Dissertations / Theses on the topic 'Power hardware in loop'

To see the other types of publications on this topic, follow the link: Power hardware in loop.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Power hardware in loop.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Bjelevac, Salko, and Peter Karlsson. "Steering System Verification Using Hardware-in-the-Loop." Thesis, Linköpings universitet, Fordonssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119332.

Full text
Abstract:
In order for leading industrial companies to remain competitive, the process of product developement constantly needs to improve. In order to shorten development time -- that is the time from idea to product -- simulations of products in-house is becoming a popular method. This method saves money and time since expensive prototypes become unnecessary. Today the calibration of steering gears is done in test vehicles by experienced test drivers. This is a time consuming process that is very costly because of expensive test vehicles. This report investigates possibilities and difficulties with transfering the calibrations from field to rig. A steering rig has been integrated with a car simulation program. Comparisons between simulation in the loop (SIL) and hardware in the loop (HIL) have been made and differences between different configurations of steering gears have been evaluated. An automatic process including calibration of parameters, testing and analysis of the test results has been implemented. The work laid the foundation of calibration of steering parameters and showed correlation between calibration parameters and objective metrics.
APA, Harvard, Vancouver, ISO, and other styles
2

Dargahi, Kafshgarkolaei Mahdi. "Stability analysis and implementation of Power-Hardware-in-the-Loop for power system testing." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/81957/1/Mahdi_Dargahi%20Kafshgarkolaei_Thesis.pdf.

Full text
Abstract:
This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.
APA, Harvard, Vancouver, ISO, and other styles
3

Goulkhah, Mohammad (Monty). "Waveform relaxation based hardware-in-the-loop simulation." Cigre Canada, 2014. http://hdl.handle.net/1993/31012.

Full text
Abstract:
This thesis introduces an alternative potentially low cost solution for hardware-in-the-loop (HIL) simulation based on the waveform relaxation (WR) method. The WR tech-nique is extended so that, without the need for a real-time simulator, the behaviour of an actual piece of physical hardware can nevertheless be tested as though it were connected to a large external electrical network. This is achieved by simulating the external network on an off-line electromagnetic transients (EMT) simulation program, and utilizing iterative exchange of waveforms between the simulation and the hardware by means of a spe-cialized Real-Time Player/Recorder (RTPR) interface device. The approach is referred to as waveform relaxation based hardware-in-the-loop (WR-HIL) simulation. To make the method possible, the thesis introduces several new innovations for stabi-lizing and accelerating the WR-HIL algorithm. It is shown that the classical WR shows poor or no convergence when at least one of the subsystems is an actual device. The noise and analog-digital converters’ quantization errors and other hardware disturbances can affect the waveforms and cause the WR to diverge. Therefore, the application of the WR method in performing HIL simulation is not straightforward and the classical WR need to be modified accordingly. Three convergence techniques are proposed to improve the WR-HIL simulation con-vergence. Each technique is evaluated by an experimental example. The stability of the WR-HIL simulation is studied and a stabilization technique is proposed to provide suffi-cient conditions for the simulation stability. The approach is also extended to include the optimization of the parameters of power system controllers located in geographically distant places. The WR-HIL simulation technique is presented with several examples. At the end of the thesis, suggestions for the future work are presented.
February 2016
APA, Harvard, Vancouver, ISO, and other styles
4

Larsson, Viktor, Liselott Ericson, and Petter Krus. "Hardware-in-the-loop simulation of hybrid hydromechanical transmissions." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71075.

Full text
Abstract:
Increased demands on fuel-efficient propulsion motivate the use of complex hybrid hydromechanical transmissions in heavy construction machines. These transmissions offer attractive fuel savings but come with an increased level of complexity and dependency on computer-based control. This trend has increased the use of computer-based simulations as a cost-effective alternative to hardware prototyping when developing and testing control strategies. Hardware-In-the-Loop (HWIL) simulations that combine physical and virtual model representations of a system may be considered an attractive compromise that combine the benefits of these two concepts. This paper explores how HWIL simulations may be used to evaluate powertrain control strategies for hybrid hydromechanical transmissions. Factors such as hardware/software partitioning and causality are discussed and applied to a test rig used for HWIL simulations of an example transmission. The results show the benefit of using HWIL simulations in favour of pure offline simulations and prototyping and stress the importance of accurate control with high bandwidth in the HWIL interface.
APA, Harvard, Vancouver, ISO, and other styles
5

Olsén, Johan. "Modelling of Auxiliary Devices for a Hardware-in-the-Loop Application." Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2837.

Full text
Abstract:

The engine torque is an important control signal. This signal is disturbed by the devices mounted on the belt. To better be able to estimate the torque signal, this work aims to model the auxiliary devices'influence on the crankshaft torque. Physical models have been developed for the air conditioning compressor, the alternator and the power steering pump. If these models are to be used in control unit function development and testing, they have to be fast enough to run on a hardware-in-the-loop simulator in real time. The models have been simplified to meet these demands.

The compressor model has a good physical basis, but the validity of the control mechanism is uncertain. The alternator model has been tested against a real electronic control unit in a hardware-in-the-loop simulator, and tests show good results. Validation against measurements is however necessary to confirm the results. The power steering pump model also has a good physical basis, but it is argued that a simple model relating the macro input-output power could be more valuable for control unit function development.

APA, Harvard, Vancouver, ISO, and other styles
6

Noon, John Patrick. "Development of a Power Hardware-in-the-Loop Test Bench for Electric Machine and Drive Emulation." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/101498.

Full text
Abstract:
This work demonstrates the capability of a power electronic based power hardware-inthe- loop (PHIL) platform to emulate electric machines for the purpose of a motor drive testbench with a particular focus on induction machine emulation. PHIL presents advantages over full-hardware testing of motor drives as the PHIL platform can save space and cost that comes from the physical construction of multiple electric machine test configurations. This thesis presents real-time models that were developed for the purpose of PHIL emulation. Additionally, real-time modeling considerations are presented as well as the modeling considerations that stem from implementing the model in a PHIL testbench. Next, the design and implementation of the PHIL testbench is detailed. This thesis describes the design of the interface inductor between the motor drive and the emulation platform. Additionally, practical implementation challenges such as common mode and ground loop noise are discussed and solutions are presented. Finally, experimental validation of the modeling and emulation of the induction machine is presented and the performance of the machine emulation testbench is discussed.
Master of Science
According to the International Energy Agency (IEA), electric power usage is increasing across all sectors, and particularly in the transportation sector [1]. This increase is apparent in one's daily life through the increase of electric vehicles on the road. Power electronics convert electricity in one form to electricity in another form. This conversion of power is playing an increasingly important role in society because examples of this conversion include converting the dc voltage of a battery to ac voltage in an electric car or the conversion of the ac power grid to dc to power a laptop. Additionally, even within an electric car, power converters transform the battery's electric power from a higher dc voltage into lower voltage dc power to supply the entertainment system and into ac power to drive the car's motor. The electrification of the transportation sector is leading to an increase in the amount of electric energy that is being consumed and processed through power electronics. As was illustrated in the previous examples of electric cars, the application of power electronics is very wide and thus requires different testbenches for the many different applications. While some industries are used to power electronics and testing converters, transportation electrification is increasing the number of companies and industries that are using power electronics and electric machines. As industry is shifting towards these new technologies, it is a prime opportunity to change the way that high power testing is done for electric machines and power converters. Traditional testing methods are potentially dangerous and lack the flexibility that is required to test a wide variety of machines and drives. Power hardware-in-the-loop (PHIL) testing presents a safe and adaptable solution to high power testing of electric machines. Traditionally, electric machines were primarily used in heavy industry such as milling, processing, and pumping applications. These applications, and other applications such as an electric motor in a car or plane are called motor drive systems. Regardless of the particular application of the motor drive system, there are generally three parts: a dc source, an inverter, and the electric machine. In most applications, other than cars which have a dc battery, the dc source is a power electronic converter called a rectifier which converts ac electricity from the grid to dc for the motor drive. Next, the motor drive converts the dc electricity from the first stage to a controlled ac output to drive the electric machine. Finally, the electric machine itself is the final piece of the electrical system and converts the electrical energy to mechanical energy which can drive a fan, belt, or axle. The fact that this motor drive system can be generalized and applied to a wide range of applications makes its study particularly interesting. PHIL simplifies testing of these motor drive systems by allowing the inverter to connect directly to a machine emulator which is able to replicate a variety of loads. Furthermore, this work demonstrates the capability of PHIL to emulate both the induction machine load as well as the dc source by considering several rectifier topologies without any significant adjustments from the machine emulation platform. This thesis demonstrates the capabilities of the EGSTON Power Electronics GmbH COMPISO System Unit to emulate motor drive systems to allow for safer, more flexible motor drive system testing. The main goal of this thesis is to demonstrate an accurate PHIL emulation of a induction machine and to provide validation of the emulation results through comparison with an induction machine.
APA, Harvard, Vancouver, ISO, and other styles
7

Daniil, Nickolaos. "Battery emulator operating in a power hardware-in-the-loop simulation : the concept of hybrid battery emulator." Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goyal, Sachin. "Power network in the loop : subsystem testing using a switching amplifier." Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/26521/1/Sachin_Goyal_Thesis.pdf.

