Journal articles on the topic 'Potential Scaffolds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Potential Scaffolds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chernonosova, Vera, Marianna Khlebnikova, Victoriya Popova, Ekaterina Starostina, Elena Kiseleva, Boris Chelobanov, Ren Kvon, Elena Dmitrienko, and Pavel Laktionov. "Electrospun Scaffolds Enriched with Nanoparticle-Associated DNA: General Properties, DNA Release and Cell Transfection." Polymers 15, no. 15 (July 27, 2023): 3202. http://dx.doi.org/10.3390/polym15153202.
Full textD’Amato, Anthony R., Michael T. K. Bramson, David T. Corr, Devan L. Puhl, Ryan J. Gilbert, and Jed Johnson. "Solvent Retention in Electrospun Fibers Affects Scaffold Mechanical Properties." Electrospinning 2, no. 1 (September 1, 2018): 15–28. http://dx.doi.org/10.1515/esp-2018-0002.
Full textKorpershoek, Jasmijn V., Mylène de Ruijter, Bastiaan F. Terhaard, Michella H. Hagmeijer, Daniël B. F. Saris, Miguel Castilho, Jos Malda, and Lucienne A. Vonk. "Potential of Melt Electrowritten Scaffolds Seeded with Meniscus Cells and Mesenchymal Stromal Cells." International Journal of Molecular Sciences 22, no. 20 (October 18, 2021): 11200. http://dx.doi.org/10.3390/ijms222011200.
Full textIqbal, Neelam, Thomas Michael Braxton, Antonios Anastasiou, El Mostafa Raif, Charles Kai Yin Chung, Sandeep Kumar, Peter V. Giannoudis, and Animesh Jha. "Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications." Materials 15, no. 18 (September 8, 2022): 6245. http://dx.doi.org/10.3390/ma15186245.
Full textAhmad Hariza, Ahmad Mus’ab, Mohd Heikal Mohd Yunus, Mh Busra Fauzi, Jaya Kumar Murthy, Yasuhiko Tabata, and Yosuke Hiraoka. "The Fabrication of Gelatin–Elastin–Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute." Polymers 15, no. 3 (February 3, 2023): 779. http://dx.doi.org/10.3390/polym15030779.
Full textLari, Alireza, Tao Sun, and Naznin Sultana. "PEDOT:PSS-Containing Nanohydroxyapatite/Chitosan Conductive Bionanocomposite Scaffold: Fabrication and Evaluation." Journal of Nanomaterials 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/9421203.
Full textToullec, Clément, Jean Le Bideau, Valerie Geoffroy, Boris Halgand, Nela Buchtova, Rodolfo Molina-Peña, Emmanuel Garcion, et al. "Curdlan–Chitosan Electrospun Fibers as Potential Scaffolds for Bone Regeneration." Polymers 13, no. 4 (February 10, 2021): 526. http://dx.doi.org/10.3390/polym13040526.
Full textMinden-Birkenmaier, Benjamin A., Rachel M. Neuhalfen, Blythe E. Janowiak, and Scott A. Sell. "Preliminary Investigation and Characterization of Electrospun Polycaprolactone and Manuka Honey Scaffolds for Dermal Repair." Journal of Engineered Fibers and Fabrics 10, no. 4 (December 2015): 155892501501000. http://dx.doi.org/10.1177/155892501501000406.
Full textDeng, Xu Liang, M. M. Xu, Dan Li, Gang Sui, X. Y. Hu, and Xiao Ping Yang. "Electrospun PLLA/MWNTs/HA Hybrid Nanofiber Scaffolds and Their Potential in Dental Tissue Engineering." Key Engineering Materials 330-332 (February 2007): 393–96. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.393.
Full textJain, Shubham, Mohammed Ahmad Yassin, Tiziana Fuoco, Hailong Liu, Samih Mohamed-Ahmed, Kamal Mustafa, and Anna Finne-Wistrand. "Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification." Journal of Tissue Engineering 11 (January 2020): 204173142095431. http://dx.doi.org/10.1177/2041731420954316.
Full textHung, Kuo-Sheng, May-Show Chen, Wen-Chien Lan, Yung-Chieh Cho, Takashi Saito, Bai-Hung Huang, Hsin-Yu Tsai, Chia-Chien Hsieh, Keng-Liang Ou, and Hung-Yang Lin. "Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential." Materials 15, no. 5 (March 7, 2022): 1971. http://dx.doi.org/10.3390/ma15051971.
Full textZhao, Min Li, Gang Sui, Xu Liang Deng, Ji Gui Lu, Seung Kon Ryu, and Xiao Ping Yang. "PLLA/HA Electrospin Hybrid Nanofiber Scaffolds: Morphology, In Vitro Degradation and Cell Culture Potential." Advanced Materials Research 11-12 (February 2006): 243–46. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.243.
