Academic literature on the topic 'Power equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Power equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Power equations"

1

Bahamonde, Rafael E. "POWER PREDICTION EQUATIONS." Medicine & Science in Sports & Exercise 37, no. 3 (March 2005): 521. http://dx.doi.org/10.1249/01.mss.0000155701.90438.09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Canavan, Paul K., and Jason D. Vescovi. "POWER PREDICTION EQUATIONS." Medicine & Science in Sports & Exercise 37, no. 3 (March 2005): 522. http://dx.doi.org/10.1249/01.mss.0000155702.99287.37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

TARASOV, VASILY E. "TRANSPORT EQUATIONS FROM LIOUVILLE EQUATIONS FOR FRACTIONAL SYSTEMS." International Journal of Modern Physics B 20, no. 03 (January 30, 2006): 341–53. http://dx.doi.org/10.1142/s0217979206033267.

Full text
Abstract:
We consider dynamical systems that are described by fractional power of coordinates and momenta. The fractional powers can be considered as a convenient way to describe systems in the fractional dimension space. For the usual space the fractional systems are non-Hamiltonian. Generalized transport equation is derived from Liouville and Bogoliubov equations for fractional systems. Fractional generalization of average values and reduced distribution functions are defined. Gasdynamic equations for fractional systems are derived from the generalized transport equation.
APA, Harvard, Vancouver, ISO, and other styles
4

Beauregard, Raymond A., and Vladimir A. Dobrushkin. "Differential equations v. power series." Mathematical Gazette 99, no. 546 (November 2015): 499–503. http://dx.doi.org/10.1017/mag.2015.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karwowski, Jacek, and Henryk A. Witek. "Schrödinger equations with power potentials." Molecular Physics 114, no. 7-8 (December 16, 2015): 932–40. http://dx.doi.org/10.1080/00268976.2015.1115565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ingen Schenau, G. J. van, and P. R. Cavanagh. "Power equations in endurance sports." Journal of Biomechanics 23, no. 9 (January 1990): 865–81. http://dx.doi.org/10.1016/0021-9290(90)90352-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bognár, Gabriella, and Ondřej Došlý. "A remark on power comparison theorem for half-linear differential equations." Mathematica Bohemica 133, no. 2 (2008): 187–95. http://dx.doi.org/10.21136/mb.2008.134060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Costin, Rodica D. "Power and exponential-power series solutions of evolution equations." Annales de la faculté des sciences de Toulouse Mathématiques 13, no. 4 (2004): 551–73. http://dx.doi.org/10.5802/afst.1082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Győry, K., and Á. Pintér. "Binomial Thue equations, ternary equations and power values of polynomials." Journal of Mathematical Sciences 180, no. 5 (January 10, 2012): 569–80. http://dx.doi.org/10.1007/s10958-012-0656-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okhotin, Alexander, and Oksana Yakimova. "Language equations with complementation: Expressive power." Theoretical Computer Science 416 (January 2012): 71–86. http://dx.doi.org/10.1016/j.tcs.2011.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Power equations"

1

Lagrange, John. "Power Series Solutions to Ordinary Differential Equations." TopSCHOLAR®, 2001. http://digitalcommons.wku.edu/theses/672.

Full text
Abstract:
In this thesis, the reader will be made aware of methods for finding power series solutions to ordinary differential equations. In the case that a solution to a differential equation may not be expressed in terms of elementary functions, it is practical to obtain a solution in the form of an infinite series, since many differential equations which yield such a solution model an actual physical situation. In this thesis, we introduce conditions that guarantee existence and uniqueness of analytic solutions, both in the linear and nonlinear case. Several methods for obtaining analytic solutions are introduced as well. For the sake of pure mathematics, and particularly in the applications involving these differential equations, it is useful to find a radius of convergence for a power series solution. For these reasons, several methods for finding a radius of convergence are given. We will prove all results in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
2

Grey, David John. "Parallel solution of power system linear equations." Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5429/.