Full text
Abstract:
“Hardware in the Loop” (HIL) testing is widely used in the automotive industry. The sophisticated electronic control units used for vehicle control are usually tested and evaluated using HIL-simulations. The HIL increases the degree of realistic testing of any system. Moreover, it helps in designing the structure and control of the system under test so that it works effectively in the situations that will be encountered in the system. Due to the size and the complexity of interaction within a power network, most research is based on pure simulation. To validate the performance of physical generator or protection system, most testing is constrained to very simple power network. This research, however, examines a method to test power system hardware within a complex virtual environment using the concept of the HIL. The HIL testing for electronic control units and power systems protection device can be easily performed at signal level. But performance of power systems equipments, such as distributed generation systems can not be evaluated at signal level using HIL testing. The HIL testing for power systems equipments is termed here as ‘Power Network in the Loop’ (PNIL). PNIL testing can only be performed at power level and requires a power amplifier that can amplify the simulation signal to the power level. A power network is divided in two parts. One part represents the Power Network Under Test (PNUT) and the other part represents the rest of the complex network. The complex network is simulated in real time simulator (RTS) while the PNUT is connected to the Voltage Source Converter (VSC) based power amplifier. Two way interaction between the simulator and amplifier is performed using analog to digital (A/D) and digital to analog (D/A) converters. The power amplifier amplifies the current or voltage signal of simulator to the power level and establishes the power level interaction between RTS and PNUT. In the first part of this thesis, design and control of a VSC based power amplifier that can amplify a broadband voltage signal is presented. A new Hybrid Discontinuous Control method is proposed for the amplifier. This amplifier can be used for several power systems applications. In the first part of the thesis, use of this amplifier in DSTATCOM and UPS applications are presented. In the later part of this thesis the solution of network in the loop testing with the help of this amplifier is reported. The experimental setup for PNIL testing is built in the laboratory of Queensland University of Technology and the feasibility of PNIL testing has been evaluated using the experimental studies. In the last section of this thesis a universal load with power regenerative capability is designed. This universal load is used to test the DG system using PNIL concepts. This thesis is composed of published/submitted papers that form the chapters in this dissertation. Each paper has been published or submitted during the period of candidature. Chapter 1 integrates all the papers to provide a coherent view of wide bandwidth switching amplifier and its used in different power systems applications specially for the solution of power systems testing using PNIL.
APA, Harvard, Vancouver, ISO, and other styles
9

Goyal, Sachin. "Power network in the loop : subsystem testing using a switching amplifier." Queensland University of Technology, 2009. http://eprints.qut.edu.au/26521/.

Full text
Abstract:
“Hardware in the Loop” (HIL) testing is widely used in the automotive industry. The sophisticated electronic control units used for vehicle control are usually tested and evaluated using HIL-simulations. The HIL increases the degree of realistic testing of any system. Moreover, it helps in designing the structure and control of the system under test so that it works effectively in the situations that will be encountered in the system. Due to the size and the complexity of interaction within a power network, most research is based on pure simulation. To validate the performance of physical generator or protection system, most testing is constrained to very simple power network. This research, however, examines a method to test power system hardware within a complex virtual environment using the concept of the HIL. The HIL testing for electronic control units and power systems protection device can be easily performed at signal level. But performance of power systems equipments, such as distributed generation systems can not be evaluated at signal level using HIL testing. The HIL testing for power systems equipments is termed here as ‘Power Network in the Loop’ (PNIL). PNIL testing can only be performed at power level and requires a power amplifier that can amplify the simulation signal to the power level. A power network is divided in two parts. One part represents the Power Network Under Test (PNUT) and the other part represents the rest of the complex network. The complex network is simulated in real time simulator (RTS) while the PNUT is connected to the Voltage Source Converter (VSC) based power amplifier. Two way interaction between the simulator and amplifier is performed using analog to digital (A/D) and digital to analog (D/A) converters. The power amplifier amplifies the current or voltage signal of simulator to the power level and establishes the power level interaction between RTS and PNUT. In the first part of this thesis, design and control of a VSC based power amplifier that can amplify a broadband voltage signal is presented. A new Hybrid Discontinuous Control method is proposed for the amplifier. This amplifier can be used for several power systems applications. In the first part of the thesis, use of this amplifier in DSTATCOM and UPS applications are presented. In the later part of this thesis the solution of network in the loop testing with the help of this amplifier is reported. The experimental setup for PNIL testing is built in the laboratory of Queensland University of Technology and the feasibility of PNIL testing has been evaluated using the experimental studies. In the last section of this thesis a universal load with power regenerative capability is designed. This universal load is used to test the DG system using PNIL concepts. This thesis is composed of published/submitted papers that form the chapters in this dissertation. Each paper has been published or submitted during the period of candidature. Chapter 1 integrates all the papers to provide a coherent view of wide bandwidth switching amplifier and its used in different power systems applications specially for the solution of power systems testing using PNIL.
APA, Harvard, Vancouver, ISO, and other styles
10

Schmitt, Alexander [Verfasser]. "Hochdynamische Power Hardware-in-the-Loop Emulation hoch ausgenutzter Synchronmaschinen mit einem Modularen-Multiphasen-Multilevel Umrichter / Alexander Schmitt." Karlsruhe : KIT Scientific Publishing, 2017. http://www.ksp.kit.edu.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Burstinghaus, Edward J. "Resampled pulse width modulation methods for high-bandwidth power electronic amplifiers." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/135715/1/Edward_Burstinghaus_Thesis.pdf.

Full text
Abstract:
This work investigates modifications to the existing digital sampling methods for pulse width modulation of power electronic amplifiers so that faster and more accurate control can be achieved. It proposes resampled PWM as a generalisation of the existing methods and presents simulations and experiments that demonstrate its superior performance. Power hardware in the loop experiments are also presented as a demonstration of an application which demands both high bandwidth and high amplifier power levels and which benefits from the improved controllable bandwidth of resampled PWM.
APA, Harvard, Vancouver, ISO, and other styles
12

Adnan, Muhammad Wasif. "Implementation of an FPGA based Emulator for High Speed Power Electronic Systems." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175752.

Full text
Abstract:
During development of control systems for power electronic systems, it is desirable to test the controller in real-time, by interfacing it with an emulator device. In this context, this work comprises the development of an emulator that can model accurately the dynamics of high speed power electronic systems and provides interfaces that are compatible with the real hardware. The realtime state calculations, based on discrete models, were performed on custom logic, implemented on an FPGA. The realized system allows to emulate Linear Parameter Varying (LPV) systems, achieving sampling rates up to 12MHz using a low cost Xilinx FPGA. As a result, power electronic systems with very high switching frequencies can be modeled. In addition, the FPGA incorporates a soft-core processor that allows a designer to easily re-configure the system model through software. The emulator system has been validated for a multiphase DC-DC converter, by comparing its results with the real hardware setup.
APA, Harvard, Vancouver, ISO, and other styles
13

Mazloomzadeh, Ali. "Development of Hardware in the Loop Real-Time Control Techniques for Hybrid Power Systems Involving Distributed Demands and Sustainable Energy Sources." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1666.

Full text
Abstract:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid. Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures.
APA, Harvard, Vancouver, ISO, and other styles
14

Di, Nicola Federico. "Sviluppo di un'interfaccia grafica per la stima del power budget del microsatellite ALMASat-EO." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/4255/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Helmedag, Alexander [Verfasser], Antonello [Akademischer Betreuer] Monti, and Doncker Rik W. [Akademischer Betreuer] De. "System level multi-physics power hardware in the loop testing for wind energy converters / Alexander Helmedag ; Antonello Monti, Rik W. De Doncker." Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/115663041X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Si, Guangye [Verfasser], Ralph [Akademischer Betreuer] [Gutachter] Kennel, and Roberto [Gutachter] Leidhold. "Extending the power and dynamic performance of a power electronic Hardware-in-the-Loop system through "inverter cumulation" / Guangye Si ; Gutachter: Ralph Kennel, Roberto Leidhold ; Betreuer: Ralph Kennel." München : Universitätsbibliothek der TU München, 2017. http://d-nb.info/1143125010/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liu, Jianxing. "Contributions to Adaptative Higher Order Sliding Mode Observers : Application to Fuel Cell an Power Converters." Thesis, Belfort-Montbéliard, 2014. http://www.theses.fr/2014BELF0232/document.

