da metodologia são apresentadas as caraterísticas das culturas de maneira geral, a proposta de tarefas de Scouting, o benchmarking desenvolvendo modelos matemáticos, modelos CAD (Computer Aided Design) simulações e testes com o intuito de conhecer as diferentes caraterísticas dos Rovers e Robôs agrícolas. Usando o conhecimento no decorrer do trabalho é proposto o conceito do rover para agricultura R2A, o conceito é comparado em simulações, e feito o projeto detalhado usando ferramentas CAE (Computer Aided Enginnerring), após é construído o protótipo, e testado. Como resultados são apresentadas simulações comparativas do R2A, a sua modelagem matemática, simulações do R2A em condições ideais, destacando as suas capacidades, e finalmente são apresentados os testes e comparações do R2A.
Lundblad, Lowe, and Anna-Liisa Rissanen. "Precision Agriculture and Access to Agri-Finance : How precision technology can make farmers better applicants." Thesis, Umeå universitet, Företagsekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149677.
Full textUludag, Tuba. "LoRaWAN IoT Networks for Precision Agriculture Applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textShockley, Jordan Murphy. "WHOLE FARM MODELING OF PRECISION AGRICULTURE TECHNOLOGIES." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/105.
Full textRussell, David C. "DEM creation for application in precision agriculture." Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366365.
Full textFaiçal, Bruno Squizato. "The Use of Computational Intelligence for Precision Spraying of Plant Protection Products." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02032017-155603/.
Full textO manejo de proteção com uso de produtos fitofarmacêuticos possibilita o controle de pragas em ambientes agrícolas, tornando-o menos nocivo para o desenvolvimento da cultura e com produção em grande escala. Porém, apenas uma pequena parte do produto pulverizado realmente é depositado na área alvo enquanto a maior parte do produto sofre deriva para regiões vizinhas. A literatura científica possui trabalhos com o uso de técnicas matemáticas para calcular a transformação física e movimento para estimar a deposição do produto. Com base nessa predição é possível configurar o sistema de pulverização para realizar a pulverização sob uma condição meteorológica comum na região para um desempenho satisfatório, mas as condições meteorológicas podem sofrer alterações e tornar qualquer configuração estática ineficiente. Uma alternativa para esse problema é realizar a adaptação da atuação do elemento pulverizador às condições meteorológicas durante a execução do manejo de proteção. Contudo, as técnicas existentes são computacionalmente custosas para serem executadas, tornando-as inadequadas para situações em que é requerido baixo tempo de execução. Esta tese se concentra no contexto descrito com objetivo de permitir a predição da deposição de forma rápida e precisa. Assim, espera-se que as novas abordagens sejam capazes de possibilitar a adaptação do elemento pulverizador às condições meteorológicas durante a realização do manejo de proteção. Este trabalho inicia com o processo de redução do custo de execução de um modelo computacional do ambiente, tornando sua execução mais rápida. Posteriormente, utiliza-se este modelo computacional para predição da deposição como função Fitness em algoritmos de meta-heurística para adaptar o comportamento do elemento pulverizador às condições meteorológicas durante a realização do manejo. Os resultados desta abordagem demonstram que é possível utilizá-la para realizar a adaptação em ambientes com baixa variabilidade. Por outro lado, pode apresentar baixo desempenho em ambientes com alta variabilidade nas condições meteorológicas. Uma segunda abordagem é investigada e analisada para este cenário, onde o processo de adaptação requer um tempo de execução reduzido. Nesta segunda abordagem é utilizado uma técnica de Aprendizado de Máquina treinada com os resultados gerados pela primeira abordagem em diferentes cenários. Os resultados obtidos demonstram que essa abordagem possibilita realizar a adaptação do elemento pulverizador compatível com a proporcionada pela abordagem anterior em um menor espaço de tempo.
Colaizzi, Paul Dominic. "Ground based remote sensing for irrigation management in precision agriculture." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/280497.
Full textBrown, Rachael M. "Economic Optimization and Precision Agriculture: A Carbon Footprint Story." UKnowledge, 2013. http://uknowledge.uky.edu/agecon_etds/11.
Full textBooks on the topic "Precision agriculture"
Stafford, J., and A. Werner, eds. Precision Agriculture. The Netherlands: Wageningen Academic Publishers, 2003. http://dx.doi.org/10.3920/978-90-8686-514-7.