Full text
Abstract:
At the heart of many power system computations lies the solution of a large sparse set of linear equations. These equations arise from the modelling of the network and are the cause of a computational bottleneck in power system analysis applications. Efficient sequential techniques have been developed to solve these equations but the solution is still too slow for applications such as real-time dynamic simulation and on-line security analysis. Parallel computing techniques have been explored in the attempt to find faster solutions but the methods developed to date have not efficiently exploited the full power of parallel processing. This thesis considers the solution of the linear network equations encountered in power system computations. Based on the insight provided by the elimination tree, it is proposed that a novel matrix structure is adopted to allow the exploitation of parallelism which exists within the cutset of a typical parallel solution. Using this matrix structure it is possible to reduce the size of the sequential part of the problem and to increase the speed and efficiency of typical LU-based parallel solution. A method for transforming the admittance matrix into the required form is presented along with network partitioning and load balancing techniques. Sequential solution techniques are considered and existing parallel methods are surveyed to determine their strengths and weaknesses. Combining the benefits of existing solutions with the new matrix structure allows an improved LU-based parallel solution to be derived. A simulation of the improved LU solution is used to show the improvements in performance over a standard LU-based solution that result from the adoption of the new techniques. The results of a multiprocessor implementation of the method are presented and the new method is shown to have a better performance than existing methods for distributed memory multiprocessors.
APA, Harvard, Vancouver, ISO, and other styles
3

Ebrahimpour, Mohammad Reza. "An analytical study of the power flow equations with applications to systems with multiple close solutions." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/15746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

García-Blanco, Raquel. "Efficient solvers for power flow equations : parametric solutions with accuracy control assessment." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/458887.

Full text
Abstract:
The Power Flow model is extensively used to predict the behavior of electric grids and results in solving a nonlinear algebraic system of equations. Modeling the grid is essential for design optimization and control. Both applications require a fast response for multiple queries to a parametric family of power flow problems. Different solvers have been introduced especially designed for the algebraic nonlinear power flow equations, providing efficient solutions for single problems, even when the number of degrees of freedom is considerably large. However, there is no existing methodology providing an explicit solution of the Parametric Power Flow problem (viz. a computational vademecum, explicit in terms of the parameters). This work aims precisely at designing algorithms producing computational vademecums for the Parametric Power Flow problem. Once these solutions are available, solving for different values of the parameters is an extremely fast (real-time) post-process and therefore both the optimal design and the control problem can readily be addressed. In a first phase, a new family of iteratives solvers for the non-parametric version of the problem is devised. The method is based on a hybrid formulation of the problem combined with an alternated search directions scheme. These methods are designed such that it can be generalized to deal with the parametric version of the problem following a Proper Generalized Decomposition (PGD) strategy. The solver for the parametric problem is conceived by performing the operations involving the unknowns in a PGD fashion. The algorithm follows the basic steps of the algebraic solver, but some operations are carried out in a PGD framework, that is requiring a nested iterative algorithm. The PGD solver is accompanied with an error assessment technique that allows monitoring the convergence of the iterative procedures and deciding the number of terms required to meet the accuracy prescriptions. Different examples of realistic grids and standard benchmark tests are used to demonstrate the performance of the proposed methodologies.
El modelo de flujo de potencias se usa para predecir el comportamiento de redes eléctricas y desemboca en la resolución de un sistema de ecuaciones algebraicas no lineales. Modelar una red es esencial para optimizar su diseño y control. Ambas aplicaciones requieren una respuesta rápida a las múltiples peticiones de una familia paramétrica de problemas de flujo de potencias. Diversos métodos de resolución se diseñaron especialmente para resolver la versión algebraica de las ecuaciones de flujo de potencias. Sin embargo, no existe ninguna metodología que proporcione una solución explícita al problema paramétrico de flujo de potencias (esto quiere decir, un vademecum computacional explícito en términos de los parámetros). Esta tesis tiene como objetivo diseñar algoritmos que produzcan vademecums para el problema paramétrico de flujo de potencias. Una vez que las soluciones están disponibles, resolver problemas para diferentes valores de los parámetros es un posproceso extremadamente rápido (en tiempo real) y por lo tanto los problemas de diseño óptimo y control se pueden resolver inmediatamente. En la primera fase, una nueva familia de métodos de resolución iterativos para la versión algebraica del problema se construye. El método se basa en una formulación híbrida del problema combinado con un esquema de direcciones alternadas. Estos métodos se han diseñado para generalizarlos de forma que puedan resolver la versión paramétrica del problema siguiendo una estrategia llamada Descomposición Propia Generalizada (PGD). El método de resolución para el problema paramétrico calcula las incógnitas paramétricas usando la técnica PGD. El algoritmo sigue los mismo pasos que el algoritmo algebraico, pero algunas operaciones se llevan a cabo en el ambiente PGD, esto requiere algoritmos iterativos anidados. El método de resolución PGD se acompaña con una evaluación del error cometido permitiendo monitorizar la convergencia de los procesos iterativos y decidir el número de términos que requiere la solución para alcanzar la precisión preescrita. Diferentes ejemplos de redes reales y tests estándar se usan para demostrar el funcionamiento de las metodologías propuestas.
APA, Harvard, Vancouver, ISO, and other styles
5