Full text
Abstract:
Les systèmes piles à combustible de type PEM pour des applications de transport reposent sur un ensemble d’auxiliaires (stockage d’hydrogène, compresseur d’air, convertisseur de puissance, humidificateur, etc) qui assurent le bon fonctionnement du système pile. La mise en place d’observateurs permet de disposer d’un outil pour reconstruire les états non mesurés de ce système; cela permet de mettre en place un contrôle par retour de sortie en vue d’optimiser les performances du système pile et ainsi d'améliorer la détection et l’isolation de défauts (FDI). Cette thèse est basée sur l’étude et la synthèse d'observateurs adaptatifs par mode glissant d’ordre supérieur, pour deux principaux auxiliaires de la pile que sont, le système d'alimentation en air et les convertisseurs de puissance associés à la pile. La première partie de la thèse est consacrée à la synthèse d’observateurs pour la reconstruction des états et à la détection et l’isolation des défauts sur le système d’alimentation en air de la PEMFC. Dans un premier temps, un observateur algébrique par mode glissant d’ordre supérieur est synthétisé pour la reconstruction de la pression partielle de l'oxygène et de l'azote. Dans un deuxième temps, un nouvel observateur adaptatif par mode glissant d’ordre deux est synthétisé pour assurer l'observation simultanée des états, l'identification des paramètres, la surveillance et la reconstruction de défaut dans le circuit d’air. Les performances des observateurs proposées ont été validées grâce à un simulateur Hardware-In-Loop (HIL) du système pile à combustible.Dans la deuxième partie, nous nous sommes intéressés à l’élaboration d’observateurs et de commande par retour de sortie pour les convertisseurs associé au système pile dans une application transport. Ainsi, une commande novatrice par mode glissant d’ordre deux, de type retour de sortie, a été élaborée pour le convertisseur AC/DC. Dans un second temps, un observateur de type modes glissants d’ordre 2 adaptatif est synthétisé pour un convertisseur de type multicellulaire
Automotive PEM Fuel Cell systems rely upon a set of auxiliary systems for proper operation, such as humidifier, air-feed compressor, power converter etc. The internal physical states of the latter are often unmeasurable, yet required for their precise control. Observers provide a means of obtaining the unmeasured states of these auxiliary systems for feedback control, optimal energy consumption and Fault Diagnosis and Isolation (FDI). This thesis is based on higher order sliding mode observer design studies for two major PEMFC auxiliary systems found in modern automobiles, the air-feed system and the power electronics system.The first part is focused on robust observation and FDI of the PEMFC air-feed systems. Sliding mode observer design and their applications to FDI have been studied in detail for this purpose and the key observation problems in this system have been identified. Based on this study, two solutions are proposed, a sliding mode algebraic observer for oxygen and nitrogen partial pressures and a novel robust adaptive-gain Second Order Sliding Mode (SOSM) observer based FDI for simultaneous state observation, parameter identification, health monitoring and fault reconstruction of the PEMFC air-feed system. The performance of the proposed observers has been validated on an instrumented Hardware-In-Loop (HIL) test bench.The observation and output feedback control problems of different power electronic converters, commonly found in fuel cell vehicles, are addressed in the next part. Robust output feedback SOSM control for three phase AC/DC converters have been presented. A robust SOSM observer for multi-cell converters has also been designed. The performance of all these designs has been demonstrated through a multi-rate simulation approach. The results highlight the robustness of the observers and controllers against parametric uncertainty, measurement noise and external disturbance
APA, Harvard, Vancouver, ISO, and other styles
18

Brink, Michael Joseph. "Hardware-in-the-loop simulation of pressurized water reactor steam-generator water-level control, designed for use within physically distributed testing environments." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1357273230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Roy, Anthony. "Gestion optimale d'un système multi-sources pour un site isolé en mer." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT4067.

Full text
Abstract:
La production d’énergie électrique dans les zones isolées en mer doit faire face à de nombreuses contraintes technico-économiques, liées à la satisfaction de la demande et à l’importation coûteuse du combustible nécessaire aux moyens de production à partir d’énergies fossiles. Avec le récent développement des sources d’énergie marine renouvelable, de nouvelles perspectives apparaissent pour l’alimentation des sites isolés en mer, dans une optique de dé-carbonisation de la production d’énergie. Ainsi, il est proposé dans ces travaux de thèse d’étudier le dimensionnement et la gestion d’un micro-réseau insulaire composé de panneaux solaires photovoltaïques, d’éoliennes, d’hydroliennes, de houlogénérateurs et de batteries.Une analyse préalable des ressources exploitées permet de mettre en avant quelques complémentarités et non-complémentarités. Afin de minimiser l’insatisfaction de la demande et le coût de l’énergie produite, une optimisation combinée du dimensionnement et de la gestion de l’énergie est proposée. Différentes stratégies de gestion de la demande sont appliquées de manière hiérarchique sur plusieurs charges, pour éviter l’apparition de situations critiques. Les résultats obtenus montrent que l’application d’une gestion de la demande permet de réduire le coût de production de l’électricité en diminuant la quantité de stockage nécessaire. Par ailleurs, la diversification des sources utilisées offre de nombreux avantages. Enfin, la capacité des algorithmes développés à gérer correctement un micro-réseau en temps réel est validée sur un banc expérimental
The electrical power generation in remote maritime areas must face many technical-economicconstraints related to the load satisfaction and the expensivefuel import for fossil based sources. Thanks to the recent development of marine renewable energies, new perspectives appearfor the electrical power supply of maritime remote areas, so asto decarbonize the electrical power generation. In this thesis, it is proposed to study the sizing and the energy management of anislanded microgrid madeof solar photovoltaic panels, wind turbines, tidal turbines, wave energy converters and batteries. A preliminary analysis of the harnessed resources allows some complementarities and non-complementaritiesto be highlighted. In order to reduce the unmet load demand and the cost of energy, a combined sizing and energy management optimization isproposed. Several demand-side management strategies are hierarchically applied on several loads, in order to avoid the occurrence of critical situations. The obtained results show that demand-side management allows the cost of energy to be reduced by decreasingthe amount of required storage. Also, thediversification of the sources brings many benefits. Finally, the ability of the developed algorithms tocorrectly manage the micro-grid in real time is validated on an experimental test bench
APA, Harvard, Vancouver, ISO, and other styles
20

Kong, Suyao. "Advanced passivity-based control for hybrid power systems : application to hybrid electric vehicles and microgrids." Thesis, Bourgogne Franche-Comté, 2020. http://indexation.univ-fcomte.fr/nuxeo/site/esupversions/a01b06c5-fb6c-452d-bd16-02b269cd0bb9.

Full text
Abstract:
Un système hybride à base de pile à combustible (PàC) est une solution efficace pour faire face aux problèmes de pollution atmosphérique et de pénurie des combustibles fossiles. Cette thèse se concentre sur la conception de la commande pour les systèmes d'alimentation hybrides à base de PàC, et appliquée à deux applications : le véhicule électrique et le centre de données alimenté par un micro-réseau.Tout d'abord, cette thèse propose une commande basée sur la passivité pour un système hybride PàC/supercondensateurs (SCs). Cette commande a été conçue via la méthode de conception IDA-PBC (Interconnection and Damping Assignment - Passivity Based Control), afin de résoudre le problème de coordination des convertisseurs. L'état de charge des SCs ainsi que toutes les limitations sont intégrés directement dans la loi de commande. Un banc d'essais PHIL (Power Hardware-in-the-loop) est utilisé pour la validation. Ensuite, un filtre de Kalman étendu (EKF) est combiné avec la commande proposée, pour prévoir l'état de santé (SoH) de la pile à combustible. Enfin, un banc d'essais HIL (Hardware-in-the-loop) basé sur un FPGA INTEL / ALTERA est conçu afin de valider le fonctionnement des algorithmes en temps réel pour un véhicule commercial.Pour l'application à un micro-réseau, une commande passive est proposée pour un système hybride comprenant des panneaux photovoltaïques, une PàC, des SCs et un électrolyseur. La faisabilité de cette commande est validée par les résultats expérimentaux sur un banc d'essai PHIL. Ce travail est intégré au projet ANR DATAZERO.La nouveauté principale de cette commande est qu'elle intègre certaines contraintes de composants directement dans la loi de commande, en préservant la stabilité de l’ensemble du système, en boucle fermée
A Fuel cell (FC) hybrid power system is a promising solution to deal with the atmospheric pollution and fossil fuels shortage problems. This thesis focuses on the controller design for FC hybrid power systems, towards two applications: the hybrid electrical vehicle and the microgrid-powered datacenter.Firstly, this thesis proposes an advanced passivity-based control for a FC/super-capacitors (SCs) hybrid system. In order to solve the converters coordination problem, a controller designed using the design method Interconnection and Damping Assignment - Passivity-Based Control (IDA-PBC) is applied, which considers the state-of-charge of the SCs as well as voltage and current limitations. The proposed controller is validated on a Power Hardware-in-the-loop (PHIL) platform. Then an Extended Kalman Filter (EKF) is applied to forecast the State-of-Health (SoH) of the fuel cell and is combined with the proposed controller. Finally, a Hardware-in-the-loop (HIL) platform based on an INTEL/ALTERA FPGA is designed in order to validate the real-time operation of the algorithms for a specific case study with a commercial vehicle.For microgrid applications, a passivity-based controller for a hybrid power supply system for a green datacenter is proposed, including photovoltaic panels, a fuel cell, SCs and an electrolyzer. The feasibility of this non-linear controller is proven by the simulation results and experimental validation on a PHIL test bench. This work is integrated into the ANR DATAZERO project.The main novelty of the proposed controller is that it integrates some component constraints directly into the controller equations, while the locally asymptotic stability of the whole closed-loop system is preserved
APA, Harvard, Vancouver, ISO, and other styles
21

Souza, Igor Dias Neto de. "Controle digital com malha dupla de tensão aplicado a um conversor formador de rede." Universidade Federal de Juiz de Fora (UFJF), 2017. https://repositorio.ufjf.br/jspui/handle/ufjf/4083.

