Academic literature on the topic 'Precipitation variability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Precipitation variability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Precipitation variability"
Maradin, Mladen, and Anita Filipčić. "Spatial Differences in Precipitation Variability of Central Croatia." Hrvatski geografski glasnik/Croatian Geographical Bulletin 74, no. 1 (September 17, 2012): 41–59. http://dx.doi.org/10.21861/hgg.2012.74.01.03.
Full textOzcelik, Ceyhun. "A Regional Approach for Investigation of Temporal Precipitation Changes." Sustainability 13, no. 10 (May 20, 2021): 5733. http://dx.doi.org/10.3390/su13105733.
Full textAmundsen, Eirik S., and Sigve Tjøtta. "Hydroelectric rent and precipitation variability." Energy Economics 15, no. 2 (April 1993): 81–91. http://dx.doi.org/10.1016/0140-9883(93)90026-n.
Full textMaradin, Mladen. "Varijabilnost padalina na području Hrvatske s maritimnim pluviometrijskim režimom." Geoadria 18, no. 1 (June 1, 2013): 3. http://dx.doi.org/10.15291/geoadria.142.
Full textLeščešen, Igor, Dragan Milošević, and Rastislav Stojsavljević. "Variability and trends of precipitation on lowand high-altitude stations in Serbia." Zbornik radova Departmana za geografiju, turizam i hotelijerstvo, no. 50-1 (2021): 14–23. http://dx.doi.org/10.5937/zbdght2101014l.
Full textKienzler, P. M., and F. Naef. "Temporal variability of subsurface stormflow formation." Hydrology and Earth System Sciences Discussions 4, no. 4 (July 5, 2007): 2143–67. http://dx.doi.org/10.5194/hessd-4-2143-2007.
Full textRamaroson, Voahirana, Joel Rajaobelison, Lahimamy P. Fareze, Falintsoa A. Razafitsalama, Mamiseheno Rasolofonirina, and Christian U. Rakotomalala. "Water Stable Isotope Composition of Precipitations at Two Stations in Antananarivo-Madagascar: A Comparative Study." Earth Science Research 11, no. 1 (January 26, 2022): 1. http://dx.doi.org/10.5539/esr.v11n1p1.
Full textKienzler, P. M., and F. Naef. "Temporal variability of subsurface stormflow formation." Hydrology and Earth System Sciences 12, no. 1 (February 18, 2008): 257–65. http://dx.doi.org/10.5194/hess-12-257-2008.
Full textChelton, Dudley B., and Craig M. Risien. "A Hybrid Precipitation Index Inspired by the SPI, PDSI, and MCDI. Part II: Application to Investigate Precipitation Variability along the West Coast of North America." Journal of Hydrometeorology 21, no. 9 (September 1, 2020): 1977–2002. http://dx.doi.org/10.1175/jhm-d-19-0231.1.
Full textMaradin, Mladen, and Ivan Madžar. "Geographical Distribution of Precipitation Variability in Croatia and Bosnia and Herzegovina." Hrvatski geografski glasnik/Croatian Geographical Bulletin 76, no. 2 (February 23, 2015): 5–26. http://dx.doi.org/10.21861/hgg.2014.76.02.01.
Full textDissertations / Theses on the topic "Precipitation variability"
Guo, Zhichang. "Spatial and temporal variability of modern Antarctic precipitation /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu148640228826226.
Full textMojzisek, Jan, and n/a. "Precipitation variability in the South Island of New Zealand." University of Otago. Department of Geography, 2006. http://adt.otago.ac.nz./public/adt-NZDU20070503.151144.
Full textBashir, Furrukh, and Furrukh Bashir. "Hydrometeorological Variability over Pakistan." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/626357.
Full textScott, Michael H. "Precipitation variability of streamflow fraction in West Central Florida." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001793.
Full textSimpson, Ian. "Precipitation variability across the UK : observations and model simulations." Thesis, University of East Anglia, 2011. https://ueaeprints.uea.ac.uk/39149/.
Full textDay, Jesse Alexander. "The Dynamics of Precipitation Variability in the Asian Monsoon." Thesis, University of California, Berkeley, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10150844.