Beardmore, Robert Eric. "A study of bifurcations in singular differential equations motivated by electrical power systems." Thesis, Brunel University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stein, Martin. "C0-Semigroup Methods for Delay Equations." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1225964082538-00880.

Full text
Abstract:
In der Dissertation werden Werkzeuge zur Analyse von Wohlgestelltheit und Asymptotik von Integro-Differential- und Verzögerungsgleichungen entwickelt. Im ersten Teil der Arbeit (Kapitel 1 und 2) werden Methoden zur Bestimmung der Modulhalbgruppe (kleinste dominierende C0-Halbgruppe) einer C0-Halbgruppe zur Verfügung gestellt, die unter anderem auf Volterra-Halbgruppen (die aus Integro-Differentialgleichungen hervorgehen) und Evolutionshalbgruppen (Rückkopplungsgleichungen mit Zeitverzögerung, Transport in Netzwerken) angewendet werden. Im Mittelpunkt des zweiten Teils (Kapitel 3 und 4) steht ein Integro-Differentialgleichungstyp, der Schwingungsphänomene von Tragswerksflächen im Unterschallbereich beschreibt. Das besondere dieser Gleichung ist das Auftreten der Zeitableitung der gesuchten Funktion im Integralterm. Es werden eine Reihe von Wohlgestelltheitskriterien hergeleitet, welche Wohlgestelltheit der Gleichung liefern, ohne das es möglich ist, durch partielle Integration die Zeitableitung im Integralterm zu beseitigen und dadurch die Gleichung auf einen bekannten Integro-Differentialgleichungstyp zurückzuführen. Die entwickelten Methoden eignen sich auch für die Herleitung neuer Wohlgestelltheitskriterien für andere Verzögerungsgleichungen. Entsprechende Resultate werden in Kapitel 4 hergeleitet
In the dissertation tools for the analysis of well-posedness and asymptotic behaviour of integro-differential equations and delay equations are developed. In the first part (chapter 1 and 2) methods for the determination of the modulus semigroup (smallest dominating C0-semigroup) of a C0-semigroup are provided and applied to various examples such as Volterra semigroups and evolution semigroups and transport evolution equations in networks. The main interest of the second part (chapter 3 and 4) is a type of an integro-differential equation which occurs in the modelling of the flutter of airfoils at subsonic speed. The remarkable property of the equation is the time derivative of the sought function in the integral term. A number of well-posedness criteria are proved for which integration by parts is not possible. The developed methods are also suitable for the derivation of new well-posedness results for other delay semigroups. Corresponding criteria are presented in chapter 4
APA, Harvard, Vancouver, ISO, and other styles
7

Stein, Martin. "C0-Semigroup Methods for Delay Equations." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23902.