Full textBrase, Terry A. Precision agriculture. Clifton Park, NY: Thomson Delmar Learning, 2006.
Find full textV, Lake J., Bock Gregory, Goode Jamie, European Environmental Research Organisation, Ciba Foundation, and Symposium on Precision Agriculture (1997 : Wageningen, Netherlands), eds. Precision agriculture. Chichester: Wiley, 1997.
Find full textStafford, J. V., ed. Precision Agriculture '05. The Netherlands: Wageningen Academic Publishers, 2005. http://dx.doi.org/10.3920/978-90-8686-549-9.
Full textStafford, J. V., ed. Precision agriculture ‘07. The Netherlands: Wageningen Academic Publishers, 2007. http://dx.doi.org/10.3920/978-90-8686-603-8.
Full textvan Henten, E. J., D. Goense, and C. Lokhorst, eds. Precision agriculture '09. The Netherlands: Wageningen Academic Publishers, 2009. http://dx.doi.org/10.3920/978-90-8686-664-9.
Full textStafford, John V., ed. Precision agriculture '13. The Netherlands: Wageningen Academic Publishers, 2013. http://dx.doi.org/10.3920/978-90-8686-778-3.
Full textStafford, John V., ed. Precision agriculture '15. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-814-8.
Full textKent Shannon, D., David E. Clay, and Newell R. Kitchen, eds. Precision Agriculture Basics. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2018. http://dx.doi.org/10.2134/precisionagbasics.
Full textCammarano, Davide, Frits K. van Evert, and Corné Kempenaar, eds. Precision Agriculture: Modelling. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15258-0.
Full textBook chapters on the topic "Precision agriculture"
Thorp, Kelly. "Precision Agriculture." In Encyclopedia of Remote Sensing, 515–17. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-0-387-36699-9_132.
Full textReddy, P. Parvatha. "Precision Agriculture." In Agro-ecological Approaches to Pest Management for Sustainable Agriculture, 295–309. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4325-3_19.
Full textFountas, Spyros, Katerina Aggelopoulou, and Theofanis A. Gemtos. "Precision Agriculture." In Supply Chain Management for Sustainable Food Networks, 41–65. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118937495.ch2.
Full textTarabella, Angela, Leonello Trivelli, and Andrea Apicella. "Precision Agriculture." In SpringerBriefs in Food, Health, and Nutrition, 79–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-23811-1_6.
Full textOzguven, Mehmet Metin. "Precision Agriculture." In The Digital Age in Agriculture, 1–28. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/b23229-1.
Full textAbobatta, Waleed Fouad. "Precision Agriculture." In Precision Agriculture Technologies for Food Security and Sustainability, 23–45. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5000-7.ch002.
Full textLeonard, E. C. "Precision Agriculture." In Encyclopedia of Food Grains, 162–67. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-394437-5.00203-5.
Full textLeonard, E. C. "Precision Agriculture." In Reference Module in Food Science. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-08-100596-5.00203-1.
Full textWalker, Joel, Matthew Sullivan, and Reza Ehsani. "Precision Agriculture." In Encyclopedia of Soil Science, Second Edition. CRC Press, 2005. http://dx.doi.org/10.1201/noe0849338304.ch288.
Full text"Precision Agriculture." In Encyclopedia of Big Data, 757. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-32010-6_300169.
Full textConference papers on the topic "Precision agriculture"
Gaines E. Miles, Daniel R. Ess, R. Mack Strickland, and Mark T. Morgan. "Agricultural Systems Management Technologies for Precision Agriculture." In 2002 Chicago, IL July 28-31, 2002. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2002. http://dx.doi.org/10.13031/2013.10370.
Full text"5 Precision Agriculture." In CIGR Handbook of Agricultural Engineering Volume VI: Information Technology . St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21676.
Full textSUÁREZ BARÓN, Marco Javier, Angie Lizeth GOMEZ AGUDELO, and Juana Valentina GARCIA ARIZA. "PRECISION AGRICULTURE (PA) SUPPORT OF INCREASING AGRICULTURAL PRODUCTIVITY." In 10th International Conference on Management. Mendelova univerzita v Brně, 2021. http://dx.doi.org/10.11118/978-80-7509-820-7-0356.
Full textDarr, Matt. "Trends in Precision Agriculture." In Proceedings of the 19th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2008. http://dx.doi.org/10.31274/icm-180809-918.
