Journal articles on the topic 'Prebiotic molecules'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Prebiotic molecules.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rinninella, Emanuele, and Lara Costantini. "Polyunsaturated Fatty Acids as Prebiotics: Innovation or Confirmation?" Foods 11, no. 2 (January 6, 2022): 146. http://dx.doi.org/10.3390/foods11020146.
Full textThaddeus, P. "The prebiotic molecules observed in the interstellar gas." Philosophical Transactions of the Royal Society B: Biological Sciences 361, no. 1474 (September 7, 2006): 1681–87. http://dx.doi.org/10.1098/rstb.2006.1897.
Full textBalucani, Nadia. "Gas-phase prebiotic chemistry in extraterrestrial environments." Proceedings of the International Astronomical Union 5, H15 (November 2009): 682–83. http://dx.doi.org/10.1017/s1743921310010938.
Full textChandru, Mamajanov, Cleaves, and Jia. "Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry." Life 10, no. 1 (January 19, 2020): 6. http://dx.doi.org/10.3390/life10010006.
Full textBrown, Ronald D. "Prebiotic Matter in Interstellar Molecules." Symposium - International Astronomical Union 112 (1985): 123–37. http://dx.doi.org/10.1017/s0074180900146431.
Full textWinnewisser, Gisbert. "Interstellar Molecules of Prebiotic Interest." International Astronomical Union Colloquium 161 (January 1997): 5–22. http://dx.doi.org/10.1017/s0252921100014573.
Full textVillicana-Pedraza, I., R. Walterbos, F. Carreto-Parra, J. Ott., E. Momjian, A. Thelen, A. Ginsburg, et al. "Preliminary results from prebiotic molecules with ALMA in the era of artificial intelligence." Proceedings of the International Astronomical Union 15, S352 (June 2019): 248–50. http://dx.doi.org/10.1017/s1743921319009220.
Full textMicca Longo, Gaia, Luca Vialetto, Paola Diomede, Savino Longo, and Vincenzo Laporta. "Plasma Modeling and Prebiotic Chemistry: A Review of the State-of-the-Art and Perspectives." Molecules 26, no. 12 (June 16, 2021): 3663. http://dx.doi.org/10.3390/molecules26123663.
Full textMiller, Stanley L. "Endogenous synthesis of prebiotic organic molecules." Origins of Life and Evolution of the Biosphere 26, no. 3-5 (October 1996): 201–2. http://dx.doi.org/10.1007/bf02459712.
Full textVan Loo, Jan. "The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy." Nutrition Research Reviews 17, no. 1 (June 2004): 89–98. http://dx.doi.org/10.1079/nrr200377.
Full textPasek, Matthew A. "Implications of extraterrestrial material on the origin of life." Proceedings of the International Astronomical Union 11, A29B (August 2015): 431–35. http://dx.doi.org/10.1017/s1743921316005731.
Full textPowner, Matthew W., and John D. Sutherland. "Prebiotic chemistry: a new modus operandi." Philosophical Transactions of the Royal Society B: Biological Sciences 366, no. 1580 (October 27, 2011): 2870–77. http://dx.doi.org/10.1098/rstb.2011.0134.
Full textPérez-López, E., D. Cela, A. Costabile, I. Mateos-Aparicio, and P. Rupérez. "In vitrofermentability and prebiotic potential of soyabean Okara by human faecal microbiota." British Journal of Nutrition 116, no. 6 (July 29, 2016): 1116–24. http://dx.doi.org/10.1017/s0007114516002816.
Full textLee, Sulhee, Jisun Park, Jae-Kweon Jang, Byung-Hoo Lee, and Young-Seo Park. "Structural Analysis of Gluco-Oligosaccharides Produced by Leuconostoc lactis and Their Prebiotic Effect." Molecules 24, no. 21 (November 5, 2019): 3998. http://dx.doi.org/10.3390/molecules24213998.