Full textThe Asian summer monsoon supplies around 3 billion people with much of their yearly supply of freshwater, necessary for human consumption as well as in agriculture and industry. In many regions, particularly along the Ganges River in India and in northern China, use of freshwater far exceeds natural recharge rates. Given the high population density of these regions, a substantial fraction of Asia's population is therefore critically sensitive to interannual changes in the supply of freshwater by the monsoon, as well as potential future change under 21st century warming. This dissertation focuses on understanding the atmospheric dynamics of the leading mode of July-August Asian Monsoon rainfall variability, which links two major subsystems: the South Asian and East Asian monsoons. (Abstract shortened by ProQuest.)
Tuel, Alexandre. "Precipitation variability and change over Morocco and the Mediterranean." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129036.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 264-287).
Water is a critical factor limiting economic and social development in Morocco and the Mediterranean Basin. In addition to strong seasonality and high inter-annual variability, annual precipitation remains low (<500mm) across much of the region. Furthermore, the situation is not expected to improve under climate change as models project a sustained decline in precipitation in the Mediterranean, most pronounced during the winter season. Despite the significance of such projections, a comprehensive theory for Mediterranean winter climate change is still lacking. Here, we adopt a multi-faceted approach to investigate precipitation variability and change over Morocco and the Mediterranean, with a focus on resulting water availability. First, we link inter-annual variability of seasonal precipitation in Morocco to global sea-surface temperatures, and develop empirical forecast models that can predict up to 35% of this variability with a one-month lead time.
Turning our attention to regional climate change processes and impacts, we show how future winter precipitation trends in the Mediterranean directly result from projected circulation anomalies. The enhanced advection of dry air from the Sahara Desert caused by these anomalies is key in causing precipitation to decline over Morocco. In addition, a major contribution of this work is to propose a physical explanation for the circulation trends involving planetary-scale circulation shifts and reduced warming of the Mediterranean Sea compared to land. We develop high-resolution regional climate simulations over Morocco to assess future risks from drought and weather extremes relevant to agriculture. Our results point to robust declines of 25-45% in annual precipitation and confirm physical drivers identified at the regional scale.
Because snow is such an important component of the water cycle in this semi-arid region, we also investigate snowpack dynamics in the High Atlas and we quantify components of the snow water balance for the first time. Future trends in snowpack and associated runoff are also investigated: at best, snowpack volume will decline by at least 60%, which, combined with increased air dryness, will likely reduce mountain runoff by 60%. Our findings have important implications for climate change adaptation and water management in Morocco, particularly in agriculture, which uses 90% of all available water.
by Alexandre Tuel.
Ph. D. in Hydrology
Ph.D.inHydrology Massachusetts Institute of Technology, Department of Civil and Environmental Engineering
Ek, Ella. "Precipitation variability modulates the terrestrial carbon cycle in Scandinavia." Thesis, Uppsala universitet, Luft-, vatten- och landskapslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445453.
Full textFörändringar och variation i klimatet är sammankopplade med kolcykeln genom komplexa återkopplingsmekanismer. På grund av denna komplexitet är kunskapen om kopplingen mellan klimatvariation och kolcykeln fortfarande bristande, men för att möjliggöra precisa prognoser om framtida klimat är det viktigt att ha kunskap om denna koppling. För att få mer kunskap om klimatvariation syftar därför denna studie till att identifiera återkommande strukturer av nederbördsvariation över Skandinavien under vår respektive sommar från 1981 till 2014. Dessa relateras till förändringar i sommarväxtlighetens grönhet, uppmätt som skillnaden i normaliserat vegetationsindex (NDVI). Även korrelationen mellan sommarstrukturerna av nederbördsvariationen och storskaliga atmosfäriska svängningar, s.k. "teleconnections", över Nordatlanten undersöks. Nederbördsdatan erhölls från ERA5 analysdata från Europacentret för Medellånga Väderprognoser och strukturer av nederbördsvariationen identifierades genom empirisk ortogonal funktionsanalys (EOF) av nederbördsavvikelser. De tre första EOF av vår- respektive sommarnederbördsavvikelser förklarade tillsammans 73,5 % respektive 65,5 % av nederbördsvariationen. Strukturerna av nederbördsvariation under vår respektive sommar uppvisade tydliga likheter sinsemellan. Dessutom identifierades Skanderna vara av stor vikt för nederbördsvariationen i Skandinavien under båda årstider. Avvikande år av nederbördsvariation under våren indikerade att sagda nederbördsvariation haft liten påverkan på NDVI-avvikelser under sommaren. Emellertid verkade nederbördsvariationen under sommaren påverkat NDVI-avvikelser under sommaren i centrala och nordöstra Skandinavien. Detta indikerar att nederbördsvariationen under sommaren till viss del styr den terrestra kolcykeln i dessa regioner. För nederbördsvariationen under sommaren fanns korrelation mellan både Nordatlantiska sommaroscillationen och Östatlantiska svängningen. Det finns således en möjlighet att dessa "teleconnections" har en viss påverkan på den terrestra kolcykeln genom nederbördsvariationen under sommaren.