Full textMoutsinas, Ioannis, Antonis Kalkanof, John Mavridis, Vassilis Zafeiris, Foteini Oikonomou, Georgios Tziokas, Kostas Themelis, et al. "AgroNIT: Innovating Precision Agriculture." In 2022 Global Information Infrastructure and Networking Symposium (GIIS). IEEE, 2022. http://dx.doi.org/10.1109/giis56506.2022.9937000.
Full textChesnokov, Yuriy. "Value of QTL analysis in precision agriculture system." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.32.
Full textJiaqiang Zheng, Hongping Zhou, Youlin Xu, and Linyun Xu. "From Precision Agriculture and Precision Forestry to Biomechinfotronics." In 2006 Portland, Oregon, July 9-12, 2006. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21062.
Full textSlave, Camelia, and Carmen Mihaela Man. "The Use of GIS Technologies in the Monitoring Grapevine Plantation." In 7th International Scientific Conference – EMAN 2023 – Economics and Management: How to Cope With Disrupted Times. Association of Economists and Managers of the Balkans, Belgrade, Serbia, 2023. http://dx.doi.org/10.31410/eman.2023.271.
Full textRomanov, V., D. Artemenko, I. Galelyuka, O. Kovyrova, Ye Sarakhan, and V. Fedak. "Computer devices for precision agriculture." In 2011 IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2011. http://dx.doi.org/10.1109/idaacs.2011.6072704.
Full textAnghelof, Madalina Mioara, George Suciu, Razvan Craciunescu, and Cristina Marghescu. "Intelligent System for Precision Agriculture." In 2020 13th International Conference on Communications (COMM). IEEE, 2020. http://dx.doi.org/10.1109/comm48946.2020.9141981.
Full textReports on the topic "Precision agriculture"
DeWitt, Jerald R., William Lotz, George Cummins, and Kenneth T. Pecinovsky. Precision Agriculture Demonstration Project. Ames: Iowa State University, Digital Repository, 2002. http://dx.doi.org/10.31274/farmprogressreports-180814-2228.
Full textBrown, R. J., K. Staenz, H. McNairn, B. Hopp, and R. van Acker. Application of High Resolution Optical Imagery to Precision Agriculture. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/218969.
Full textResearch Institute (IFPRI), International Food Policy. Climate-smart agriculture practices based on precision agriculture: the case of maize in western Congo. Washington, DC: International Food Policy Research Institute, 2017. http://dx.doi.org/10.2499/9780896292949_07.
Full textBrisco, B., R. J. Brown, T. Hirose, H. McNairn, and K. Staenz. Precision Agriculture and the Role of Remote Sensing: A Review. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/219370.
Full textvan Boheemen, K., J. Riepma, and J. F. M. Huijsmans. Precision Agriculture and Crop Protection = (Precisielandbouw en Gewasbescherming) : Definitions and the relation between precision-applications and the authorisation procedure of PPPs. Wageningen: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Agrosystems Research, 2022. http://dx.doi.org/10.18174/566499.
Full textResearch Institute (IFPRI), International Food Policy. Protected agriculture, precision agriculture, and vertical farming: Brief reviews of issues in the literature focusing on the developing region in Asia. Washington, DC: International Food Policy Research Institute, 2019. http://dx.doi.org/10.2499/p15738coll2.133152.
Full textTubb, Catherine, and Tony Seba. Rethinking Food and Agriculture 2020-2030: The Second Domestication of Plants and Animals, the Disruption of the Cow, and the Collapse of Industrial Livestock Farming. RethinkX, September 2019. http://dx.doi.org/10.61322/ijip9096.
Full textMarra de Artiñano, Ignacio, Franco Riottini Depetris, and Christian Volpe Martincus. Automatic Product Classification in International Trade: Machine Learning and Large Language Models. Inter-American Development Bank, July 2023. http://dx.doi.org/10.18235/0005012.
Full textLee, W. S., Victor Alchanatis, and Asher Levi. Innovative yield mapping system using hyperspectral and thermal imaging for precision tree crop management. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598158.bard.
Full textCohen, Yafit, Carl Rosen, Victor Alchanatis, David Mulla, Bruria Heuer, and Zion Dar. Fusion of Hyper-Spectral and Thermal Images for Evaluating Nitrogen and Water Status in Potato Fields for Variable Rate Application. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7594385.bard.
Full text