Full textVillafañe-Barajas, Saúl A., María Colín-García, Alicia Negrón-Mendoza, and Marta Ruiz-Bermejo. "An experimental study of the thermolysis of hydrogen cyanide: the role of hydrothermal systems in chemical evolution." International Journal of Astrobiology 19, no. 5 (July 6, 2020): 369–78. http://dx.doi.org/10.1017/s1473550420000142.
Full textKahraman Ilıkkan, Özge, Elif Şeyma Bağdat, and Dilek Yalçın. "Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae." Food and Health 8, no. 2 (2022): 161–71. http://dx.doi.org/10.3153/fh22016.
Full textCOELHO, L. S., A. C. S. FRIAÇA, and E. MENDOZA. "POSSIBLE ROUTES FOR THE FORMATION OF PREBIOTIC MOLECULES IN THE HORSEHEAD NEBULA." Revista SODEBRAS 16, no. 185 (May 2021): 27–33. http://dx.doi.org/10.29367/issn.1809-3957.16.2021.185.27.
Full textMayer, Christian, Ulrich Schreiber, and María Dávila. "Selection of Prebiotic Molecules in Amphiphilic Environments." Life 7, no. 1 (January 7, 2017): 3. http://dx.doi.org/10.3390/life7010003.
Full textTran, Quoc Phuong, Zachary R. Adam, and Albert C. Fahrenbach. "Prebiotic Reaction Networks in Water." Life 10, no. 12 (December 16, 2020): 352. http://dx.doi.org/10.3390/life10120352.
Full textBedu-Ferrari, Cassandre, Paul Biscarrat, Philippe Langella, and Claire Cherbuy. "Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health." Nutrients 14, no. 10 (May 17, 2022): 2096. http://dx.doi.org/10.3390/nu14102096.
Full textWołos, Agnieszka, Rafał Roszak, Anna Żądło-Dobrowolska, Wiktor Beker, Barbara Mikulak-Klucznik, Grzegorz Spólnik, Mirosław Dygas, Sara Szymkuć, and Bartosz A. Grzybowski. "Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry." Science 369, no. 6511 (September 24, 2020): eaaw1955. http://dx.doi.org/10.1126/science.aaw1955.
Full textHu, Xiaoyi, Yuanyuan Yang, Congcong Zhang, Yang Chen, Junfeng Zhen, and Liping Qin. "Gas-phase laboratory formation of large, astronomically relevant PAH-organic molecule clusters." Astronomy & Astrophysics 656 (December 2021): A80. http://dx.doi.org/10.1051/0004-6361/202141407.
Full textColin-Garcia, M., A. Heredia, A. Negron-Mendoza, F. Ortega, T. Pi, and S. Ramos-Bernal. "Adsorption of HCN onto sodium montmorillonite dependent on the pH as a component to chemical evolution." International Journal of Astrobiology 13, no. 4 (May 12, 2014): 310–18. http://dx.doi.org/10.1017/s1473550414000111.
Full textCruz-Hernández, Abigail E., María Colín-García, Fernando Ortega-Gutiérrez, and Eva Mateo-Martí. "Komatiites as Complex Adsorption Surfaces for Amino Acids in Prebiotic Environments, a Prebiotic Chemistry Essay." Life 12, no. 11 (November 4, 2022): 1788. http://dx.doi.org/10.3390/life12111788.
Full textPuzzarini, Cristina. "Prebiotic molecules in interstellar space: Rotational spectroscopy and quantum chemistry." Proceedings of the International Astronomical Union 15, S350 (April 2019): 65–70. http://dx.doi.org/10.1017/s1743921319007592.
Full textArumainayagam, Chris R., Robin T. Garrod, Michael C. Boyer, Aurland K. Hay, Si Tong Bao, Jyoti S. Campbell, Jingqiao Wang, Chris M. Nowak, Michael R. Arumainayagam, and Peter J. Hodge. "Extraterrestrial prebiotic molecules: photochemistryvs.radiation chemistry of interstellar ices." Chemical Society Reviews 48, no. 8 (2019): 2293–314. http://dx.doi.org/10.1039/c7cs00443e.