Full text
Abstract:
In der Dissertation werden Werkzeuge zur Analyse von Wohlgestelltheit und Asymptotik von Integro-Differential- und Verzögerungsgleichungen entwickelt. Im ersten Teil der Arbeit (Kapitel 1 und 2) werden Methoden zur Bestimmung der Modulhalbgruppe (kleinste dominierende C0-Halbgruppe) einer C0-Halbgruppe zur Verfügung gestellt, die unter anderem auf Volterra-Halbgruppen (die aus Integro-Differentialgleichungen hervorgehen) und Evolutionshalbgruppen (Rückkopplungsgleichungen mit Zeitverzögerung, Transport in Netzwerken) angewendet werden. Im Mittelpunkt des zweiten Teils (Kapitel 3 und 4) steht ein Integro-Differentialgleichungstyp, der Schwingungsphänomene von Tragswerksflächen im Unterschallbereich beschreibt. Das besondere dieser Gleichung ist das Auftreten der Zeitableitung der gesuchten Funktion im Integralterm. Es werden eine Reihe von Wohlgestelltheitskriterien hergeleitet, welche Wohlgestelltheit der Gleichung liefern, ohne das es möglich ist, durch partielle Integration die Zeitableitung im Integralterm zu beseitigen und dadurch die Gleichung auf einen bekannten Integro-Differentialgleichungstyp zurückzuführen. Die entwickelten Methoden eignen sich auch für die Herleitung neuer Wohlgestelltheitskriterien für andere Verzögerungsgleichungen. Entsprechende Resultate werden in Kapitel 4 hergeleitet.
In the dissertation tools for the analysis of well-posedness and asymptotic behaviour of integro-differential equations and delay equations are developed. In the first part (chapter 1 and 2) methods for the determination of the modulus semigroup (smallest dominating C0-semigroup) of a C0-semigroup are provided and applied to various examples such as Volterra semigroups and evolution semigroups and transport evolution equations in networks. The main interest of the second part (chapter 3 and 4) is a type of an integro-differential equation which occurs in the modelling of the flutter of airfoils at subsonic speed. The remarkable property of the equation is the time derivative of the sought function in the integral term. A number of well-posedness criteria are proved for which integration by parts is not possible. The developed methods are also suitable for the derivation of new well-posedness results for other delay semigroups. Corresponding criteria are presented in chapter 4.
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmed, Ibrahim. "Comparative evaluation of different power quality issues of variable speed wind turbines." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15920.

Full text
Abstract:
The generation of wind energy deliberately becomes a significant part of generated electrical power in developed nations. Factors like fluctuation in natural wind speed and the use of power electronics present issues related power quality in wind turbine application. Following to the fact that there have been remarkable increase of wind energy in the electrical energy production worldwide, the effect on power quality and power system stability caused by wind power is considered significant, and hence the evaluation of this effect is crucial and obligatory. In order to examine and evaluate the characteristics of power quality of grid-integration of wind power in a persistent and authentic manner, several guidelines were introduced and established. One of the widely used guideline to define power quality of wind turbine is IEC standard 61400-21. Moreover, power system operator demands wind turbines to tolerate a certain voltage dip in some countries. The wind turbines concepts such as doubly-fed induction generator wind turbine and the direct driven wind turbine wind turbine with a permanent magnet synchronous generator are considered as the most promising concepts among other wind turbine types since they can operate in wide range of wind speed. The major goal of this PhD work is to examine the power quality character aspects of these wind turbine concepts. The power quality problems were calculated according to that devised by IEC- 61400-21 and then compared afterwards. The research includes the evaluation of the following power quality characteristics: voltage dip response, current harmonics distortion, control of active and reactive power and voltage flicker. Besides the IEC-standard 61400-21, the study also looks into the short-circuit current and fault-ride through with specifications provided by some grid codes, as power system stability is greatly influenced by these aspects. In order to achieve the research's goal, a reliable dynamic model of wind turbine system and control are required. Thus a complete model for both wind turbines systems was developed in PSCAD/EMTDC simulation-program which is the fanatical power system analysis tool, which can achieve a complete simulation of the system dynamic behaviour from the wind turbine. Two controllers are adopted for wind turbine system, converter control and pitch angle control. The converter controlled by a vector control in order to regulate the active and the reactive power whereas the pitch control scheme is put to function to limit the aerodynamic power in high wind speed. The ability of providing adequate state steady and dynamic performances are what wind turbine assures, as examined by simulation results, and via this, problems related to power quality caused by integrating wind turbines to the grid can be studied by wind turbine model.
APA, Harvard, Vancouver, ISO, and other styles
9

Fransson, Jonas. "Lower ramification numbers of wildly ramified power series." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35313.