Full textKosorn, Wasana, and Patcharaporn Wutticharoenmongkol. "Poly(ε-caprolactone)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blend from Fused Deposition Modeling as Potential Cartilage Scaffolds." International Journal of Polymer Science 2021 (March 22, 2021): 1–18. http://dx.doi.org/10.1155/2021/6689789.
Full textRibas, Montanheiro, Montagna, Prado, Campos, and Thim. "Water Uptake in PHBV/Wollastonite Scaffolds: A Kinetics Study." Journal of Composites Science 3, no. 3 (July 16, 2019): 74. http://dx.doi.org/10.3390/jcs3030074.
Full textZarei, Moein, Nader Tanideh, Shahrokh Zare, Fatemeh Sari Aslani, Omid Koohi-Hosseinabadi, Rajendran Muthuraj, Iman Jamhiri, Aida Rowshanghias, and Pouyan Mehryar. "Preparation and performance evaluation of electrospun poly(3-hydroxybutyrate) composite scaffolds as a potential hard tissue engineering application." Journal of Bioactive and Compatible Polymers 34, no. 4-5 (July 2019): 386–400. http://dx.doi.org/10.1177/0883911519875984.
Full textWahl, Elizabeth A., Fernando A. Fierro, Thomas R. Peavy, Ursula Hopfner, Julian F. Dye, Hans-Günther Machens, José T. Egaña, and Thilo L. Schenck. "In VitroEvaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds." BioMed Research International 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/108571.
Full textChannasanon, Somruethai, Pareeya Udomkusonsri, Surapol Chantaweroad, Passakorn Tesavibul, and Siriporn Tanodekaew. "Gentamicin Released from Porous Scaffolds Fabricated by Stereolithography." Journal of Healthcare Engineering 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/9547896.
Full textChen, Cheng-Yu, Ming-You Shie, Alvin Kai-Xing Lee, Yun-Ting Chou, Chun Chiang, and Chun-Pin Lin. "3D-Printed Ginsenoside Rb1-Loaded Mesoporous Calcium Silicate/Calcium Sulfate Scaffolds for Inflammation Inhibition and Bone Regeneration." Biomedicines 9, no. 8 (July 28, 2021): 907. http://dx.doi.org/10.3390/biomedicines9080907.
Full textLongo, Umile Giuseppe, Alfredo Lamberti, Stefano Petrillo, Nicola Maffulli, and Vincenzo Denaro. "Scaffolds in Tendon Tissue Engineering." Stem Cells International 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/517165.
Full textGelain, Fabrizio, Andrea Lomander, Angelo L. Vescovi, and Shuguang Zhang. "Systematic Studies of a Self-Assembling Peptide Nanofiber Scaffold with Other Scaffolds." Journal of Nanoscience and Nanotechnology 7, no. 2 (February 1, 2007): 424–34. http://dx.doi.org/10.1166/jnn.2007.154.
Full textKwan, Haowen, Emanuele Chisari, and Wasim S. Khan. "Cell-Free Scaffolds as a Monotherapy for Focal Chondral Knee Defects." Materials 13, no. 2 (January 9, 2020): 306. http://dx.doi.org/10.3390/ma13020306.
Full textCassimjee, Henna, Pradeep Kumar, Philemon Ubanako, and Yahya E. Choonara. "Genipin-Crosslinked, Proteosaccharide Scaffolds for Potential Neural Tissue Engineering Applications." Pharmaceutics 14, no. 2 (February 18, 2022): 441. http://dx.doi.org/10.3390/pharmaceutics14020441.
Full textMcManus, Michael C., Scott A. Sell, Whitney C. Bowen, Harry P. Koo, David G. Simpson, and Gary L. Bowlin. "Electrospun Fibrinogen-Polydioxanone Composite Matrix: Potential for in Situ Urologic Tissue Engineering." Journal of Engineered Fibers and Fabrics 3, no. 2 (June 2008): 155892500800300. http://dx.doi.org/10.1177/155892500800300204.
Full textHeo, S. J., S. E. Kim, Yong Taek Hyun, D. H. Kim, Hyang Mi Lee, Yeong Maw Hwang, S. A. Park, and Jung Woog Shin. "In Vitro Evaluation of Poly ε-Caprolactone/Hydroxyapatite Composite as Scaffolds for Bone Tissue Engineering with Human Bone Marrow Stromal Cells." Key Engineering Materials 342-343 (July 2007): 369–72. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.369.
Full textMad Jin, Rashid, Naznin Sultana, Sayang Baba, Salehhuddin Hamdan, and Ahmad Fauzi Ismail. "Porous PCL/Chitosan and nHA/PCL/Chitosan Scaffolds for Tissue Engineering Applications: Fabrication and Evaluation." Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/357372.
Full textWang, He Yun, Ya Kai Feng, Hai Yang Zhao, Ruo Fang Xiao, and Jin Tang Guo. "Biomimetic Hemocompatible Nanofibrous Scaffolds as Potential Small-Diameter Blood Vessels by Bilayering Electrospun Technique." Advanced Materials Research 306-307 (August 2011): 1627–30. http://dx.doi.org/10.4028/www.scientific.net/amr.306-307.1627.
Full textMarsudi, Maradhana Agung, Ridhola Tri Ariski, Arie Wibowo, Glen Cooper, Anggraini Barlian, Riska Rachmantyo, and Paulo J. D. S. Bartolo. "Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives." International Journal of Molecular Sciences 22, no. 21 (October 26, 2021): 11543. http://dx.doi.org/10.3390/ijms222111543.
Full textMadike, Lerato N., M. Pillay, and Ketul C. Popat. "In Vitro Cell Adhesion, Proliferation and Differentiation of Adipose Derived Stem Cells on Tulbaghia violacea Loaded Polycaprolactone (PCL) Nanofibers." Journal of Biomaterials and Tissue Engineering 9, no. 11 (November 1, 2019): 1485–98. http://dx.doi.org/10.1166/jbt.2019.2184.
Full textVigneswari, Sevakumaran, Tana Poorani Gurusamy, Wan M. Khairul, Abdul Khalil H.P.S., Seeram Ramakrishna, and Al-Ashraf Abdullah Amirul. "Surface Characterization and Physiochemical Evaluation of P(3HB-co-4HB)-Collagen Peptide Scaffolds with Silver Sulfadiazine as Antimicrobial Agent for Potential Infection-Resistance Biomaterial." Polymers 13, no. 15 (July 26, 2021): 2454. http://dx.doi.org/10.3390/polym13152454.
Full textHaider, Adnan, Kailash Chandra Gupta, and Inn-Kyu Kang. "Morphological Effects of HA on the Cell Compatibility of Electrospun HA/PLGA Composite Nanofiber Scaffolds." BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/308306.
Full textCristescu, Ioan, Lucian Marina, Daniel Vilcioiu, F. Safta, M. Istodorescu, and A. Stere. "The Potential of Antibiotic Collagen Based Biocomposites for the Treatment of Bone Defects." Key Engineering Materials 587 (November 2013): 404–11. http://dx.doi.org/10.4028/www.scientific.net/kem.587.404.
Full textYuan, Tony T., Phillip M. Jenkins, Ann Marie DiGeorge Foushee, Angela R. Jockheck-Clark, and Jonathan M. Stahl. "Electrospun Chitosan/Polyethylene Oxide Nanofibrous Scaffolds with Potential Antibacterial Wound Dressing Applications." Journal of Nanomaterials 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/6231040.
Full textPhanny, Yos, and Mitsugu Todo. "Development and Characterization of Poly(ε-caprolactone) Reinforced Porous Hydroxyapatite for Bone Tissue Engineering." Key Engineering Materials 529-530 (November 2012): 447–52. http://dx.doi.org/10.4028/www.scientific.net/kem.529-530.447.
Full textSukpaita, Teerawat, Suwabun Chirachanchai, Theerapat Chanamuangkon, Katanchalee Nampuksa, Naruporn Monmaturapoj, Piyamas Sumrejkanchanakij, Atiphan Pimkhaokham, and Ruchanee Salingcarnboriboon Ampornaramveth. "Novel Epigenetic Modulation Chitosan-Based Scaffold as a Promising Bone Regenerative Material." Cells 11, no. 20 (October 13, 2022): 3217. http://dx.doi.org/10.3390/cells11203217.
Full textFan, Hui, Junfeng Hui, Zhiguang Duan, Daidi Fan, Yu Mi, Jianjun Deng, and Hui Li. "Novel Scaffolds Fabricated Using Oleuropein for Bone Tissue Engineering." BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/652432.
Full textDemir, Didem, Seda Ceylan, Gülşah Gül, Zeynep İyigündoğdu, and Nimet Bölgen. "Green synthesized silver nanoparticles loaded PVA/Starch cryogel scaffolds with antibacterial properties." Tehnički glasnik 13, no. 1 (March 23, 2019): 1–6. http://dx.doi.org/10.31803/tg-20180131161141.
Full textJohnson, Daniel. "A Warning Label for Scaffold Users." Proceedings of the Human Factors Society Annual Meeting 36, no. 8 (October 1992): 611–15. http://dx.doi.org/10.1518/107118192786750999.
Full textHyun, Yong Taek, Seung Eon Kim, S. J. Heo, and Jung Woog Shin. "Characterization of PCL/HA Composite Scaffolds for Bone Tissue Engineering." Key Engineering Materials 342-343 (July 2007): 109–12. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.109.
Full textKe, Yu, Gang Wu, and Yingjun Wang. "PHBV/PAM Scaffolds with Local Oriented Structure through UV Polymerization for Tissue Engineering." BioMed Research International 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/157987.
Full textPrasadh, Somasundaram, Santhosh Suresh, and Raymond Wong. "Osteogenic Potential of Graphene in Bone Tissue Engineering Scaffolds." Materials 11, no. 8 (August 14, 2018): 1430. http://dx.doi.org/10.3390/ma11081430.
Full textYuan, Su Wen, Jacinta Santhanam, Shiow Fern Ng, and B. Hemabarathy Bharatham. "Vancomycin Loaded Alginate/Cockle Shell Powder Nanobiocomposite Bone Scaffold for Antibacterial and Drug Release Evaluation." Sains Malaysiana 50, no. 8 (August 31, 2021): 2309–18. http://dx.doi.org/10.17576/jsm-2021-5008-14.
Full textHe, Yun, Hong Lan, Juan Liu, and Ling Guo. "The Preparation and Properties of Porous Scaffold Made of Nano-Hydroxyapatite/Polyamide66." Advanced Materials Research 690-693 (May 2013): 490–93. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.490.
Full textMajidnia, Elahe, Noushin Amirpour, Mehdi Ahmadian, Fereshteh Karamali, and Hossein Salehi. "The Effect of Aligned and Random PCL-Human Amniotic Membrane Powder Scaffolds on Retinal Tissue Engineering." Advances in Materials Science and Engineering 2023 (January 3, 2023): 1–11. http://dx.doi.org/10.1155/2023/6377399.
Full textLu, Hongyun, Keqin Ying, Ying Shi, Donghong Liu, and Qihe Chen. "Bioprocessing by Decellularized Scaffold Biomaterials in Cultured Meat: A Review." Bioengineering 9, no. 12 (December 9, 2022): 787. http://dx.doi.org/10.3390/bioengineering9120787.
Full textChoi, Dong Jin, Kyoung Choi, Sang Jun Park, Young-Jin Kim, Seok Chung, and Chun-Ho Kim. "Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering." International Journal of Molecular Sciences 22, no. 21 (October 27, 2021): 11600. http://dx.doi.org/10.3390/ijms222111600.
Full textLi, Yanhong, Jing Wang, Yuliang Wang, Wenjia Du, and Shuanke Wang. "Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (II) preconditioned bone marrow mesenchymal stem cells for bone defect repair." Journal of Biomaterials Applications 32, no. 6 (January 2018): 738–53. http://dx.doi.org/10.1177/0885328217739456.
Full textDi Filippo, Maria Francesca, Sofia Amadori, Sonia Casolari, Adriana Bigi, Luisa Stella Dolci, and Silvia Panzavolta. "Cylindrical Layered Bone Scaffolds with Anisotropic Mechanical Properties as Potential Drug Delivery Systems." Molecules 24, no. 10 (May 19, 2019): 1931. http://dx.doi.org/10.3390/molecules24101931.
Full textLi, Wei Hong. "Fabrication of PLGA/MWNTs/HA Scaffolds for Biomedical Application." Applied Mechanics and Materials 395-396 (September 2013): 15–19. http://dx.doi.org/10.4028/www.scientific.net/amm.395-396.15.
Full textNursatya, Safira Meidina, Anggraini Barlian, Hermawan Judawisastra, Indra Wibowo, and Hutomo Tanoto. "Fibroin and Spidroin Thin Film to Support the Attachment and Spread of Human Dermal Fibroblast: The Potency of Skin Tissue Engineering." Journal of Mathematical and Fundamental Sciences 53, no. 2 (October 21, 2021): 323–40. http://dx.doi.org/10.5614/j.math.fund.sci.2021.53.2.10.
Full textLim, Siew Shee, Choon Lai Chiang, Nurzulaikha Rosli, and Kit Wayne Chew. "Functionalization of Chitosan-TiO<sub>2</sub> Nanotubes Scaffolds with Fibronectin for Bone Regeneration." Journal of Biomimetics, Biomaterials and Biomedical Engineering 61 (July 31, 2023): 51–57. http://dx.doi.org/10.4028/p-k9wk3t.
Full text