Full textQuan, Donghui, Eric Herbst, Joanna F. Corby, Allison Durr, and George Hassel. "CHEMICAL SIMULATIONS OF PREBIOTIC MOLECULES: INTERSTELLAR ETHANIMINE ISOMERS." Astrophysical Journal 824, no. 2 (June 21, 2016): 129. http://dx.doi.org/10.3847/0004-637x/824/2/129.
Full textHuebner, W. F., and D. C. Boice. "Comets as a possible source of prebiotic molecules." Origins of Life and Evolution of the Biosphere 21, no. 5-6 (September 1991): 299–315. http://dx.doi.org/10.1007/bf01808304.
Full textGoto, Kimihiko, and Masahiro Tshigami. "Synthesis of organic molecules under presumed prebiotic conditions." Origins of Life and Evolution of the Biosphere 16, no. 3-4 (September 1986): 293–94. http://dx.doi.org/10.1007/bf02422033.
Full textIrvine, William M. "Extraterrestrial organic chemistry: A source of prebiotic molecules?" Origins of Life and Evolution of the Biosphere 26, no. 3-5 (October 1996): 203–4. http://dx.doi.org/10.1007/bf02459713.
Full textKuan, Yi-Jehng, Steven B. Charnley, Hui-Chun Huang, Zbigniew Kisiel, Pascale Ehrenfreund, Wei-Ling Tseng, and Chi-Hung Yan. "Searches for interstellar molecules of potential prebiotic importance." Advances in Space Research 33, no. 1 (January 2004): 31–39. http://dx.doi.org/10.1016/j.asr.2003.04.004.
Full textEhrenfreund, Pascale, Andreas Elsaesser, and J. Groen. "Prebiotic Matter in Space." Proceedings of the International Astronomical Union 10, H16 (August 2012): 709–10. http://dx.doi.org/10.1017/s1743921314013015.
Full textNovianto, Esna Dilli, Monica Sonia Indri Pradipta, Suwasdi Suwasdi, Mahdalina Mursilati, and Surya Bagus Purnomo. "Pemanfaatan Limbah Agroindustri Kacang Tanah Sebagai Media Pertumbuhan Mikrobia Probiotik Lactobacillus bulgaricus." AGRITEKNO: Jurnal Teknologi Pertanian 9, no. 1 (April 30, 2020): 35–41. http://dx.doi.org/10.30598/jagritekno.2020.9.1.35.
Full textRimola, Albert, Mariona Sodupe, and Piero Ugliengo. "Role of Mineral Surfaces in Prebiotic Chemical Evolution. In Silico Quantum Mechanical Studies." Life 9, no. 1 (January 17, 2019): 10. http://dx.doi.org/10.3390/life9010010.
Full textLigterink, N. F. W., A. Ahmadi, A. Coutens, Ł. Tychoniec, H. Calcutt, E. F. van Dishoeck, H. Linnartz, J. K. Jørgensen, R. T. Garrod, and J. Bouwman. "The prebiotic molecular inventory of Serpens SMM1." Astronomy & Astrophysics 647 (March 2021): A87. http://dx.doi.org/10.1051/0004-6361/202039619.
Full textEhrenfreund, Pascale, Marco Spaans, and Nils G. Holm. "The evolution of organic matter in space." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1936 (February 13, 2011): 538–54. http://dx.doi.org/10.1098/rsta.2010.0231.
Full textBarone, Vincenzo, and Cristina Puzzarini. "Looking for the bricks of the life in the interstellar medium: The fascinating world of astrochemistry." EPJ Web of Conferences 246 (2020): 00021. http://dx.doi.org/10.1051/epjconf/202024600021.
Full textLópez, E., D. Ascenzi, P. Tosi, J. M. Bofill, J. de Andrés, M. Albertí, J. M. Lucas, and A. Aguilar. "The reactivity of cyclopropyl cyanide in titan's atmosphere: a possible pre-biotic mechanism." Physical Chemistry Chemical Physics 20, no. 9 (2018): 6198–210. http://dx.doi.org/10.1039/c7cp06911a.