Full text
Abstract:
In this thesis we study lower ramification numbers of power series tan- gent to the identity that are defined over fields of positive characteristics. Let f be such a series, then f has a fixed point at the origin and the corresponding lower ramification numbers of f are then, up to a constant, the multiplicity of zero as a fixed point of iterates of f. In this thesis we classify power series having ‘small’ ramification numbers. The results are then used to study ramification numbers of polynomials not tangent to the identity. We also state a few conjectures motivated by computer experiments that we performed.
APA, Harvard, Vancouver, ISO, and other styles
10

Ball, John. "Volterra filtering for applications in nonoverlapping spectral problems." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/15372.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Power equations"

1

Gaál, István. Diophantine Equations and Power Integral Bases. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0085-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gaál, István. Diophantine Equations and Power Integral Bases. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23865-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Power geometry in algebraic and differential equations. Amsterdam: Elsevier, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wenrong, Li, ed. Analytic solutions of functional equations. Singapore: World Scientific, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Diophantine equations and power integral bases: New computational methods. Boston: Birkhäuser, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Markowich, Peter A. The Stationary Semiconductor Device Equations. Vienna: Springer Vienna, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stamatiou, Mimis M. Derivation of the detailed equations for various power flow algorithms. Manchester: UMIST, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gruevski, Trpe. Algorithms for solving the polynomial algebraic equations of any power. Skopje: Company Samojlik, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balser, Werner. Formal power series and linear systems of meromorphic ordinary differential equations. New York: Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guillen, Michael. Five Equations That Changed the World: The Power and Poetry of Mathematics. New York, New York: Hyperion, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Power equations"

1

Cleophas, Ton J., and Aeilko H. Zwinderman. "Power Equations." In Clinical Data Analysis on a Pocket Calculator, 65–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27104-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cleophas, Ton J., and Aeilko H. Zwinderman. "Power Equations." In Clinical Data Analysis on a Pocket Calculator, 279–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27104-0_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cleophas, Ton J., and Aeilko H. Zwinderman. "Power Equations." In Statistical Analysis of Clinical Data on a Pocket Calculator, 19–21. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1211-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Monticelli, A. "Power Flow Equations." In State Estimation in Electric Power Systems, 63–102. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4999-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gilding, Brian H., and Robert Kersner. "Power-law equations." In Travelling Waves in Nonlinear Diffusion-Convection Reaction, 59–67. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7964-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rauch, Jeffrey. "Power Series Methods." In Partial Differential Equations, 1–60. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0953-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adkins, William A., and Mark G. Davidson. "Power Series Methods." In Ordinary Differential Equations, 487–555. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3618-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hirschhorn, Michael D. "Two Modular Equations." In The Power of q, 175–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57762-3_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Holm, Sverre. "Power-Law Wave Equations from Constitutive Equations." In Waves with Power-Law Attenuation, 119–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14927-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gaál, István. "Thue Equations." In Diophantine Equations and Power Integral Bases, 25–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23865-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Power equations"

