Journal articles on the topic 'Potentiators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Potentiators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cui, Guiying, and Nael A. McCarty. "Murine and human CFTR exhibit different sensitivities to CFTR potentiators." American Journal of Physiology-Lung Cellular and Molecular Physiology 309, no. 7 (October 1, 2015): L687—L699. http://dx.doi.org/10.1152/ajplung.00181.2015.
Full textFowler, Jill H., Katherine Whalley, Tracey Murray, Michael J. O'Neill, and James McCulloch. "The AMPA Receptor Potentiator LY404187 Increases Cerebral Glucose Utilization and c-fos Expression in the Rat." Journal of Cerebral Blood Flow & Metabolism 24, no. 10 (October 2004): 1098–109. http://dx.doi.org/10.1097/01.wcb.0000138665.25305.7c.
Full textRighetti, Giada, Monica Casale, Michele Tonelli, Nara Liessi, Paola Fossa, Nicoletta Pedemonte, Enrico Millo, and Elena Cichero. "New Insights into the Binding Features of F508del CFTR Potentiators: A Molecular Docking, Pharmacophore Mapping and QSAR Analysis Approach." Pharmaceuticals 13, no. 12 (December 4, 2020): 445. http://dx.doi.org/10.3390/ph13120445.
Full textFavia, Maria, Maria T. Mancini, Valentino Bezzerri, Lorenzo Guerra, Onofrio Laselva, Anna C. Abbattiscianni, Lucantonio Debellis, et al. "Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells." American Journal of Physiology-Lung Cellular and Molecular Physiology 307, no. 1 (July 1, 2014): L48—L61. http://dx.doi.org/10.1152/ajplung.00305.2013.
Full textBacalhau, Mafalda, Filipa C. Ferreira, Iris A. L. Silva, Camilla D. Buarque, Margarida D. Amaral, and Miquéias Lopes-Pacheco. "Additive Potentiation of R334W-CFTR Function by Novel Small Molecules." Journal of Personalized Medicine 13, no. 1 (January 1, 2023): 102. http://dx.doi.org/10.3390/jpm13010102.
Full textPedemonte, Nicoletta, Valeria Tomati, Elvira Sondo, and Luis J. V. Galietta. "Influence of cell background on pharmacological rescue of mutant CFTR." American Journal of Physiology-Cell Physiology 298, no. 4 (April 2010): C866—C874. http://dx.doi.org/10.1152/ajpcell.00404.2009.
Full textMancini, Giulia, Nicoletta Loberto, Debora Olioso, Maria Cristina Dechecchi, Giulio Cabrini, Laura Mauri, Rosaria Bassi, et al. "GM1 as Adjuvant of Innovative Therapies for Cystic Fibrosis Disease." International Journal of Molecular Sciences 21, no. 12 (June 24, 2020): 4486. http://dx.doi.org/10.3390/ijms21124486.
Full textBasta, Karol, and Chris John. "Combination Correctors and Potentiators for Cystic Fibrosis." Physician 6, no. 1 (November 27, 2019): c7. http://dx.doi.org/10.38192/1.6.1.c7.
Full textCuyx, Senne, and Kris De Boeck. "Treating the Underlying Cystic Fibrosis Transmembrane Conductance Regulator Defect in Patients with Cystic Fibrosis." Seminars in Respiratory and Critical Care Medicine 40, no. 06 (October 28, 2019): 762–74. http://dx.doi.org/10.1055/s-0039-1696664.
Full textMareux, Elodie, Martine Lapalus, Amel Ben Saad, Renaud Zelli, Mounia Lakli, Yosra Riahi, Marion Almes, et al. "In Vitro Rescue of the Bile Acid Transport Function of ABCB11 Variants by CFTR Potentiators." International Journal of Molecular Sciences 23, no. 18 (September 15, 2022): 10758. http://dx.doi.org/10.3390/ijms231810758.
Full textJohnson, M. P., E. S. Nisenbaum, T. H. Large, R. Emkey, M. Baez, and A. E. Kingston. "Allosteric modulators of metabotropic glutamate receptors: lessons learnt from mGlu1, mGlu2 and mGlu5 potentiators and antagonists." Biochemical Society Transactions 32, no. 5 (October 26, 2004): 881–87. http://dx.doi.org/10.1042/bst0320881.
Full textCook, David J., and Coral F. Tudball. "Potentiators and bolus intravenous furosemide." Lancet 358, no. 9290 (October 2001): 1373–74. http://dx.doi.org/10.1016/s0140-6736(01)06443-1.