Full text
Abstract:
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-18T14:49:13Z No. of bitstreams: 1 igordiasnetodesouza.pdf: 13872772 bytes, checksum: 45517d7a6da7ae06ecacec6a7fb7ebd8 (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-18T14:50:11Z (GMT) No. of bitstreams: 1 igordiasnetodesouza.pdf: 13872772 bytes, checksum: 45517d7a6da7ae06ecacec6a7fb7ebd8 (MD5)
Made available in DSpace on 2017-04-18T14:50:11Z (GMT). No. of bitstreams: 1 igordiasnetodesouza.pdf: 13872772 bytes, checksum: 45517d7a6da7ae06ecacec6a7fb7ebd8 (MD5) Previous issue date: 2017-02-17
Esta dissertação apresenta um estudo de um conversor emulador de rede (CER) que faz parte de uma estrutura Power-Hardware-in-the-Loop (PHIL). O PHIL será futuramente utilizado para verificar os impactos causados pela integração de sistemas de geração fotovoltaico (PV) à rede elétrica, assim como a operação do sistema PV frente a distúrbios na rede. O CER, composto por um conversor fonte de tensão (VSC) de dois níveis e filtro de saída LC, é responsável por alimentar cargas isoladas emulando uma rede elétrica. A modelagem do conversor emulador de rede é feita no sistema de coordenadas estacionário (αβ0), fornecendo um sistema de equações diferenciais usado para descrever o comportamento dinâmico do sistema. O conversor é controlado no modo de tensão, através da estratégia de modulação vetorial. Duas malhas de controle em cascata são projetadas. A malha interna utiliza compensadores em avanço digitais para amortecer a ressonância do filtro LC sem a necessidade de uma realimentação interna de corrente. Já a externa utiliza controladores ressonantes digitais modificados para rejeitar distúrbios harmônicos e garantir a qualidade da forma de onda da tensão no ponto de acoplamento comum. Os controladores ressonantes são conectados em série e o projeto é baseado no amortecimento dos zeros. Resultados experimentais, obtidos com o protótipo de laboratório, cujos controladores foram implementados em um processador digital de sinais TMS320F28335 da Texas Instruments, são usados para validar as estratégias de controle propostas.
This dissertation presents a study on a grid-former converter (GFC) which is a part of a Power-Hardware-in-the-Loop (PHIL) structure. The PHIL will be used to verify the impacts caused by the integration of photovoltaic (PV) generation systems into grid, as well as to study the PV operation under grid disturbances. The GFC, composed by a two-level voltage source converter with a LC output filter, is responsible to feed isolated loads emulating an electrical grid. The modeling of the grid-former converter is done in the stationary frame (αβ0), providing a set of differential equations that describes the dynamical behavior of the system. The converter is controlled in voltage mode by means of the space vector modulation (SVM) strategy. Two control loops are designed to control the static converter. At the inner loop a novel discrete-time active damping technique is proposed in order to damp the filter resonance without the need of current feedback. The method is based on an inner feedback loop with digital lead compensator on the feedback path while the external loop uses a discretetime integrator and a modified digital resonant controller to guarantee a decreasing frequency response and ensure the quality of the voltage waveform at the point of common coupling, respectively. The resonant controllers are connected in series and the design is based on its zeros damping. Experimental results obtained with the prototype, which controllers were implemented in a Texas Instruments TMS320F28335 are used to validate the proposed control strategies.
APA, Harvard, Vancouver, ISO, and other styles
22

K/bidi, Fabrice. "Développements et tests de stratégies de gestion de l’énergie à l’échelle de micro réseaux avec stockage et production d’hydrogène." Thesis, La Réunion, 2019. http://www.theses.fr/2019LARE0031.

Full text
Abstract:
Avec le développement des technologies de pile à combustible (PàC) et d’électrolyse de l’eau, l’hydrogène électrolytique devient un pilier de la transition énergétique, substitut aux ressources fossiles et outil d’intégration des sources d’énergies renouvelables (SER) intermittentes. À l'échelle de micro-réseaux isolés ou îlotables, cette transition repose sur le développement de systèmes hybrides, couplant des panneaux photovoltaïques (PV) et des électrolyseurs pour la production de l'hydrogène, des systèmes de stockage — réservoirs d'hydrogène (H2) et batteries (Bat) — et des PàC pour la production de l’électricité. Cette étude présente des stratégies de contrôle pour un système PV-H2-Bat-PàC afin d'optimiser la gestion de l'énergie PV intermittente tout en respectant les conditions de fonctionnement des électrolyseurs et des PàC. Premièrement, une commande de type MPPT (Maximum Power Point Tracking) est développée pour assurer le fonctionnement des PV à puissance maximale, et une stratégie de contrôle basée sur des commandes prédictives est mise en œuvre pour définir un courant de référence pour la PàC, l'électrolyseur et les batteries. Deuxièmement, des contrôleurs IP sont utilisés pour réguler ces courants. Troisièmement, un problème d’optimisation permet de définir un plan d’engagement afin d’utiliser la PàC et l’électrolyseur en tenant compte de l’offre, de la demande et des stocks d’énergie
With the development of fuel cell (FC) and water electrolysis technologies, electrolytic hydrogen is becoming a pillar of the energy transition, a substitute for fossil resources and a tool for integrating intermittent renewable energy sources (RES). On the scale of isolated or islandable microgrids, this transition is based on the development of hybrid systems, coupling photovoltaic (PV) panels and electrolyzers for hydrogen production, storage systems - hydrogen (H2) tanks and batteries (Bat) - and FC for electricity production. This study presents control strategies for a PV-H2-Bat-FC system to optimize intermittent PV energy management while respecting the operating conditions of electrolyzers and FC. First, a MPPT (Maximum Power Point Tracking) control system is developed to ensure the operation of PV at maximum power, and a control strategy based on Model Predictive Control is implemented to define a current reference for the FC, the electrolyzer and the batteries. Secondly, IP controllers are used to regulate these currents. Thirdly, an optimization problem makes it possible to define a commitment plan to use the FC and the electrolyser taking into account energy supply, demand and stocks
APA, Harvard, Vancouver, ISO, and other styles
23

Menon, Malavika Vasudevan. "Parameter Estimation Technique for Models in PSS/E using Real-Time Data and Automation." ScholarWorks@UNO, 2017. https://scholarworks.uno.edu/td/2436.

Full text
Abstract:
The purpose of this thesis is to use automation to create appropriate models in PSS/E with the data from Hardware-in-Loop real-time simulations. With the increase in technology of power electronics, the use of High Voltage Direct Current Technology and Flexible Alternating Current Transmission System devices in the electrical power system have increased tremendously. Static Var Compensators are widely used and it is important to have accurate and reliable models for studies relating to power systems planning and interaction. An automation method is proposed to find the parameters of an SVC model in PSS/E with the data from the Hardware-in- loop real-time simulation of the SVC physical controller using Hypersim. The effect of the SVC on the system under steady state and fault conditions are analyzed with HIL simulation of an SVC physical controller in Hypersim and its corresponding model in PSS/E in the IEEE 14 bus system. The parameters of the SVC model in PSS/E can be effectively varied to bring its response closer to that of the response from HIL simulations in Hypersim. An error function is used as a measure to understand the extent of difference between the model and the physical controller.
APA, Harvard, Vancouver, ISO, and other styles
24

Näsström, Joakim. "State-of-the-art development platform for hydropower turbine governors." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-143909.

Full text
Abstract:
Hydropower is a flexible energy source that is essential for balancing the electrical power system on all timescales, from seconds to years. In addition to intra-hour regulation, it provides frequency containment reserves (FCR-N,FCR-D) and frequency restoration reserves (mFRR, aFRR) to the grid. The turbine governor is a device responsible for controlling the power output and delivering frequency control to the system. The aim of this Master’s Thesis project is to develop a new hydropower turbine governor in MATLAB/Simulink, which contains all critical functionality from the existing governor and with the same performance. The new governor should as far as possible comply to the well-established communication standard IEC 61850. A working model of the turbine governor has been built in Simulink that supports normal operation with frequency control, start and stop, load rejection, operation mode as synchronous condenser and more. Validations of the model against data from Akkats powerplant shows that the model behaves as a real governor during normal operation. Validations of the start sequence showed deviations during sequence 3 and 4 which can be explained by usage of different PID parameters. Using IEC 61850 as a nomenclature and as a way of structuring functions in the governor has also been possible. Implementing the whole standard for communication, requires that the control system also is renewed according to IEC 61850. Certain functions, as sequencing has thus not been done according to the standard. MATLAB and Simulink provide tools for building, simulating and testing implementations of the turbine governor. The contributions this platform can provide are; ease of implementation, optimization and testing of control strategies. Simulink also provides a graphical interface, which reduce system complexity. An optimal implementation requires a hardware with support for Simulink to get a transparent platform. Ultimately, these benefits could result in better frequency quality at a lower cost, which is essential for successful and cost-effective integration of other renewable energy sources such as wind- and solar power.
APA, Harvard, Vancouver, ISO, and other styles
25

Alsmadi, Yazan M. "Modeling, Advance Control, and Grid Integration of Large-Scale DFIG-Based Wind Turbines during Normal and Fault Ride-Through Conditions." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437140573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Marouf, Alaa. "Contribution à la Commande du Système de Direction Assistée Electrique." Thesis, Valenciennes, 2013. http://www.theses.fr/2013VALE0012.

Full text
Abstract:
La commande du système de Direction Assistée Electrique (DAE) est un défi majeur en raison de ses multiples objectifs et de la nécessitée de réaliser plusieurs mesures pour la mettre en oeuvre. La commande doit assurer : le suivi du couple d’assistance de référence tout en assurant la stabilité du système et sans introduire des retards, l’atténuation des vibrations provoquées par chacune des entrées du système, la transmission des informations de la route au conducteur pour un bon confort et une meilleure sensation de conduite, l’amélioration de la performance de retour au centre. La commande doit également être robuste vis-à-vis des erreurs de modélisation, des incertitudes des paramètres, et des perturbations extérieures. En outre, la mise en oeuvre de la commande nécessite plusieurs mesures telles que : l’angle au volant, l’angle du moteur, la vitesse du moteur, le couple conducteur et le couple de réaction de la route
The control of Electric Power Assisted Steering (EPAS) system is a challengingproblem due to the multiple objectives and the need of several pieces of information to implement the control. The control objectives are to generate assist torque with fast responses to driver’s torque commands, insure system stability, attenuate vibrations, transmit the road information to the driver, and improve the steering wheel returnability and free control performance. The control must also be robust against modeling errors and parameter uncertainties. In addition, several pieces of information are required to implement the control, such as steering wheel angle, motor velocity, driver torque and road reaction torque
APA, Harvard, Vancouver, ISO, and other styles
27

Wijewardane, M. Anusha. "Exhaust system energy management of internal combustion engines." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9829.

Full text
Abstract:
Today, the investigation of fuel economy improvements in internal combustion engines (ICEs) has become the most significant research interest among the automobile manufacturers and researchers. The scarcity of natural resources, progressively increasing oil prices, carbon dioxide taxation and stringent emission regulations all make fuel economy research relevant and compelling. The enhancement of engine performance solely using incylinder techniques is proving increasingly difficult and as a consequence the concept of exhaust energy recovery has emerged as an area of considerable interest. Three main energy recovery systems have been identified that are at various stages of investigation. Vapour power bottoming cycles and turbo-compounding devices have already been applied in commercially available marine engines and automobiles. Although the fuel economy benefits are substantial, system design implications have limited their adaptation due to the additional components and the complexity of the resulting system. In this context, thermo-electric (TE) generation systems, though still in their infancy for vehicle applications have been identified as attractive, promising and solid state candidates of low complexity. The performance of these devices is limited to the relative infancy of materials investigations and module architectures. There is great potential to be explored. The initial modelling work reported in this study shows that with current materials and construction technology, thermo-electric devices could be produced to displace the alternator of the light duty vehicles, providing the fuel economy benefits of 3.9%-4.7% for passenger cars and 7.4% for passenger buses. More efficient thermo-electric materials could increase the fuel economy significantly resulting in a substantially improved business case. The dynamic behaviour of the thermo-electric generator (TEG) applied in both, main exhaust gas stream and exhaust gas recirculation (EGR) path of light duty and heavy duty engines were studied through a series of experimental and modelling programs. The analyses of the thermo-electric generation systems have highlighted the need for advanced heat exchanger design as well as the improved materials to enhance the performance of these systems. These research requirements led to the need for a systems evaluation technique typified by hardware-in-the-loop (HIL) testing method to evaluate heat exchange and materials options. HIL methods have been used during this study to estimate both the output power and the exhaust back pressure created by the device. The work has established the feasibility of a new approach to heat exchange devices for thermo-electric systems. Based on design projections and the predicted performance of new materials, the potential to match the performance of established heat recovery methods has been demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
28

Rakotozafy, Andriamaharavo. "Simulation temps réel de dispositifs électrotechniques." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0385/document.

Full text
Abstract:
Les contrôleurs industriels font l’objet de changements de paramètres, de modifications, d’améliorations en permanence. Ils subissent les évolutions technologiques aussi bien matérielles que logicielles (librairies, système d’exploitation, loi de commande...). Malgré ces contraintes, ces contrôleurs doivent obligatoirement assurer toutes les fonctionnalités recouvrant le séquentiel, les protections, l’interface homme machine et la stabilité du système à contrôler. Ces fonctionnalités doivent être couvertes pour une large gamme d’applications. Chaque modification (matérielle ou logicielle) quoique mineure est risquée. Le debogage, l’analyse et la programmation sur site sont énormément coûteux surtout pour des sites de type offshore ou marine. Les conditions de travail sont difficiles et les tests sont réduits au strict minimum. Cette thèse propose deux niveaux de validation en plateforme d’expérimentation : un niveau de validation algorithmique que l’on appelle Validation par Interface Logicielle (VIL) traitée au chapitre 2 ; un niveau de validation physique que l’on appelle Validation par Interface Matérielle (VIM) traitée au chapitre 3. La VIL valide uniquement l’aspect algorithme, la loi de commande et la conformité des références au niveau calcul sans prendre en compte les signaux de commande physiques et les signaux de retour gérés par l’Unité de Gestion des Entrées/Sorties (UGES). Un exemple de validation d’un contrôleur industriel d’un ensemble convertisseur trois niveaux et machine asynchrone est traité dans le deuxième chapitre avec une modélisation particulièrement adaptée à la VIL. Le dernier chapitre traite la VIM sur différentes bases matérielles (Field Programmable Gate Array (FPGA), processeurs). Cette validation prend en compte l’aspect algorithme et les signaux de commande physique ainsi que les signaux de retour. On y présente plusieurs approches de modélisation, choisies selon la base matérielle d’implémentation du simulateur temps réel. Ces travaux ont contribué aujourd’hui à au processus de validation des contrôleurs dédiés aux applications Oil and Gaz et Marine de General Electric - Power Conversion © (GE-PC)
Industrial controllers are always subjected to parameters change, modifications and permanent improvements. They have to follow off-the-shelf technologies as well as hardware than software (libraries, operating system, control regulations ...). Apart from these primary necessities, additional aspects concerning the system operation that includes sequential, protections, human machine interface and system stability have to be implemented and interfaced correctly. In addition, these functions should be generically structured to be used in common for wide range of applications. All modifications (hardware or software) even slight ones are risky. In the absence of a prior validation system, these modifications are potentially a source of system instability or damage. On-site debugging and modification are not only extremely expensive but can be highly risky, cumulate expenditure and reduce productivity. This concerns all major industrial applications, Oil & Gas installations and Marine applications. Working conditions are difficult and the amount of tests that can be done is strictly limited to the mandatory ones. This thesis proposes two levels of industrial controller validation which can be done in experimental test platform : an algorithm validation level called Software In the Loop (SIL) treated in the second chapter ; a physical hardware validation called Hardware In the Loop (HIL) treated in the third chapter. The SIL validates only the control algorithm, the control law and the computed references without taking into account neither the actual physical commands nor the physical input feedbacks managed by the Input/Output boards. SIL validation of the system where industrial asynchronous motor is fed and regulated by a three level Variable Speed Drive with a three level voltage source converter is treated in the second chapter with a particular modeling approach adapted to such validation. The last chapter presents the HIL validation with various hardware implementations (Field Programmable Gate Array (FPGA), processors). Such validation checks both the control algorithm and the actual physical Input/Output signals generated by the dedicated boards. Each time, the modeling approach is chosen according to the hardware implementation. Currently this work has contributed to the system validation used by General Electric - Power Conversion © (GE-PC) as part of their validation phase that is mandatory for Oil & Gas projects and Marine applications
APA, Harvard, Vancouver, ISO, and other styles
29

Braun, Robert. "Hardware-in-the-Loop Simulation of Aircraft Actuator." Thesis, Linköping University, Linköping University, Department of Management and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20466.

Full text
Abstract:

Advanced computer simulations will play a more and more important role in future aircraft development and aeronautic research. Hardware-in-the-loop simulations enable examination of single components without the need of a full-scale model of the system. This project investigates the possibility of conducting hardware-in-the-loop simulations using a hydraulic test rig utilizing modern computer equipment. Controllers and models have been built in Simulink and Hopsan. Most hydraulic and mechanical components used in Hopsan have also been translated from Fortran to C and compiled into shared libraries (.dll). This provides an easy way of importing Hopsan models in LabVIEW, which is used to control the test rig. The results have been compared between Hopsan and LabVIEW, and no major differences in the results could be found. Importing Hopsan components to LabVIEW can potentially enable powerful features not available in Hopsan, such as hardware-in-the-loop simulations, multi-core processing and advanced plotting tools. It does however require fast computer systems to achieve real-time speed. The results of this project can provide interesting starting points in the development of the next generation of Hopsan.

APA, Harvard, Vancouver, ISO, and other styles
30

Stern, Christopher. "Hardware-in-the-Loop rammeverk for UAV testing." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13236.

Full text
Abstract:
I denne rapporten presenteres et rammeverk for Hardware in the Loop Simulation (HILS) i forbindelse med utvikling av Unmanned Aerial Vehicle (UAV) styresystemer. Oppgaven er utført som masteroppgave ved Teknisk Kybernetikk, NTNU.Rammeverket er utviklet i Windows 7 og baserer seg på dynamisk simulator programmert i MATLAB/Simulink og Flight Gear er brukt for visuell fremstilling av flyet. Resultatet består av tre deler som til sammen kompletterer en fullstendig HIL simulator. Oppgaven avgrenser seg til det datatekniske omkring utviklingen av HIL. Det vil si at den matematiske bakgrunnen for flymodeller og simuleringen ikke er utledet.Kapittel 2 gir en innføring i begreper og maskinvare utviklet for Odin Recce UAV. Resultatet er deretter presentert i tre deler.I kapittel 3 er oppbyggingen av et driverbibliotek for avlesing av joystick gjennomgått i detalj for språkene: C/C++, Java, MATLAB og Simulink. En grafisk bakkestasjon for logging av data og styring av modellen utviklet i MATLAB i kapittel 4.Tilsvarende systemer er beskrevet og analysert som basis for videre utvikling som siste av resultatet tilhørende kapittel 5. Her også testprosedyrer og feilkilder redegjort for.Oppgaven presenterer en generell fremgangsmåte for HIL simulering. Rammeverket er kodet med lavest mulig kobling og høy kohesjon for at løsningen skal kunne gjenbrukes senere.Ved å tilpasse den dynamiske modellen til ønsket fysisk system kan en legge til reguleringssløyfer og kontrollsystem med mulighet for å påtrykke eventuelle feilsituasjoner – brukeren får visuell tilbakemelding på flyets oppførsel via Flight Gear og bakkestasjonen gjør det også mulig å logge sanntidsdata.Prosjektet er en del av utviklingen omkring Odin Recce D6 UAV, men denne modellen er ikke brukt spesifikt i utviklingen. Mer informasjon om Odin er på www.odin.aero.
APA, Harvard, Vancouver, ISO, and other styles
31

MacDiarmid, Monte. "Analysis and Design of Hardware-in-the-Loop Simulators." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Harris, Jr Frederick Bernard. "GNSS Hardware-In-The-Loop Formation and Tracking Control." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/71380.

Full text
Abstract:
Formation and tracking control are critical for of today's vehicle applications in and this will be true for future vehicle technologies as well. Although the general function of these controls is for data collection and military applications, formation and tracking control may be applied to automobiles, drones, submarines, and spacecraft. The primary application here is the investigation of formation keeping and tracking solutions for realistic, real-time, and multi-vehicle simulations. This research explores the creation of a predictive navigation and control algorithm for formation keeping and tracking, raw measurement data collection, and building a real-time GNSS closed HWIL testbed for simulations of different vehicles. The L1 frequency band of the Global Positioning System (GPS) constellation is used to observe and generate raw measurement data that encompasses range, pseudo-range, and Doppler frequency. The closed HWIL simulations are implemented using Spirent's Communication Global Navigation Satellite system (GNSS) 6560 and 8000 hardware simulators along with Ashtech, G-12 and DG-14, and Novetel OEM 628 receivers. The predictive navigation control is similar to other vision-based tracking techniques, but relies mainly on vector projections that are controlled by acceleration, velocity magnitude, and direction constraints to generate realistic motion. The current state of the testbed is capable of handling one or more vehicle applications. The testbed can model simulations up to 24 hours. The vehicle performance during simulations can be customized for any required precision by setting a variety of vehicle parameters. The testbed is built from basic principles and is easily upgradable for future expansions or upgrades.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
33

Harris, Frederick Bernard Jr. "GNSS Hardware-In-The-Loop Formation and Tracking Control." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71380.

Full text
Abstract:
Formation and tracking control are critical for of today's vehicle applications in and this will be true for future vehicle technologies as well. Although the general function of these controls is for data collection and military applications, formation and tracking control may be applied to automobiles, drones, submarines, and spacecraft. The primary application here is the investigation of formation keeping and tracking solutions for realistic, real-time, and multi-vehicle simulations. This research explores the creation of a predictive navigation and control algorithm for formation keeping and tracking, raw measurement data collection, and building a real-time GNSS closed HWIL testbed for simulations of different vehicles. The L1 frequency band of the Global Positioning System (GPS) constellation is used to observe and generate raw measurement data that encompasses range, pseudo-range, and Doppler frequency. The closed HWIL simulations are implemented using Spirent's Communication Global Navigation Satellite system (GNSS) 6560 and 8000 hardware simulators along with Ashtech, G-12 and DG-14, and Novetel OEM 628 receivers. The predictive navigation control is similar to other vision-based tracking techniques, but relies mainly on vector projections that are controlled by acceleration, velocity magnitude, and direction constraints to generate realistic motion. The current state of the testbed is capable of handling one or more vehicle applications. The testbed can model simulations up to 24 hours. The vehicle performance during simulations can be customized for any required precision by setting a variety of vehicle parameters. The testbed is built from basic principles and is easily upgradable for future expansions or upgrades.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
34

Root, Eric. "A Re-Configurable Hardware-in-the-Loop Flight Simulator." Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1090939388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Serdar, Usenmez. "Design Of An Integrated Hardware-in-the-loop Simulation System." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/2/12612051/index.pdf.

Full text
Abstract:
This thesis aims to propose multiple methods for performing a hardware-in-the-loop simulation, providing the hardware and software tools necessary for design and execution. For this purpose, methods of modeling commonly encountered dynamical system components are explored and techniques suitable for calculating the states of the modeled system are presented. Modules and subsystems that enable the realization of a hardware-in-the-loop simulation application and its interfacing with external controller hardware are explained. The thesis also presents three different simulation scenarios. Solutions suitable for these scenarios are provided along with their implementations. The details and specifications of the developed software packages and hardware platforms are given. The provided results illustrate the advantages and disadvantages of the approaches used in these solutions.
APA, Harvard, Vancouver, ISO, and other styles
36

Grungxu, Lungile Leonard. "Aspect of a hardware-in-the-loop integrated test system." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53292.

Full text
Abstract:
Thesis (MScEng)--University of Stellenbosch, 2003.
ENGLISH ABSTRACT: A multiprocessor hardware-in-the-Ioop operating system was developed for the Integrated Test System (ITS) and is aimed at implementing the ITS as a space emulation vehicle. The thesis contains a study of satellite orbits, Kepler elements, geomagnetic fields and communication protocol between the processors. The system structure consists of an orbit generator, a core-operating system and is presented with a study of the satellite sensors. In implementing the orbit propagator, there was a need to pay special attention to the Halving algorithm, the Newton Raphson method and the True Solution. These algorithms were used to calculate the true anomaly angle as a function of eccentric anomaly. The communications protocol was tested and all the errors, with their solutions, have been discussed. A concept of a geomagnetic field emulator has also been included in the hardware-in-theloop operating system. The evaluation of those aspects of the system and the conclusion are presented together with recommendations.
AFRIKAANSE OPSOMMING: 'n multiprosesseerder Hardeware in die lus bedryfstelsel is ontwikkel vir 'n Geintegreerde Toets Stelsel (ITS) en poog om die ITS te implementeer as 'n ruimte emulasie stelsel. Die tesis behels die studie van sateliet wentelbane, Kepler wentelbaan elemente, geomagnetiese velde en kommunikasie protokolle tussen die prosesseerders. Die stelsel struktuur betaal uit 'n wentelbaan propageerder, 'n kern bedryfstelsel en 'n studie van satelliet instrumentasie. As 'n deel van die implementering van die wentelbaan propageerder is die halveer algoritme, Newton-Raphson algoritme en die ware oplossing as numeriese oplossings ondersoek. Die kommunikasie protokol is getoets en foute ondersoek en word bespreek. 'n konsep vir 'n Geomagnetiese veld emulasie word die hardeware in die lus stelsel ingesluit. Die stelsel word ge-ewalueer en die gevolgtrekkings en aanbevelings gemaak.
APA, Harvard, Vancouver, ISO, and other styles
37

Mahmud, Akib. "Hardware in the Loop (HIL) Rig Design and Electrical Architecture." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324661.

Full text
Abstract:
Different types of machines are tested utilizing so called Hardware In the Loop simulation. To perform HIL-simulation a rig is used consisting of different types of hardware and software. Some of the hardware that are used during a simulation is located inside an EMS box. The box has not been properly updated since 2004, no documentation of changes has been made and often many errors occurs during simulations due to the lack of traceability. During this project a new structure of the EMS box has been designed with modifications to eliminate existing problems, prevent similar problems to occur in the future and improve the usability of the system. A simulation was performed on the camshaft to test if there were any improvements. Most issues were solved but there were one problem that remained. Some noises existed and were rooted in the old box which undeniably remained in the new one.
APA, Harvard, Vancouver, ISO, and other styles
38

Janczak, John. "Implementation of a Hardware-in-the-Loop System Using Scale Model Hardware for Hybrid Electric Vehicle Development." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/33881.

Full text
Abstract:
Hardware-in-a-loop (HIL) testing and simulation for components and control strategies can reduce both time and cost of development. HIL testing focuses on one component or control system rather than the entire vehicle. The rest of the system is simulated by computer systems which use real time data acquisition systems to read outputs and respond like the systems in the actual vehicle would respond. The hardware for the system is on a scaled-down level to save both time and money during testing. The system designed to simulate the REVLSE Equinox split parallel hybrid consists of five direct current (DC) permanent magnet motors. These motors are used in the system to test the controller software of the vehicle. Two of the motors act as power plants simulating the spark ignited Ethanol engine and the rear traction motor. These two motors are controlled by DC variable speed controllers. The other motors are used as generators to simulate the load from the belted alternator starter (BAS) and the road load on each axle. The motors on each axle are joined together mechanically using a belt and pulley system. The front and rear axle of the system are not connected to simulate the actual vehicle where the power plants are gear-reduced before they make contact with the road and therefore do not actually spin at the same speeds. The computer software and hardware used to run the HIL hybrid system is National Instruments LabView and CompactRIO. LabView provides an easy interface through which programs for the RIO can be written. The RIO gives the user the ability to measure the power into and out of different components in the system to measure the efficiency of the system. The ability to measure system efficiencies using different powertrain inputs and loading schemes is what makes the HIL system a valuable tool in control modeling for the Equinox. LabView and the RIO allow the user to optimize the control strategy with the two power plant inputs and the BAS to make sure the high voltage system stays charged and improve the overall efficiency of the vehicle without the actual vehicle. The HIL system allows other work to be done of the vehicle during the control development. During a constant axle speed test at 730 RPM with constant generator resistance, the front engine efficiency was 33.8%, the BAS efficiency was 53.0%, the rear load generator efficiency was 51.2% and the overall efficiency of the front axle was 24.0%. These results show that the system can simulate the powertrain of a hybrid vehicle and help create and validate a control scheme.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
39

Underwood, Ryan C. "An open framework for highly concurrent hardware-in-the-loop simulation." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.mst.edu/thesis/pdf/Underwood_09007dcc8042c7c7.pdf.

Full text
Abstract:
Thesis (M.S.)--University of Missouri--Rolla, 2007.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed February 14, 2008) Includes bibliographical references (p. 37-40).
APA, Harvard, Vancouver, ISO, and other styles
40

IMANI, MAZDA. "Hardware-in-the-Loop simulering av motorservon på ett inbyggt system." Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146633.

Full text
Abstract:
This report presents a master thesis project performed at Elekta AB during the fall of 2013 and early 2014. Elekta is a medical technology company and their main product in the Stockholm office is a gamma knife used for radiosurgery. The gamma knife contains a cluster of a dozen motor servos and motors used for adjusting the patient and the radiation sources over a CAN bus. A self-developed hardware-in-loop simulator running on a PC with LabVIEW is currently being used for integration level testing of the control system of the gamma knife. The simulator has some problems with it not running in real-time and having other performance issues. This is suspected by Elekta to be due to the massive amount of CAN, serial, and other messages being handled. Elekta, not wanting to invest in expensive dedicated HIL hardware, are looking for an inexpensive way to rebuild the HIL simulator on a generic low cost embedded system.The focus of the project has been to investigate if it’s possible to replace the HIL simulator with a cheaper embedded system. This was at the end of the project done by building a proof of concept device to demonstrate this.Related to this problem area was a case study also carried out at Elekta about how the company works with Validation, Verification and Testing. The aim of the study was to investigate if there are any changes that the company can make to improve their VVT process. This was done by conducting a literature review and performing interviews with developers and testers at the company.A reproduction of the core functionality of the current HIL simulator was implemented on a STM32F103 microcontroller from STMicroelectronics using the ARM Cortex M3 processor with the ARM7 architecture. The microcontroller was able to successfully interfacing with the control system and simulating the cluster of motor servos and its mechanical systems with sufficient real-time performance.The conclusions of the carried out project is that it’s possible for Elekta to implement the core functionality of their current HIL simulator on a Cortex M3 microcontroller. Elekta do however need to investigate further if moving the complete HIL simulator to an embedded system will make further development and usability of the simulator more complex and expensive.
Denna rapport är resultatet av ett examensarbete utfört på Elekta AB under hösten 2013 och våren 2014. Elekta är ett medicintekniskt företag vars huvudprodukt på Stockholmskontoret är en gammakniv som används inom radiokirurgi. Gammakniven innehåller ett kluster av ett dussin motorservon styrda över en CAN-buss. Dessa används för att justera patienten och de radioaktiva källorna. För tillfället använder företaget en egenutvecklad ”Hardware-in-the-Loop” simulator, körandes på en PC med LabVIEW, för att utföra integrationstester av gammaknivens styrsystem. Simulatorn har uppvisat tecken prestandaproblem och att simuleringarna inte sker i realtid. Elekta misstänker att detta beror på det stora antalet meddelanden som måste hanteras över CAN, seriella och andra anslutningar. Företaget är motvilligt att investera i dyra färdiga system och vill undersöka möjligheten att lösa dessa problem genom att implementera den nuvarande simulatorn på ett billigt inbyggt system.Projektets fokus har legat på att undersöka om det är möjligt att ersätta den nuvarande HIL simulatorn med ett billigare inbyggt system. Detta gjordes genom att bygga en ”proof-of-concept” prototyp för att demonstrera att detta är möjligt.Relaterat till detta problemområde genomfördes en fallstudie på Elekta om hur företaget arbetar med validering, verifiering och testning. Syftet med studien var att undersöka om det finns några förändringar som företaget kan göra för att förbättra denna process. Detta gjordes genom att utföra en litteraturstudie och genomföra intervjuer med utvecklare och testare på företaget.Ett återskapande av den nuvarande HIL simulatorns huvudfunktionalitet implementerades på en STM32F103 mikrokontroller from STMicroelectronics som använder en ARM Cortex M3 processor med ARM7 arkitektur. Mikrokontrollern kunde framgångsrikt samverka med styrsystemet och simulera klustret av motorservorna och deras mekaniska system med tillräcklig realtidsprestanda.De dragna slutsatserna är att det är möjligt för Elekta att implementera funktionaliteten av deras nuvarande HIL simulator på en Cortex M3 mikrokontroller. Företaget behöver dock undersöka om en flytt av den nuvarande simulatorn kommer att göra ytterligare utveckling och användande av systemet mera komplicerat och kostsamt.
APA, Harvard, Vancouver, ISO, and other styles
41

Kalvaitis, Timothy Elmer. "Distributed shared memory for real time hardware in the loop simulation." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/35972.

Full text
Abstract:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.
Includes bibliographical references (p. 95-96).
by Timothy Elmer Kalvaitis.
M.S.
APA, Harvard, Vancouver, ISO, and other styles
42

Bier, Maximilian [Verfasser]. "Hardware-in-the-Loop-Motorprüfstand zur Entwicklung hybrider Antriebsstränge / Maximilian Bier." Aachen : Shaker, 2018. http://d-nb.info/1188549669/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ágústsson, Eiður. "Hardware-in-The-Loop Simulation of a High Speed Servo System." Thesis, KTH, Maskinkonstruktion (Inst.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183133.

Full text
Abstract:
In production industries there is a constant demand for shorter time to market and lower development costs. Using models and simulations has been shown to decrease development time and increase product quality. One reason for this is that these methods allow development and testing of control systems before actual prototypes are available. The purpose of this thesis is to implement a Hardware-in-the-loop simulation of the MY500 solder jet printer, which is produced by Micronic Mydata AB. The MY500 has high accuracy and speed requirements, resulting in a short control loop, which puts hard constraints on the model calculation time. The simulation is implemented on a dSPACEMicroAutoBox, using the MATLAB toolboxes Simulink and SimMechanics. It communicates with the control system via SPI and implements an existing SimMechanics model and a newly developed Simulink model. The Simulink model developed in this thesis was found to be a sufficiently realistic simplification of the SimMechanics model. Furthermore, the findings show that the Sim-Mechanics model cannot be run in closed loop on the chosen hardware due to its extensive complexity. The thesis also shows that when using the internal clock, even the shortest model step time allowed by the hardware is not sufficient to perform a stable HIL simulation. Lastly, the SPI implementation tested in this thesis introduced computational delays into the control loop of the MY500, which led to the system only being able to calculate one axis. This thesis concludes that even though the current implementation has some limitations, there is reason to continue the work and making a good simulator of the MY500. Two main avenues of investigation are; firstly, implementing an external interrupt for the HIL simulation, which should allow a larger time step and eliminate jitter in the model output. Secondly, moving the SPI communication code out of the control loop and instead implementing it directly on the FPGA, which should minimize the computational delay added by SPI and thereby allows control of more than one axis.
I produktionsbranscher finns det en ständig efterfrågan på kortare tid till marknad och lägre utvecklingskostnader. Modeller och simuleringar har visat sig vara ett sätt att minska utvecklingstiden och öka produktkvalitén. En anledning till detta är att dessa metoder tillåter utveckling och testning av styrsystem innan de faktiska fysiska prototyperna är tillgängliga.Syftet med detta examensarbete är att genomföra en realtids simulering av lödpastaskrivaren MY500 som tillverkas av Micronic Mydata AB. MY500 har hög krav på noggrannhet och hastighet, vilket resulterar i en kort samplingstid som i sin tur sätter hårda restriktioner på modellens beräkningstid. Simuleringen genomförs på en dSPACE MicroAutoBox tillsammans med simuleringsverktyg i MATLAB. närmare bestämt Simulink och SimMechanics. Simulatorn kommunicerar med styrsystemet via SPI och implementerar en befintlig SimMechanics modell och en nyutvecklad Simulink modell. Simulink modellen, som utvecklats i detta examensarbete, visade sig vara en tillräckligt realistisk förenkling av SimMechanics modellen. Vidare visar resultaten att SimMechanicsmodellen inte kan köras på den valda hårdvaran p.g.a. dess komplexitet. Studien visar också att, när den interna klockan används, även med det kortaste tidssteget som hårdvaran klarar av, kommer inte HIL simuleringen att vara stabil. Slutligen, SPI-kommunikationen som testas introducerade fördröjningar i MY500 reglerloopen, vilket ledde till att systemet enbart kunde beräkna en axel. Slutsatsen som dras är att även om den nuvarande tillämpningen har nackdelar, finns det ändå skäl för att fortsätta arbetet och att göra en bra simulator. De två mest relevanta utvecklingar är: för det första, implementeringen av en extern interrupt borde tillåta ett större tidssteg och även eliminera jitter i modellens output. Sedan, med att flytta SPIkommunikationskoden ur reglerloopen och istället implementera den direkt på en FPGA borde beräkningsfördröjningar, komna från SPI, minimeras och därmed kontroll av mer än en axel möjliggörs.
APA, Harvard, Vancouver, ISO, and other styles
44

Williams, Steve. "Advanced Hardware-in-the-Loop Testing Assures RF Communication System Success." International Foundation for Telemetering, 2010. http://hdl.handle.net/10150/604299.

Full text
Abstract:
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California
RF Communication (COMMS) systems where receivers and transmitters are in motion must be proven rigorously over an array of natural RF link perturbations such as Carrier Doppler shift, Signal Doppler shift, delay, path loss and noise. These perturbations play significant roles in COMMS systems involving satellites, aircraft, UAVs, missiles, targets and ground stations. In these applications, COMMS system devices must also be tested against increasingly sophisticated intentional and unintentional interference, which must result in negligible impact on quality of service. Field testing and use of traditional test and measurement equipment will need to be substantially augmented with physics-compliant channel emulation equipment that broadens the scope, depth and coverage of such tests, while decreasing R&D and test costs and driving in quality. This paper describes dynamic link emulation driven by advanced antenna and motion modeling, detailed propagation models and link budget methods for realistic, nominal and worst-case hardware-in-the-loop test and verification.
APA, Harvard, Vancouver, ISO, and other styles
45

Acevedo, Miguel. "FPGA-Based Hardware-In-the-Loop Co-Simulator Platform for SystemModeler." Thesis, Linköpings universitet, Datorteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133413.

Full text
Abstract:
This thesis proposes and implements a flexible platform to perform Hardware-In-the-Loop (HIL) co-simulation using a Field-Programmable-Gate-Array (FPGA). The HIL simulations are performed with SystemModeler working as a software simulator and the FPGA as the co-simulator platform for the digital hardware design. The work presented in this thesis consists of the creation of: A communication library in the host computer, a system in the FPGA that allows implementation of different digital designs with varying architectures, and an interface between the host computer and the FPGA to transmit the data. The efficiency of the proposed system is studied with the implementation of two common digital hardware designs, a PID controller and a filter. The results of the HIL simulations of those two hardware designs are used to verify the platform and measure the timing and area performance of the proposed HIL platform.
APA, Harvard, Vancouver, ISO, and other styles
46

Gadou-Sanyal, Damien. "Dynamic Virtual Admittance Control Hardware-In-The-Loop Real-Time Simulation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278510.

Full text
Abstract:
To enhance the transient stability and the power oscillation damping of the powergrid, supplementary controllers can be applied to the embedded point-to-point High-Voltage Direct Current (HVDC) links. The work presented in this report aimed tovalidate the Dynamic Virtual Admittance Control (DVAC) designed in SuperGridInstitute, in Software- and Hardware-In-The-Loop (SIL and HIL) simulations.The DVA control was first studied analytically and implemented in an offlinesimulation, on a basic test-system. A two-area test-system was then modelled as thebase for validation of the stabilising control. The fault applied to test the controller’sefficiency was a three-phase short-circuit on one of the AC transmission lines linkingthe two areas. The DVAC was validated on the test-system, first by SIL, and thenby HIL real-time simulation. For the purpose of turning the simulation into an HILsimulation, the DVAC was implemented in code C in a Raspberry Pi computer, andthe IEC 61850 communication protocol was studied in detail to be configured for theHIL simulation’s set-up.The SIL and HIL simulations of the DVAC on a three-phase short-circuit provedthe control’s ability to damp power oscillations in around 5 seconds, twice as fast asif no control is implemented.
För att förbättra elnätets transientstabilitet och dämpning kan kompletterandestyrenheter användas på inbäddade högspänningslikströmslänkar (HVDC). Arbetetsom presenteras i denna rapport syftade till att validera Dynamic Virtual Admittance(DVA) reglering, utvecklat i SuperGrid Institute, i simuleringar med mjukochhårdvara-i-loop (SIL & HIL).DVA studerades först analytiskt och implementerades i en offlinesimulering, påett grundläggande provsystem. Ett testsystem i två områden modellerades sedansom bas för validering av regleringens stabilisering. Felet som användes för attprova styrenhetens effektivitet var en trefas kortslutning på en av de växelströmsledningarsom förbinder de två områdena. DVAC validerades på provsystemet,först av SIL och sedan av HIL realtidssimulering. För att omvandla simuleringen tillen HIL-simulering implementerades DVAC i kod C i en Raspberry Pi-dator, och IEC61850-kommunikationsprotokollet studerades i detalj för att konfigureras för HILsimuleringensuppsättning.SIL och HIL simulering av DVAC validerades för en trefasig kortslutning ochbekräftade att regleringen kunde dämpa ut effektoscillationerna inom 5 sekunder,dubbelt så snabbt jämfört med om ingen reglering var implementerad.
APA, Harvard, Vancouver, ISO, and other styles
47

Ferreira, Jorge Augusto Fernandes. "Modelação de sistemas hidráulicos para simulação com hardware-in-the-loop." Doctoral thesis, Universidade de Aveiro, 2003. http://hdl.handle.net/10773/10859.

Full text
Abstract:
Doutoramento em Engenharia Mecânica
Um ambiente simulado é a via mais rápida, e de menores custos, para avaliar o desempenho de diferentes estratégias para controlo de sistemas hidráulicos. Neste campo emerge uma nova técnica, denominada simulação com hardware-in-the-loop (HILS), para teste de controladores reais em ambientes virtuais simulados em tempo real. A presente dissertação propõe uma metodologia para a organização de bibliotecas de modelos, um conjunto de modelos híbridos semi-empíricos para componentes de sistemas hidráulicos e uma plataforma para a realização de experiências de simulação com hardware-in-the-loop. A metodologia proposta baseia-se na associação de uma nova linguagem de modelação orientada por objectos, chamada Modelica, para a descrição da estrutura dos modelos, com o formalismo gráfico dos Statecharts para a descrição do seu comportamento híbrido. Tendo em vista a concretização da metodologia, foi desenvolvida uma biblioteca de modelos para a implementação do formalismo dos Statecharts em Modelica. Entre os modelos para componentes hidráulicos propostos está um conjunto de modelos semi-empíricos para a modelação de válvulas proporcionais de elevado desempenho. Os modelos desenvolvidos usam dados do fabricante ou dados experimentais para ajuste dos parâmetros, de forma a reproduzir as características estáticas (ganho de pressão, caudal de fugas e ganho de caudal) e dinâmicas (resposta em frequência) da válvula. Foi construída uma plataforma para teste do desempenho dos modelos híbridos desenvolvidos em simulações com hardware-in-the-loop. A plataforma é composta por um manipulador com actuação hidráulica equipado com um conjunto de transdutores, por hardware de tempo real e por um conjunto de ferramentas de software para aquisição de dados e controlo. De um conjunto de experiências HILS, realizadas com diferentes núcleos de tempo real, foram obtidos resultados muito promissores para os modelos semi-empíricos propostos.
A simulated environment is the less expensive and fastest way of evaluating the relative merits of different control schemes for a given hydraulic system. A new technique, called hardware-in-the-loop simulation (HILS), is emerging to test hardware controllers in virtual environments simulated in real time. This thesis proposes a methodology to organize model libraries, a set of semiempirical hybrid models for hydraulic components and a platform for hardwarein- the-loop simulation experiments. The methodology holds in the association of a new object oriented modelling language, called Modelica, to describe model structure, with the Statecharts graphical formalism to describe its hybrid behaviour. In order to implement the proposed methodology, a new Statecharts library in Modelica was developed. Among the proposed hydraulic component models there is a set of new semiempirical models for high performance proportional valves. The developed models use either data sheet or experimental values to fit the model parameters in order to reproduce both static (pressure gain, leakage flow rate and flow gain) and dynamic (frequency response) valve characteristics. An experimental platform was setup to test the developed hybrid models performance in hardware-in-the-loop simulation experiments. The platform is composed by a hydraulic actuated manipulator with a set of sensors, by real time hardware and by a package of software tools for data acquisition and control. Very satisfactory results, from a set of HILS experiments performed in different real time kernels were obtained for the semi-empirical models proposed.
APA, Harvard, Vancouver, ISO, and other styles
48

Barlow, Jacob L. "Hardware-in-the-Loop control of a cascaded multi-level converter." Thesis, Monterey, California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/1193.

Full text
Abstract:
Approved for public release; distribution is unlimited
Next-generation U.S. Navy destroyers, known as DD(X), will use electric drive motors to meet their propulsion needs instead of the traditional mechanical drives. The use of electric drive motors in naval vessels has spurred the development of high power converters. This thesis examines the feasibility of using an advanced control algorithm known as Sine-triangle Pulse Width Modulation (SPWM) in combination with a Cascaded Multi-Level Converter (CMLC) in order to meet the U.S. Navy's strict requirements. The SPWM control algorithm was designed in Simulink and experimentally tested on a CMLC previously constructed at the Naval Postgraduate School. The controller and converter successfully powered a quarter horsepower three-phase induction motor.
Ensign, United States Navy
APA, Harvard, Vancouver, ISO, and other styles
49

Sherrill, Ryan E. Sinclair Andrew J. "Scene generation and target detection for Hardware-in-the-Loop simulation." Auburn, Ala, 2009. http://hdl.handle.net/10415/1658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dall’Acqua, Francesco. "Implementazione di un sistema Hardware in the loop su piattaforma VeriStand." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3775/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography