Journal articles on the topic 'Potentiel machine learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Potentiel machine learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ben Zid, Afef, Asma Najjar, and Imen Hamrouni. "Classification automatique d’emprises au sol de maisons dites « andalouses » à l’aide de modèle de Machine Learning." SHS Web of Conferences 203 (2024): 02001. http://dx.doi.org/10.1051/shsconf/202420302001.
Full textBOUKHELEF, Faiza. "Investigating Students’ Attitudes Towards Integrating Machine Translation in the EFL Classroom: The case of Google Translate." Langues & Cultures 5, no. 01 (June 30, 2024): 264–77. http://dx.doi.org/10.62339/jlc.v5i01.243.
Full textNg, Wenfa. "Evaluating the Potential of Applying Machine Learning Tools to Metabolic Pathway Optimization." Biotechnology and Bioprocessing 2, no. 9 (November 2, 2021): 01–07. http://dx.doi.org/10.31579/2766-2314/060.
Full textDatta, Debaleena, Pradeep Kumar Mallick, Akash Kumar Bhoi, Muhammad Fazal Ijaz, Jana Shafi, and Jaeyoung Choi. "Hyperspectral Image Classification: Potentials, Challenges, and Future Directions." Computational Intelligence and Neuroscience 2022 (April 28, 2022): 1–36. http://dx.doi.org/10.1155/2022/3854635.
Full textSrinivasaiah, Bharath. "The Power of Personalized Healthcare: Harnessing the Potential of Machine Learning in Precision Medicine." International Journal of Science and Research (IJSR) 13, no. 5 (May 5, 2024): 426–29. http://dx.doi.org/10.21275/sr24506012313.
Full textKamoun-Abid, Ferdaous, Hounaida Frikha, Amel Meddeb-Makhoulf, and Faouzi Zarai. "Automating cloud virtual machines allocation via machine learning." Indonesian Journal of Electrical Engineering and Computer Science 35, no. 1 (July 1, 2024): 191. http://dx.doi.org/10.11591/ijeecs.v35.i1.pp191-202.
Full textShoureshi, R., D. Swedes, and R. Evans. "Learning Control for Autonomous Machines." Robotica 9, no. 2 (April 1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Full textAschepkov, Valeriy. "METHODS OF MACHINE LEARNING IN MODERN METROLOGY." Measuring Equipment and Metrology 85 (2024): 57–60. http://dx.doi.org/10.23939/istcmtm2024.01.057.
Full textLevantesi, Susanna, Andrea Nigri, and Gabriella Piscopo. "Longevity risk management through Machine Learning: state of the art." Insurance Markets and Companies 11, no. 1 (November 25, 2020): 11–20. http://dx.doi.org/10.21511/ins.11(1).2020.02.
Full textShak, Md Shujan, Aftab Uddin, Md Habibur Rahman, Nafis Anjum, Md Nad Vi Al Bony, Murshida Alam, Mohammad Helal, Afrina Khan, Pritom Das, and Tamanna Pervin. "INNOVATIVE MACHINE LEARNING APPROACHES TO FOSTER FINANCIAL INCLUSION IN MICROFINANCE." International Interdisciplinary Business Economics Advancement Journal 05, no. 11 (November 6, 2024): 6–20. http://dx.doi.org/10.55640/business/volume05issue11-02.
Full textHossain, Nur, Nafis Anjum, Murshida Alam, Md Habibur Rahman, Md Siam Taluckder, Md Nad Vi Al Bony, S. M. Shadul Islam Rishad, and Afrin Hoque Jui. "PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY." International Journal of Medical Science and Public Health Research 05, no. 11 (November 14, 2024): 41–55. http://dx.doi.org/10.37547/ijmsphr/volume05issue11-05.
Full textLyu, Nian. "The prospect and metaphysical analysis of conscious artificial intelligence." Applied and Computational Engineering 77, no. 1 (July 16, 2024): 32–36. http://dx.doi.org/10.54254/2755-2721/77/20240632.