Full textChermensky, A. G., T. E. Gembitskaya, A. V. Orlov, and V. R. Makhmutova. "The use of targeted therapy lumacaftor/ivacaftor in patients with cystic fibrosis." Meditsinskiy sovet = Medical Council, no. 4 (April 6, 2022): 98–106. http://dx.doi.org/10.21518/2079-701x-2022-16-4-98-106.
Full textCui, Guiying, Netaly Khazanov, Brandon B. Stauffer, Daniel T. Infield, Barry R. Imhoff, Hanoch Senderowitz, and Nael A. McCarty. "Potentiators exert distinct effects on human, murine, and Xenopus CFTR." American Journal of Physiology-Lung Cellular and Molecular Physiology 311, no. 2 (August 1, 2016): L192—L207. http://dx.doi.org/10.1152/ajplung.00056.2016.
Full textStenkiewicz-Witeska, Jan S., and Iuliana V. Ene. "Azole potentiation in Candida species." PLOS Pathogens 19, no. 8 (August 31, 2023): e1011583. http://dx.doi.org/10.1371/journal.ppat.1011583.
Full textZhang, Song, Jun Wang, and Juhee Ahn. "Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens." Antibiotics 12, no. 9 (September 7, 2023): 1417. http://dx.doi.org/10.3390/antibiotics12091417.
Full textAlt, A., J. Witkin, and D. Bleakman. "AMPA Receptor Potentiators as Novel Antidepressants." Current Pharmaceutical Design 11, no. 12 (May 1, 2005): 1511–27. http://dx.doi.org/10.2174/1381612053764814.
Full textCOOPER, RAYMOND, J. SCOTT WELLS, and RICHARD B. SYKES. "NOVEL POTENTIATORS OF β-LACTAM ANTIBIOTICS." Journal of Antibiotics 38, no. 4 (1985): 449–54. http://dx.doi.org/10.7164/antibiotics.38.449.
Full textFrancotte, Pierre, Pascal de Tullio, Pierre Fraikin, Stephane Counerotte, Eric Goffin, and Bernard Pirotte. "In Search of Novel AMPA Potentiators." Recent Patents on CNS Drug Discovery 1, no. 3 (November 1, 2006): 239–46. http://dx.doi.org/10.2174/157488906778773661.
Full textLU, WEI, ISAO ADACHI, KENSAKU KANO, AKIKO YASUTA, KAZUO TORIIZUKA, MASAHARU UENO, and ISAMU HORIKOSHI. "Platelet aggregation potentiators from Cho-Rei." CHEMICAL & PHARMACEUTICAL BULLETIN 33, no. 11 (1985): 5083–87. http://dx.doi.org/10.1248/cpb.33.5083.
Full textMorel, Cécile, Frank R. Stermitz, George Tegos, and Kim Lewis. "Isoflavones As Potentiators of Antibacterial Activity." Journal of Agricultural and Food Chemistry 51, no. 19 (September 2003): 5677–79. http://dx.doi.org/10.1021/jf0302714.
Full textCheng, H. M., and L. Chamley. "Cryptic natural autoantibodies and co-potentiators." Autoimmunity Reviews 7, no. 6 (June 2008): 431–34. http://dx.doi.org/10.1016/j.autrev.2008.03.011.
Full textBaust, John G., John Bischof, Andrew Gage, Anthony Robilotto, and John M. Baust. "012 Cryosensitization: Adjunctive potentiators for cryoablation." Cryobiology 67, no. 3 (December 2013): 401. http://dx.doi.org/10.1016/j.cryobiol.2013.09.018.
Full textYeh, Han-I., Yoshiro Sohma, Katja Conrath, and Tzyh-Chang Hwang. "A common mechanism for CFTR potentiators." Journal of General Physiology 149, no. 12 (October 27, 2017): 1105–18. http://dx.doi.org/10.1085/jgp.201711886.
Full textStein, Marco, Simon J. Middendorp, Valentina Carta, Ervin Pejo, Douglas E. Raines, Stuart A. Forman, Erwin Sigel, and Dirk Trauner. "Azo-Propofols: Photochromic Potentiators of GABAAReceptors." Angewandte Chemie 124, no. 42 (September 11, 2012): 10652–56. http://dx.doi.org/10.1002/ange.201205475.
Full textStein, Marco, Simon J. Middendorp, Valentina Carta, Ervin Pejo, Douglas E. Raines, Stuart A. Forman, Erwin Sigel, and Dirk Trauner. "Azo-Propofols: Photochromic Potentiators of GABAAReceptors." Angewandte Chemie International Edition 51, no. 42 (September 11, 2012): 10500–10504. http://dx.doi.org/10.1002/anie.201205475.