Fuller, Jacob. "Strength Property Variability in Microbial Induced Calcite Precipitation Soils." UNF Digital Commons, 2017. https://digitalcommons.unf.edu/etd/773.
Full textHAMOUDA, MOSTAFA ESSAM ABDELRAHMAN. "LARGE SCALE DRIVERS OF EXTREME PRECIPITATION VARIABILITY IN EUROPE." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/314175.
Full textEuropean wintertime precipitation is known to be skilfully estimated in reanalysis data and model simulations since it is highly correlated with large scale, low frequency modes of variability, namely the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). Since the NAO and AO are mainly a wintertime mode of variability, the skill of estimating precipitation becomes more limited in the other seasons, most importantly in the summer, in which precipitation is mainly a result of mesoscale convection. The first part of the study uses observational data, reanalysis data, and the output of Weather Research and Forecast (WRF) model to study the recent changes of extreme daily precipitation events over Europe. It is found that in summer and transition seasons, more regions recorded an increase of extreme precipitation events than regions that recorded a decreasing trend. This is consistent with the global warming trends with Clausius-Clapeyron relation. The added value of using a high resolution, convection-permitting model to estimate precipitation extremes is deduced. The results show that WRF succeeds to correct the failure of ERA-Interim reanalysis to capture the positive trends of European extreme precipitation in summer and transition seasons that are indicated by the observational data (EOBS) and previous literature. On the other hand, more regions in Europe recorded negative extreme precipitation trends than regions with positive trends. This is found to be a consequence of the recent positive trend of the NAO over the past decades, causing more frequent positive NAO events, reducing extreme precipitation outbreaks to more regions in Europe. As the NAO and the highly correlated AO are changing, further investigations to the nature of the two oscillations are carried out. Reanalysis data and climate model simulations of historical and warm climates are used to show that the relation between the two oscillations changes with climate warming. The two modes are currently highly correlated, as both are strongly influenced by the downward propagation of stratospheric polar vortex anomalies into the troposphere. However, when considering a very warm climate scenario, the hemispherically defined AO pattern shifts to reflect variability of the North Pacific storm track, while the regionally defined NAO pattern remains stable. The stratosphere remains an important precursor for NAO, and surface Eurasian and Aleutian pressure anomalies precede stratospheric anomalies. Idealized general circulation model simulations suggest that these modifications are linked to the stronger warming of the Pacific compared to the slower warming of the Atlantic Ocean, that is due to the slowdown of the Atlantic Meridional Overturning Circulation (AMOC).
Books on the topic "Precipitation variability"
Brázdil, Rudolf. Variation of atmospheric precipitation in the C.S.S.R. with respect to precipitation changes in the European region. [Brno]: Univerzita J.E. Purkyně, 1986.
Find full textKożuchowski, Krzysztof. Kontynentalizm pluwialny w Polsce: Zróżnicowanie geograficzne i zmiany wieloletnie. Wrocław: Zakład Narodowy im. Ossolińskich, 1988.
Find full textCoca, Sergio Reyes. Tendencias y variabilidad interanual de la lluvia en Aguascalientes. Aguascalientes, Ags: Gobierno del Estado de Aguascalientes, Oficina de Coordinación de Asesores, 1994.