Full textReyes-García, Verónica, Alfonso Totosaus, Lourdes Pérez-Chabela, Zaida Nelly Juárez, Gabriel Abraham Cardoso-Ugarte, and Beatriz Pérez-Armendáriz. "Exploration of the Potential Bioactive Molecules of Tamarillo (Cyphomandra betacea): Antioxidant Properties and Prebiotic Index." Applied Sciences 11, no. 23 (November 30, 2021): 11322. http://dx.doi.org/10.3390/app112311322.
Full textNegrón-Mendoza, Alicia, and Sergio Ramos-Bernal. "Hydrogen Cyanide Polymers as Prebiotic Sources of Biological Compounds in Terrestrial and Extraterrestrial Environments." International Astronomical Union Colloquium 161 (January 1997): 413–18. http://dx.doi.org/10.1017/s0252921100014925.
Full textGull, Maheen, and Matthew A. Pasek. "The Role of Glycerol and Its Derivatives in the Biochemistry of Living Organisms, and Their Prebiotic Origin and Significance in the Evolution of Life." Catalysts 11, no. 1 (January 10, 2021): 86. http://dx.doi.org/10.3390/catal11010086.
Full textGull, Maheen, and Matthew A. Pasek. "The Role of Glycerol and Its Derivatives in the Biochemistry of Living Organisms, and Their Prebiotic Origin and Significance in the Evolution of Life." Catalysts 11, no. 1 (January 10, 2021): 86. http://dx.doi.org/10.3390/catal11010086.
Full textRivilla, Víctor M., Francesco Fontani, Maite Beltrán, Anton Vasyunin, Paola Caselli, Jesús Martín-Pintado, and Riccardo Cesaroni. "The first detections of the key prebiotic molecule PO in star-forming regions." Proceedings of the International Astronomical Union 13, S332 (March 2017): 409–14. http://dx.doi.org/10.1017/s1743921317008729.
Full textBada, Jeffrey, and Jun Korenaga. "Exposed Areas Above Sea Level on Earth >3.5 Gyr Ago: Implications for Prebiotic and Primitive Biotic Chemistry." Life 8, no. 4 (November 4, 2018): 55. http://dx.doi.org/10.3390/life8040055.
Full textJheeta, Sohan. "Molecules to Microbes." Sci 2, no. 4 (November 27, 2020): 86. http://dx.doi.org/10.3390/sci2040086.
Full textWalton, Craig Robert, and Oliver Shorttle. "Scum of the Earth: A Hypothesis for Prebiotic Multi-Compartmentalised Environments." Life 11, no. 9 (September 16, 2021): 976. http://dx.doi.org/10.3390/life11090976.
Full textYeates, Jessica A. M., Christian Hilbe, Martin Zwick, Martin A. Nowak, and Niles Lehman. "Dynamics of prebiotic RNA reproduction illuminated by chemical game theory." Proceedings of the National Academy of Sciences 113, no. 18 (April 18, 2016): 5030–35. http://dx.doi.org/10.1073/pnas.1525273113.
Full textRapf, Rebecca J., and Veronica Vaida. "Sunlight as an energetic driver in the synthesis of molecules necessary for life." Physical Chemistry Chemical Physics 18, no. 30 (2016): 20067–84. http://dx.doi.org/10.1039/c6cp00980h.
Full textShirt-Ediss, Ben, Sara Murillo-Sánchez, and Kepa Ruiz-Mirazo. "Framing major prebiotic transitions as stages of protocell development: three challenges for origins-of-life research." Beilstein Journal of Organic Chemistry 13 (July 13, 2017): 1388–95. http://dx.doi.org/10.3762/bjoc.13.135.
Full textOcaña, Antonio J., Sergio Blázquez, Daniel González, Alexey Potapov, Bernabé Ballesteros, André Canosa, María Antiñolo, José Albaladejo, and Elena Jiménez. "Gas-phase reactivity of CH3OH+OH down to 11.7 K: Astrophysical implications." Proceedings of the International Astronomical Union 15, S350 (April 2019): 365–67. http://dx.doi.org/10.1017/s1743921319007579.
Full text