Full textJih, Kang-Yang, Wen-Ying Lin, Yoshiro Sohma, and Tzyh-Chang Hwang. "CFTR potentiators: from bench to bedside." Current Opinion in Pharmacology 34 (June 2017): 98–104. http://dx.doi.org/10.1016/j.coph.2017.09.015.
Full textSchrank, Cassandra L., Ingrid K. Wilt, Carlos Monteagudo Ortiz, Brittney A. Haney, and William M. Wuest. "Using membrane perturbing small molecules to target chronic persistent infections." RSC Medicinal Chemistry 12, no. 8 (2021): 1312–24. http://dx.doi.org/10.1039/d1md00151e.
Full textKerr, Colm, David Morrissy, Mary Horgan, and Barry J. Plant. "Microbial clues lead to a diagnosis of cystic fibrosis in late adulthood." BMJ Case Reports 13, no. 4 (April 2020): e233470. http://dx.doi.org/10.1136/bcr-2019-233470.
Full textPhuan, Puay-Wah, Jung-Ho Son, Joseph-Anthony Tan, Clarabella Li, Ilaria Musante, Lorna Zlock, Dennis W. Nielson, et al. "Combination potentiator (‘co-potentiator’) therapy for CF caused by CFTR mutants, including N1303K, that are poorly responsive to single potentiators." Journal of Cystic Fibrosis 17, no. 5 (September 2018): 595–606. http://dx.doi.org/10.1016/j.jcf.2018.05.010.
Full textBose, Samuel J., Marcel J. C. Bijvelds, Yiting Wang, Jia Liu, Zhiwei Cai, Alice G. M. Bot, Hugo R. de Jonge, and David N. Sheppard. "Differential thermostability and response to cystic fibrosis transmembrane conductance regulator potentiators of human and mouse F508del-CFTR." American Journal of Physiology-Lung Cellular and Molecular Physiology 317, no. 1 (July 1, 2019): L71—L86. http://dx.doi.org/10.1152/ajplung.00034.2019.
Full textRibeiro, Carla M. P., and Martina Gentzsch. "Impact of Airway Inflammation on the Efficacy of CFTR Modulators." Cells 10, no. 11 (November 22, 2021): 3260. http://dx.doi.org/10.3390/cells10113260.
Full textLiu, Fangyu, Zhe Zhang, Anat Levit, Jesper Levring, Kouki K. Touhara, Brian K. Shoichet, and Jue Chen. "Structural identification of a hotspot on CFTR for potentiation." Science 364, no. 6446 (June 20, 2019): 1184–88. http://dx.doi.org/10.1126/science.aaw7611.
Full textRowe, S. M., and A. S. Verkman. "Cystic Fibrosis Transmembrane Regulator Correctors and Potentiators." Cold Spring Harbor Perspectives in Medicine 3, no. 7 (July 1, 2013): a009761. http://dx.doi.org/10.1101/cshperspect.a009761.
Full textEnsinck, Marjolein M., Liesbeth De Keersmaecker, Anabela S. Ramalho, Senne Cuyx, Stephanie Van Biervliet, Lieven Dupont, Frauke Christ, Zeger Debyser, François Vermeulen, and Marianne S. Carlon. "Novel CFTR modulator combinations maximise rescue of G85E and N1303K in rectal organoids." ERJ Open Research 8, no. 2 (February 11, 2022): 00716–2021. http://dx.doi.org/10.1183/23120541.00716-2021.
Full textAbd El-sattar, Nour E. A., Eman H. K. Badawy, Eman Z. Elrazaz, and Nasser S. M. Ismail. "Discovery of pyrano[2,3-d]pyrimidine-2,4-dione derivatives as novel PARP-1 inhibitors: design, synthesis and antitumor activity." RSC Advances 11, no. 8 (2021): 4454–64. http://dx.doi.org/10.1039/d0ra10321g.
Full textSinha, Sheetal, Vidhya Bharathi Dhanabal, Veronica Lavanya Manivannen, Floriana Cappiello, Suet-Mien Tan, and Surajit Bhattacharjya. "Ultra-Short Cyclized β-Boomerang Peptides: Structures, Interactions with Lipopolysaccharide, Antibiotic Potentiator and Wound Healing." International Journal of Molecular Sciences 24, no. 1 (December 23, 2022): 263. http://dx.doi.org/10.3390/ijms24010263.
Full textTomita, S., M. Sekiguchi, K. Wada, R. A. Nicoll, and D. S. Bredt. "Stargazin controls the pharmacology of AMPA receptor potentiators." Proceedings of the National Academy of Sciences 103, no. 26 (June 19, 2006): 10064–67. http://dx.doi.org/10.1073/pnas.0603128103.
Full textVermote, Arno, and Serge Van Calenbergh. "Small-Molecule Potentiators for Conventional Antibiotics againstStaphylococcus aureus." ACS Infectious Diseases 3, no. 11 (October 4, 2017): 780–96. http://dx.doi.org/10.1021/acsinfecdis.7b00084.
Full textThorarensen, Atli, Alice L. Presley-Bodnar, Keith R. Marotti, Timothy P. Boyle, Charlotte L. Heckaman, Michael J. Bohanon, Paul K. Tomich, Gary E. Zurenko, Michael T. Sweeney, and Betty H. Yagi. "3-Arylpiperidines as potentiators of existing antibacterial agents." Bioorganic & Medicinal Chemistry Letters 11, no. 14 (July 2001): 1903–6. http://dx.doi.org/10.1016/s0960-894x(01)00330-4.
Full textClancy, J. P. "CFTR Potentiators: Not an Open and Shut Case." Science Translational Medicine 6, no. 246 (July 23, 2014): 246fs27. http://dx.doi.org/10.1126/scitranslmed.3009674.
Full textFox, Jeffrey L. "Candidate Antimicrobials, Enhancers, Potentiators, Combos Plus New Probe." Microbe Magazine 11, no. 9 (September 1, 2016): 375–77. http://dx.doi.org/10.1128/microbe.11.375.1.
Full textSolomon, George M., Susan G. Marshall, Bonnie W. Ramsey, and Steven M. Rowe. "Breakthrough therapies: Cystic fibrosis (CF) potentiators and correctors." Pediatric Pulmonology 50, S40 (June 19, 2015): S3—S13. http://dx.doi.org/10.1002/ppul.23240.
Full textVoronkova, A. Yu, N. V. N.V.Bulatenko, Yu L. Yu.L.Melyanovskaya, A. S. A.S.Efremova, T. B. T.B.Bukharova, S. I. S.I.Kutsev, H. R. H.R. de Jonge, N. V. N.V.Petrova, and D. V. D.V.Goldshtein. "Selection of CFTR modulators for children with the W1282R variant." Voprosy praktičeskoj pediatrii 17, no. 3 (2022): 83–91. http://dx.doi.org/10.20953/1817-7646-2022-3-83-91.
Full textMitash, Nilay, Fangping Mu, Joshua E. Donovan, Michael M. Myerburg, Sarangarajan Ranganathan, Catherine M. Greene, and Agnieszka Swiatecka-Urban. "Transforming Growth Factor-β1 Selectively Recruits microRNAs to the RNA-Induced Silencing Complex and Degrades CFTR mRNA under Permissive Conditions in Human Bronchial Epithelial Cells." International Journal of Molecular Sciences 20, no. 19 (October 5, 2019): 4933. http://dx.doi.org/10.3390/ijms20194933.
Full textCsanády, László, and Beáta Töröcsik. "Structure–activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects." Journal of General Physiology 144, no. 4 (September 29, 2014): 321–36. http://dx.doi.org/10.1085/jgp.201411246.
Full textPinkerton, Anthony B., Rowena V. Cube, John H. Hutchinson, Joyce K. James, Michael F. Gardner, Hervé Schaffhauser, Blake A. Rowe, Lorrie P. Daggett, and Jean-Michel Vernier. "Allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2). Part 2: 4-Thiopyridyl acetophenones as non-tetrazole containing mGlu2 receptor potentiators." Bioorganic & Medicinal Chemistry Letters 14, no. 23 (December 2004): 5867–72. http://dx.doi.org/10.1016/j.bmcl.2004.09.028.
Full textPinkerton, Anthony B., Rowena V. Cube, John H. Hutchinson, Joyce K. James, Michael F. Gardner, Blake A. Rowe, Hervé Schaffhauser, et al. "Allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2). Part 3: Identification and biological activity of indanone containing mGlu2 receptor potentiators." Bioorganic & Medicinal Chemistry Letters 15, no. 6 (March 2005): 1565–71. http://dx.doi.org/10.1016/j.bmcl.2005.01.077.
Full textSi, Yaru, Kang Ma, Yingfeng Hu, Hongzong Si, and Honglin Zhai. "QSAR Model Study of 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole of Cystic- brosis-transmembrane Conductance-regulator Gene Potentiators." Letters in Drug Design & Discovery 19, no. 4 (April 2022): 269–78. http://dx.doi.org/10.2174/1570180818666211022142920.
Full textKassab, Amal, Nasser Rizk, and Satya Prakash. "The Role of Systemic Filtrating Organs in Aging and Their Potential in Rejuvenation Strategies." International Journal of Molecular Sciences 23, no. 8 (April 14, 2022): 4338. http://dx.doi.org/10.3390/ijms23084338.
Full text