Find full textBousnina, Abderrahmen. La variabilité des pluies en Tunisie. [Tunis]: Université de Tunis, 1986.
Find full textMateu, Joan Estrada. Característiques climatològiques de la precipitació al Pirineu Andorrà. [Sant Julià de Lòria]: Institut d'Estudis Andorrans, Centre de Recerca en Ciènces de la Terra, 2004.
Find full textHogan, Daniel Lewis. Meteorological conditions associated with hillslope failures on the Queen Charlotte Islands. Victoria, B.C: Ministry of Forests, 1991.
Find full text1927-, Vogel John L., and United States. National Weather Service., eds. Relationship between storm and antecedent precipitation over Kansas, Oklahoma, and eastern Colorado. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, 1995.
Find full textChin, Edwin H. Relationship between storm and antecedent precipitation over Kansas, Oklahoma, and eastern Colorado. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, 1995.
Find full text1927-, Vogel John L., and United States. National Weather Service, eds. Relationship between storm and antecedent precipitation over Kansas, Oklahoma, and eastern Colorado. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, 1995.
Find full textKożuchowski, Krzysztof. Zmienność opadów atmosferycznych w Polsce w stuleciu 1881-1980. Wrocław: Zakład Narodowy im. Ossolińskich, 1985.
Find full textBook chapters on the topic "Precipitation variability"
Welch, E. B., D. E. Spyridakis, and T. Smayda. "Temporal Chemical Variability in Acid Sensitive High Elevation Lakes." In Acidic Precipitation, 1089–98. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3385-9_109.
Full textSamson, Perry J., Mark Fernau, and Patricia Allison. "On the Variability of Simulated Source-Receptor Relationships for Sulfur Deposition." In Acidic Precipitation, 801–13. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3385-9_83.
Full textLoranger, T. J., D. F. Brakke, M. B. Bonoff, and B. F. Gall. "Temporal Variability of Lake Waters in the North Cascades Mountains (Washington, U.S.A.)." In Acidic Precipitation, 1177–83. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3385-9_118.
Full textDowning, Thomas E., Fredrick K. Karanja, Mohamed Saïd Karrouk, Fred M. Zaal, and Mohamed A. Salih. "Precipitation Variability and Food Security." In Understanding the Earth System, 255–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56843-5_17.
Full textArkin, Phillip A., Heidi M. Cullen, and Pinping Xie. "Oceanic Precipitation Variability and the North Atlantic Oscillation." In Measuring Precipitation From Space, 37–47. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5835-6_4.
Full textRiha, Susan J., Gail Senesac, and Eric Pallant. "Effects of Forest Vegetation on Spatial Variability of Surface Mineral Soil pH, Soluble Aluminum and Carbon." In Acidic Precipitation, 1983–94. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3385-9_191.
Full textVan Stan, John T., Anke Hildebrandt, Jan Friesen, Johanna C. Metzger, and Sandra A. Yankine. "Spatial Variability and Temporal Stability of Local Net Precipitation Patterns." In Precipitation Partitioning by Vegetation, 89–104. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-29702-2_6.
Full textLettenmaier, Dennis. "Stochastic Modeling of Precipitation with Applications to Climate Model Downscaling." In Analysis of Climate Variability, 199–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03744-7_11.
Full textLettenmaier, Dennis. "Stochastic Modeling of Precipitation with Applications to Climate Model Downscaling." In Analysis of Climate Variability, 197–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03167-4_11.
Full textGönençgil, Barbaros, and Zahide Acar. "Turkey: Clımate Variability, Extreme Temperature, and Precipitation." In Springer Geography, 167–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49464-3_8.
Full textConference papers on the topic "Precipitation variability"
Yang, Song, Eric A. Smith, and Kwo-Sen Kuo. "Diurnal variability of precipitation from TRMM measurements." In Asia-Pacific Remote Sensing Symposium, edited by Tiruvalam N. Krishnamurti, B. N. Goswami, and Toshiki Iwasaki. SPIE, 2006. http://dx.doi.org/10.1117/12.696275.
Full textNikolov, Dimitar, and Cvetan Dimitrov. "ANALYSIS OF THE VARIABILITY OF THE WINTER PRECIPITATIONS AND TEMPERATURES IN TWO MOUNTAIN REGIONS OF BULGARIA." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/4.1/s19.35.
Full textYankova, Maya Yordanova. "WATER RESOURCES IN NORTHWEST BULGARIA AND THE PRECIPITATION VARIABILITY." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b31/s12.099.
Full textBhatia, Udit, and Auroop Ratan Ganguly. "Extreme Values from Spatiotemporal Chaos: Precipitation Extremes and Climate Variability." In 2018 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2018. http://dx.doi.org/10.1109/icdmw.2018.00114.
Full textKanemaru, Kaya, Takuji Kubota, Misako Kachi, Riko Oki, Toshio Iguchi, and Yukari N. Takayabu. "A decadal variability of semi-global precipitation by TRMM PR." In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7326987.
Full textKumar, A. Vijay, and Sanjeet Kumar. "Temporal variability of meteorological drought monitoring using standardized precipitation index." In INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (ICEE 2021). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0066361.
Full textIgnatov, Anatoly, Olga Osipova, and Anna Balybina. "Patterns and stochastic models of the annual precipitation variability in Siberia." In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2017. http://dx.doi.org/10.1117/12.2285015.
Full textTamaddun, Kazi Ali, Ajay Kalra, Waqas Ahmed, Ghulam Hussain Dars, Steve Burian, and Sajjad Ahmad. "Precipitation and Indian Ocean Climate Variability—A Case Study on Pakistan." In World Environmental and Water Resources Congress 2017. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480618.052.
Full textСаидова, Д. "VARIABILITY OF ANNUAL TOTAL ATMOSPHERIC PRECIPITATION IN THE ZERAFSHAN RIVER BASIN." In Геосфера. Современные проблемы естественных наук. Baskir State University, 2022. http://dx.doi.org/10.33184/gspen-2022-03-31.13.
Full textZeleňáková, Martina, Pavol Purcz, and Helena Hlavatá. "Trend Detection in Precipitation Data in Climatic Station." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.096.
Full textReports on the topic "Precipitation variability"
Berry, Joseph, and Ari Kornfeld. Collaborative Research On Ecophysiological Controls On Amazonian Precipitation Seasonality And Variability. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1570388.
Full textWehner, Michael, Mark Risser, Paul Ullrich, and Shiheng Duan. Exploring variability in seasonal average and extreme precipitation using unsupervised machine learning. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769708.
Full textWilliams, Christopher R. Using ARM-SGP Multi-Sensor Datasets to Investigate Precipitation Characteristics and Vertical Variability. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1569735.
Full textCavigelli, Michel. Mid-Atlantic Corn and Soybean Yields Show Great Variability in Response to Precipitation during Critical Growth Stages. USDA Northeast Climate Hub, May 2018. http://dx.doi.org/10.32747/2018.6892663.ch.
Full textLintner, Benjamin Richard. Collaborative Research on Ecophysiological Controls on Amazonian Precipitation Seasonality and Variability. Final Technical Report. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1499992.
Full textJung-Eun, Lee. Final report for Collaborative Research on Ecophysiological Controls on Amazonian Precipitation Seasonality and Variability. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1431208.
Full textJohnson, David B. A Theoretical Framework for Examining Geographical Variability in the Microphysical Mechanisms of Precipitation Development. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada170317.
Full textLai, Chung-Chieng A. Coupled ocean-atmosphere model system for studies of interannual-to-decadal climate variability over the North Pacific Basin and precipitation over the Southwestern United States. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/534525.
Full textLeis, Sherry, and Lloyd Morrison. Plant community trends at Tallgrass Prairie National Preserve: 1998–2018. National Park Service, October 2022. http://dx.doi.org/10.36967/2294512.
Full textTercek, Michael. Climate monitoring in the Mediterranean Coast Network 2020: Santa Monica Mountains National Recreation Area. National Park Service, September 2022. http://dx.doi.org/10.36967/2294435.
Full text