Full textKeneskyzy, K., and S. B. Yeskermes. "Метод машинного обучения для обратных задач теплопроводности." INTERNATIONAL JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGIES 2, no. 1(5) (March 26, 2021): 59–64. http://dx.doi.org/10.54309/ijict.2021.05.1.008.
Full textYang, Yinuo, Shuhao Zhang, Kavindri D. Ranasinghe, Olexandr Isayev, and Adrian E. Roitberg. "Machine Learning of Reactive Potentials." Annual Review of Physical Chemistry 75, no. 1 (June 28, 2024): 371–95. http://dx.doi.org/10.1146/annurev-physchem-062123-024417.
Full textShi, Yang. "Research on the Stock Price Prediction Using Machine Learning." Advances in Economics, Management and Political Sciences 22, no. 1 (September 13, 2023): 174–79. http://dx.doi.org/10.54254/2754-1169/22/20230307.
Full textMueller, Tim, Alberto Hernandez, and Chuhong Wang. "Machine learning for interatomic potential models." Journal of Chemical Physics 152, no. 5 (February 7, 2020): 050902. http://dx.doi.org/10.1063/1.5126336.
Full textShih, David, Matthew R. Buckley, Lina Necib, and John Tamanas. "via machinae: Searching for stellar streams using unsupervised machine learning." Monthly Notices of the Royal Astronomical Society 509, no. 4 (November 24, 2021): 5992–6007. http://dx.doi.org/10.1093/mnras/stab3372.
Full textSamahitha Kaliyuru Ravi, Sameera Kaliyuru Ravi, and A. Hema Prabha. "Advent of machine learning in autonomous vehicles." International Journal of Science and Research Archive 13, no. 1 (September 30, 2024): 1219–26. http://dx.doi.org/10.30574/ijsra.2024.13.1.1760.
Full textAbro, Safdar Ali, Lyu Guang Hua, Javed Ahmed Laghari, Muhammad Akram Bhayo, and Abdul Aziz Memon. "Machine learning-based electricity theft detection using support vector machines." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 2 (April 1, 2024): 1240. http://dx.doi.org/10.11591/ijece.v14i2.pp1240-1250.
Full textRamesh, Banoth, G. Srinivas, P. Ram Praneeth Reddy, M. D. Huraib Rasool, Divya Rawat, and Madhulita Sundaray. "Feasible Prediction of Multiple Diseases using Machine Learning." E3S Web of Conferences 430 (2023): 01051. http://dx.doi.org/10.1051/e3sconf/202343001051.
Full textNagaraju, Dr R. "XSS Attack Detection using Machine Learning Algorithms." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, no. 12 (December 1, 2023): 1–11. http://dx.doi.org/10.55041/ijsrem27487.
Full textKayathri, K., and Dr K. Kavitha. "CGSX Ensemble: An Integrative Machine Learning and Deep Learning Approach for Improved Diabetic Retinopathy Classification." International Journal of Electrical and Electronics Research 12, no. 2 (June 28, 2024): 669–81. http://dx.doi.org/10.37391/ijeer.120245.
Full textLi, Keqin, Peng Zhao, Shuying Dai, Armando Zhu, Bo Hong, Jiabei Liu, Changsong Wei, Wenqian Huang, and Yang Zhang. "Exploring the Impact of Quantum Computing on Machine Learning Performance." Middle East Journal of Applied Science & Technology 07, no. 02 (2024): 145–61. http://dx.doi.org/10.46431/mejast.2024.7215.
Full textChinnala Balakrishna and Rambabu Bommisetti. "Detecting psychological uncertainty using machine learning." International Journal of Science and Research Archive 12, no. 2 (July 30, 2024): 1365–70. http://dx.doi.org/10.30574/ijsra.2024.12.2.1399.
Full textNivas, K., M. Rajesh Kumar, G. Suresh, T. Ramaswamy, and Yerraboina Sreenivasulu. "Facial Emotion Detection Using Deep Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 1 (January 31, 2023): 427–33. http://dx.doi.org/10.22214/ijraset.2023.48585.
Full textWilliam, Carter, Choki Wangmo, and Anjali Ranjan. "Unravelling the application of machine learning in cancer biomarker discovery." Cancer Insight 2, no. 1 (June 14, 2023): 1–8. http://dx.doi.org/10.58567/ci02010001.
Full textPatil, Rohit, Priyadarshani Alandikar, Vaibhav Chaudhari, Pradnya Patil, and Prof Swarupa Deshpande. "Water Demand Prediction Using Machine Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 12 (December 31, 2022): 122–28. http://dx.doi.org/10.22214/ijraset.2022.47797.
Full textAkrom, Muhamad. "Quantum Support Vector Machine for Classification Task: A Review." Journal of Multiscale Materials Informatics 1, no. 2 (July 5, 2024): 1–8. http://dx.doi.org/10.62411/jimat.v1i2.10965.
Full textPatil, Bhagyashree A., Sri Adithya S, and Dr Jayanthi M G. "Detection of Malware using Machine Learning Approach." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (August 31, 2023): 736–41. http://dx.doi.org/10.22214/ijraset.2023.55233.
Full textSahoo, Abhilipsa, and Kaushika Patel. "Machine Learning-based Inverse Design Model of a Transistor." Indian Journal Of Science And Technology 17, no. 7 (February 15, 2024): 617–24. http://dx.doi.org/10.17485/ijst/v17i7.3076.
Full textTiffin, Paul A., and Lewis W. Paton. "Rise of the machines? Machine learning approaches and mental health: opportunities and challenges." British Journal of Psychiatry 213, no. 3 (August 16, 2018): 509–10. http://dx.doi.org/10.1192/bjp.2018.105.
Full textChoudhary, Laxmi, and Jitendra Singh Choudhary. "Deep Learning Meets Machine Learning: A Synergistic Approach towards Artificial Intelligence." Journal of Scientific Research and Reports 30, no. 11 (November 16, 2024): 865–75. http://dx.doi.org/10.9734/jsrr/2024/v30i112614.
Full textPei, Jun, Lin Frank Song, and Kenneth M. Merz. "Pair Potentials as Machine Learning Features." Journal of Chemical Theory and Computation 16, no. 8 (June 19, 2020): 5385–400. http://dx.doi.org/10.1021/acs.jctc.9b01246.
Full textKobayashi, Keita, Hiroki Nakamura, Akiko Yamaguchi, Mitsuhiro Itakura, Masahiko Machida, and Masahiko Okumura. "Machine learning potentials for tobermorite minerals." Computational Materials Science 188 (February 2021): 110173. http://dx.doi.org/10.1016/j.commatsci.2020.110173.
Full textBarbour, Dennis L., and Jan-Willem A. Wasmann. "Performance and Potential of Machine Learning Audiometry." Hearing Journal 74, no. 3 (February 26, 2021): 40,43,44. http://dx.doi.org/10.1097/01.hj.0000737592.24476.88.
Full textTherrien, Audrey C., Berthié Gouin-Ferland, and Mohammad Mehdi Rahimifar. "Potential of edge machine learning for instrumentation." Applied Optics 61, no. 8 (March 2, 2022): 1930. http://dx.doi.org/10.1364/ao.445798.
Full textAwan, Kamran H., S. Satish Kumar, and Indu Bharkavi SK. "Potential Role of Machine Learning in Oncology." Journal of Contemporary Dental Practice 20, no. 5 (2019): 529–30. http://dx.doi.org/10.5005/jp-journals-10024-2551.
Full textDral, Pavlo O., Alec Owens, Alexey Dral, and Gábor Csányi. "Hierarchical machine learning of potential energy surfaces." Journal of Chemical Physics 152, no. 20 (May 29, 2020): 204110. http://dx.doi.org/10.1063/5.0006498.
Full textWu, Yuexiang. "Potential pulsars prediction based on machine learning." Theoretical and Natural Science 12, no. 1 (November 17, 2023): 193–201. http://dx.doi.org/10.54254/2753-8818/12/20230466.
Full textZhou, Ziyun, Jingwei Shang, and Yimang Li. "Enhancing Efficiency in Hierarchical Reinforcement Learning through Topological-Sorted Potential Calculation." Electronics 12, no. 17 (September 1, 2023): 3700. http://dx.doi.org/10.3390/electronics12173700.
Full textLi, Jiarui. "Evaluative Comparison of Machine Learning Algorithms for Precision Diagnosis in Breast Cancer." Highlights in Science, Engineering and Technology 85 (March 13, 2024): 354–62. http://dx.doi.org/10.54097/40fmfw48.
Full textØsterlund, Carsten, Kevin Crowston, Corey B. Jackson, Yunan Wu, Alexander O. Smith, and Aggelos K. Katsaggelos. "Supporting Human and Machine Co-Learning in Citizen Science: Lessons From Gravity Spy." Citizen Science: Theory and Practice 9, no. 1 (December 9, 2024): 42. https://doi.org/10.5334/cstp.738.
Full textM, Senthil Raja, Arun Raj L, and Arun A. "Detection of Depression among Social Media Users with Machine Learning." Webology 19, no. 1 (January 20, 2022): 250–57. http://dx.doi.org/10.14704/web/v19i1/web19019.
Full textD. Nageswara Rao. "Predictive Modeling of Breast Cancer Outcomes Using Supervised Machine Learning Algorithms." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, no. 4 (August 15, 2024): 258–66. http://dx.doi.org/10.32628/cseit2410416.
Full textSilva, Nuno A., Vicente Rocha, and Tiago D. Ferreira. "Optical Extreme Learning Machines with Atomic Vapors." Atoms 12, no. 2 (February 6, 2024): 10. http://dx.doi.org/10.3390/atoms12020010.
Full textSumathi, P., Arun Kumar S, and Balaji A. "Healthcare - Autism Predicting Tool Using Data Science / AI / ML." International Journal for Research in Applied Science and Engineering Technology 12, no. 5 (May 31, 2024): 440–43. http://dx.doi.org/10.22214/ijraset.2024.60421.
Full textHossain, Md Shakhaowat, S. M. Shadul Islam Rishad, Md Mohibur Rahman, Sanjida Akter Tisha, Farhan Shakil, Ashim Chandra Das, Radha Das, and Sadia Sultana. "MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS." International journal of networks and security 04, no. 01 (November 22, 2024): 22–32. http://dx.doi.org/10.55640/ijns-04-01-06.
Full textGittler, Thomas, Stephan Scholze, Alisa Rupenyan, and Konrad Wegener. "Machine Tool Component Health Identification with Unsupervised Learning." Journal of Manufacturing and Materials Processing 4, no. 3 (September 2, 2020): 86. http://dx.doi.org/10.3390/jmmp4030086.
Full textAdewusi, Michael Adelani, Adeshina Wasiu Adebanjo, Tokunbo Odekeye, and Sophia Kazibwe. "Rise of the Machines: Exploring the Emergence of Machine Consciousness." European Journal of Theoretical and Applied Sciences 2, no. 4 (July 1, 2024): 563–73. http://dx.doi.org/10.59324/ejtas.2024.2(4).48.
Full textHidayat, Taufik, Kalamullah Ramli, Nadia Thereza, Amarudin Daulay, Rushendra Rushendra, and Rahutomo Mahardiko. "Machine Learning to Estimate Workload and Balance Resources with Live Migration and VM Placement." Informatics 11, no. 3 (July 19, 2024): 50. http://dx.doi.org/10.3390/informatics11030050.
Full text