1

Muntean, Oana. "Transposing phasor equation into instantaneous values equations using Hilbert transform." In 2014 49th International Universities Power Engineering Conference (UPEC). IEEE, 2014. http://dx.doi.org/10.1109/upec.2014.6934825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Soleev, A., and N. Soleeva. "Power geometry and algebraic equations." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abramov, Sergei A. "Power series and linear difference equations." In the twenty-first international symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390768.1390769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shyan-Lung Lin and J. E. Van Ness. "Parallel solution of sparse algebraic equations." In Conference Proceedings Power Industry Computer Application Conference. IEEE, 1993. http://dx.doi.org/10.1109/pica.1993.290992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fatima, Nahid. "New homotopy perturbation method for solving nonlinear differential equations and fisher type equation." In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). IEEE, 2017. http://dx.doi.org/10.1109/icpcsi.2017.8391997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McGregor, Duncan, Edward Phillips, David Sirajuddin, and Timothy Pointon. "Coupling 1D Telegrapher Equations to 3D Maxwell's Equations with Applications to Pulsed Power." In Proposed for presentation at the SIAM CSE 2021 held March 1-5, 2021 in Virtual. US DOE, 2021. http://dx.doi.org/10.2172/1847478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Livani, Hanif, Saeed Jafarzadeh, and M. Sami Fadali. "DC power flow using fuzzy linear equations." In 2015 IEEE Power & Energy Society General Meeting. IEEE, 2015. http://dx.doi.org/10.1109/pesgm.2015.7285835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, Bo, Roger Brockett, Weibo Gong, and Don Towsley. "Stochastic differential equations for power law behaviors." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

TAKENS, FLORIS. "TIME SERIES ANALYSIS: SMOOTHED CORRELATION INTEGRALS, AUTOCOVARIANCES, AND POWER SPECTRA." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tarateeraseth, Vuttipon. "Derivation of Insertion Loss Equations for EMI Filter Design." In Power and Energy Systems. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.768-074.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Power equations"

1

Jiang, Bo, Roger Brockett, Weibo Gong, and Don Towsley. Stochastic Differential Equations for Power Law Behaviors. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada577839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dvijotham, Krishnamurthy, Steven Low, and Michael Chertkov. Solving the power flow equations: a monotone operator approach. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1210207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Luc, Brunet. Systematic Equations Handbook : Book 1-Energy. R&D Médiation, May 2015. http://dx.doi.org/10.17601/rd_mediation2015:1.

Full text
Abstract:
The energy equation handbook is the complete collection of physically coherent expression of energy computed using from 2 to 7 physical units among: density(ML-3) energy (ML2T-2) time (T) force (MLT-2) power (ML2T-3) current (I) temperature (Th) quantity (N) mass (M) length (L) candela (J) surface (L2) volume (L3) concentration (ML-3) frequency (T-1) acceleration (LT- 2) speed (LT-1) pressure (ML-1T-2) viscosity (ML-1T-1) luminance (L- 2J) MolarMass (MN-1) MassicEnergy (L2T-2) resistance (ML2T-3I-2) voltage (ML2T-3I-1) Farad (M-1L-2T4I2) Thermal- Conductivity (MLT-3Th-1) SpecificHeat (L2T-2Th-1) MassFlux (MT-1) SurfaceTension (MT-2) Charge (TI) Resistivity (ML3T-3I-2) The complete list of 4196 equations is sorted by number of variable required to obtain an energy in Joules. All the units are in MKSA.
APA, Harvard, Vancouver, ISO, and other styles
4

Aimone, James Bradley, Aaron Jamison Hill, Richard B. Lehoucq, Ojas D. Parekh, Leah Reeder, and William Mark Severa. Neural Algorithms for Low Power Implementation of Partial Differential Equations. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1474253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abhyankar, Shrirang, Mihai Anitescu, Emil Constantinescu, and Hong Zhang. Efficient Adjoint Computation of Hybrid Systems of Differential Algebraic Equations with Applications in Power Systems. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1245175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wilkes, James M. Applications of Power Series Solutions of Membrane Equilibrium Equations to the Optical Evaluation of Membrane Mirrors with Curvature. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada359549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sandhu, Sarwan S. Aerospace Power Scholarly Research Program. Delivery Order 0013: Volume 1. Development of Performance/Design Equations for a Direct Methanol Fuel Cell. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada436943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chien, T. H., H. M. Domanus, and W. T. Sha. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/10147024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robinson, Allen. The Mie-Gruneisen Power Equation of State. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1762624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

James, P. A. Logistics and the Combat Power Equation - Cutting Across the Spectrum of Warfare. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada253250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography