Academic literature on the topic 'Potential Scaffolds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Potential Scaffolds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Potential Scaffolds"
Chernonosova, Vera, Marianna Khlebnikova, Victoriya Popova, Ekaterina Starostina, Elena Kiseleva, Boris Chelobanov, Ren Kvon, Elena Dmitrienko, and Pavel Laktionov. "Electrospun Scaffolds Enriched with Nanoparticle-Associated DNA: General Properties, DNA Release and Cell Transfection." Polymers 15, no. 15 (July 27, 2023): 3202. http://dx.doi.org/10.3390/polym15153202.
Full textD’Amato, Anthony R., Michael T. K. Bramson, David T. Corr, Devan L. Puhl, Ryan J. Gilbert, and Jed Johnson. "Solvent Retention in Electrospun Fibers Affects Scaffold Mechanical Properties." Electrospinning 2, no. 1 (September 1, 2018): 15–28. http://dx.doi.org/10.1515/esp-2018-0002.
Full textKorpershoek, Jasmijn V., Mylène de Ruijter, Bastiaan F. Terhaard, Michella H. Hagmeijer, Daniël B. F. Saris, Miguel Castilho, Jos Malda, and Lucienne A. Vonk. "Potential of Melt Electrowritten Scaffolds Seeded with Meniscus Cells and Mesenchymal Stromal Cells." International Journal of Molecular Sciences 22, no. 20 (October 18, 2021): 11200. http://dx.doi.org/10.3390/ijms222011200.
Full textIqbal, Neelam, Thomas Michael Braxton, Antonios Anastasiou, El Mostafa Raif, Charles Kai Yin Chung, Sandeep Kumar, Peter V. Giannoudis, and Animesh Jha. "Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications." Materials 15, no. 18 (September 8, 2022): 6245. http://dx.doi.org/10.3390/ma15186245.
Full textAhmad Hariza, Ahmad Mus’ab, Mohd Heikal Mohd Yunus, Mh Busra Fauzi, Jaya Kumar Murthy, Yasuhiko Tabata, and Yosuke Hiraoka. "The Fabrication of Gelatin–Elastin–Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute." Polymers 15, no. 3 (February 3, 2023): 779. http://dx.doi.org/10.3390/polym15030779.
Full textLari, Alireza, Tao Sun, and Naznin Sultana. "PEDOT:PSS-Containing Nanohydroxyapatite/Chitosan Conductive Bionanocomposite Scaffold: Fabrication and Evaluation." Journal of Nanomaterials 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/9421203.
Full textToullec, Clément, Jean Le Bideau, Valerie Geoffroy, Boris Halgand, Nela Buchtova, Rodolfo Molina-Peña, Emmanuel Garcion, et al. "Curdlan–Chitosan Electrospun Fibers as Potential Scaffolds for Bone Regeneration." Polymers 13, no. 4 (February 10, 2021): 526. http://dx.doi.org/10.3390/polym13040526.
Full textMinden-Birkenmaier, Benjamin A., Rachel M. Neuhalfen, Blythe E. Janowiak, and Scott A. Sell. "Preliminary Investigation and Characterization of Electrospun Polycaprolactone and Manuka Honey Scaffolds for Dermal Repair." Journal of Engineered Fibers and Fabrics 10, no. 4 (December 2015): 155892501501000. http://dx.doi.org/10.1177/155892501501000406.
Full textDeng, Xu Liang, M. M. Xu, Dan Li, Gang Sui, X. Y. Hu, and Xiao Ping Yang. "Electrospun PLLA/MWNTs/HA Hybrid Nanofiber Scaffolds and Their Potential in Dental Tissue Engineering." Key Engineering Materials 330-332 (February 2007): 393–96. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.393.
Full textJain, Shubham, Mohammed Ahmad Yassin, Tiziana Fuoco, Hailong Liu, Samih Mohamed-Ahmed, Kamal Mustafa, and Anna Finne-Wistrand. "Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification." Journal of Tissue Engineering 11 (January 2020): 204173142095431. http://dx.doi.org/10.1177/2041731420954316.
Full textDissertations / Theses on the topic "Potential Scaffolds"
Hed, Yvonne. "Multifunctional Dendritic Scaffolds: Synthesis, Characterization and Potential applications." Doctoral thesis, KTH, Ytbehandlingsteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127429.
Full textUtveckling av material för avancerade applikationer kräver innovativa makromolekyler med väldefinierade strukturer och som kan skräddarsys på ett enkelt sätt. Dendrimerer är en undergrupp av dendritiska polymerer vars egenskaper uppfyller dessa krav. De har en mycket förgrenad arkitektur med många funktionella grupper och är en av de mest väldefinierade befintliga syntetiska makromolekylerna. Trots dess väldefinierade karaktär och höga funktionalitet saknar ofta traditionella dendrimerer multipla kemiska funktionaliteter. Denna avhandling fokuserar därför på syntesen av mer komplexa dendritiska material för att förbättra deras kapacitet att skräddarsys, detta görs genom att introducera fler funktionaliteter som kan utnyttjas för multipla ändamål . Avhandlingen redogör för syntesen av difunktionella dendrimerer, dendritiska modifikationer av polyetylenglykol och cellulosaytor samt syntes av traditionella dendritiska hybrider. Byggstenarna som möjliggör syntesen, AB2C monomerer, framställdes också under detta arbete. Den ortogonala karaktären mellan klick grupper (azid, alkyn och alkene) och hydroxylgrupper har utnyttjats effektivt för funktionaliseringar genom användande av robust ”Click”-kemi och traditionella esterifikationsreaktioner. Vidare tillverkades de linjära dendritiska hybrider för att kombinera egenskaperna hos både linjära och traditionella dendritiska polymerer i en och samma makromolekyl. Samtliga dendritiska strukturer skräddarsyddes för applikationer så som benlimmer, biofunktionella dendritiska hydrogeler, biosensorer och läkemedels-bärande miceller.
QC 20130830
Sharp, Duncan McNeill Craig. "Bioactive scaffolds for potential bone regenerative medical applications." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/9520.
Full textAduba, Donald C. Jr. "Multi-platform arabinoxylan scaffolds as potential wound dressing materials." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3955.
Full textMohammadzadehmoghadam, Soheila. "Electrospun Silk Nanofibre Mats and Their Potential as Tissue Scaffolds." Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/77169.
Full textSisson, Kristin M. "Investigating the potential of electrospun gelatin and collagen scaffolds for tissue engineering applications." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 133 p, 2010. http://proquest.umi.com/pqdweb?did=1993336301&sid=9&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textCarlqvist, K. H. "The potential of muscle-derived progenitors on titanium scaffolds in bone regenerative applications." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1301768/.
Full textBursey, Devan. "Ribosomally Synthesized and Post-Translationally Modified Peptides as Potential Scaffolds for Peptide Engineering." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8124.
Full textAdegoke, Yusuf Adeyemi. "Design and synthesis of new scaffolds as antiproliferative agents and potential hsp90 inhibitors." University of Western Cape, 2020. http://hdl.handle.net/11394/7722.
Full textNatural products have been an important source of drugs and novel lead compounds in drug discovery. Their unique scaffolds have led to the synthesis of derivatives that continue to give rise to medicinally relevant agents. Thus, natural product-inspired drugs represent a significant proportion of drugs in the market and with several more in development. Cancer is among the leading public health problems and a prominent cause of death globally. Chemotherapy has been important in the management of this disease even though side effects that arise due to lack of selectivity is still an issue.
Rodriguez, Isaac. "Mineralization Potential of Electrospun PDO-nHA-Fibrinogen Scaffolds Intended for Cleft Palate Repair." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2111.
Full textIdahosa, Kenudi Christiana. "Bayliss-Hillman adducts as scaffolds for the construction of novel compounds with medicinal potential." Thesis, Rhodes University, 2012. http://hdl.handle.net/10962/d1006763.
Full textBooks on the topic "Potential Scaffolds"
Lapaz Castillo, Jose Luis, Oscar Farrerons Vidal, and Noelia Olmedo Torre. Research and Technology in Graphic Engineering and Design at the Universitat Politècnica de Catalunya. OmniaScience, 2022. http://dx.doi.org/10.3926/ege2022.
Full textButler, Mark James. Design and in vivo evaluation of the angiogenic potential of a poly(butyl methacrylate-co-methacrylic acid) tissue engineering scaffold. 2005.
Find full textBook chapters on the topic "Potential Scaffolds"
Gomes, Nelson G. M., Suradet Buttachon, and Anake Kijjoa. "Meroterpenoids from Marine Microorganisms: Potential Scaffolds for New Chemotherapy Leads." In Handbook of Anticancer Drugs from Marine Origin, 323–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07145-9_16.
Full textRahaman, Mohamed N., B. Sonny Bal, and Lynda F. Bonewald. "Potential of Bioactive Glass Scaffolds as Implants for Structural Bone Repair." In Advances in Bioceramics and Porous Ceramics VIII, 1–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119211624.ch1.
Full textFrejd, Fredrik Y. "Novel Alternative Scaffolds and Their Potential Use for Tumor Targeted Radionuclide Therapy." In Targeted Radionuclide Tumor Therapy, 89–116. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8696-0_6.
Full textMontufar, Edgar B., Lucy Vojtova, Ladislav Celko, and Maria-Pau Ginebra. "Calcium Phosphate Foams: Potential Scaffolds for Bone Tissue Modeling in Three Dimensions." In Methods in Molecular Biology, 79–94. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7021-6_6.
Full textDeng, Xu Liang, M. M. Xu, Dan Li, Gang Sui, X. Y. Hu, and Xiao Ping Yang. "Electrospun PLLA/MWNTs/HA Hybrid Nanofiber Scaffolds and Their Potential in Dental Tissue Engineering." In Key Engineering Materials, 393–96. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.393.
Full textBölükbas, Deniz A., Martina M. De Santis, Hani N. Alsafadi, Ali Doryab, and Darcy E. Wagner. "The Preparation of Decellularized Mouse Lung Matrix Scaffolds for Analysis of Lung Regenerative Cell Potential." In Methods in Molecular Biology, 275–95. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9086-3_20.
Full textWitczak, Zbigniew J., Roman Bielski, and Tomasz Poplawski. "Functionalized CARB Pharmacophore (FCP) approach to thio and unsaturated carbohydrate scaffolds with potential anticancer activity." In Carbohydrate Chemistry, 130–50. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788013864-00130.
Full textRodriguez, Alexandra L., David R. Nisbet, and Clare L. Parish. "The Potential of Stem Cells and Tissue Engineered Scaffolds for Repair of the Central Nervous System." In Stem Cells and Cancer Stem Cells, Volume 4, 97–111. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2828-8_10.
Full textLotan, E., and S. Einav. "Seeding Human Mesenchymal Stem Cells into Fibrin-Based Scaffolds - A Potential for a Future Angiogenic Therapy?" In IFMBE Proceedings, 260–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03900-3_75.
Full textWang, Wei, Lei Mei, Fan Wang, Baoqing Pei, and Xiaoming Li. "The Potential Matrix and Reinforcement Materials for the Preparation of the Scaffolds Reinforced by Fibers or Tubes for Tissue Repair." In Tissue Repair, 25–77. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3554-8_2.
Full textConference papers on the topic "Potential Scaffolds"
Egan, Paul, Stephen J. Ferguson, and Kristina Shea. "Design and 3D Printing of Hierarchical Tissue Engineering Scaffolds Based on Mechanics and Biology Perspectives." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59554.
Full textLawrence, Logan, James B. Day, Pier Paolo Claudio, and Roozbeh (Ross) Salary. "Investigation of the Regenerative Potential of Human Bone Marrow Stem Cell-Seeded Polycaprolactone Bone Scaffolds, Fabricated Using Pneumatic Microextrusion Process." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-63411.
Full textNowlin, John, Md Maksudul Islam, Yingge Zhou, and George Z. Tan. "Cone Electrospinning Polycaprolactone / Collagen Scaffolds With Microstructure Gradient." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2871.
Full textLu, Lin, David Wootton, Peter I. Lelkes, and Jack Zhou. "Study of Structured Porogen Method for Bone Scaffold Fabrication." In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72134.
Full textGilbert, Thomas W., James H. C. Wang, Stephen F. Badylak, and Savio L. Y. Woo. "Development of a Novel Model System to Study Remodeling of ECM Scaffolds in Response to Cyclic Stretching." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41444.
Full textLee, Se-Jun, Wei Zhu, and Lijie Grace Zhang. "Development of Novel 3D Scaffolds With Embedded Core-Shell Nanoparticles for Nerve Regeneration." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51595.
Full textTourlomousis, Filippos, Houzhu Ding, Antonio Dole, and Robert C. Chang. "Towards Resolution Enhancement and Process Repeatability With a Melt Electrospinning Writing Process: Design and Protocol Considerations." In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8774.
Full textWu, Y., J. Y. H. Fuh, Y. S. Wong, and J. Sun. "Fabrication of 3D Scaffolds via E-Jet Printing for Tendon Tissue Repair." In ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9367.
Full textChinnasami, H., and R. Devireddy. "Osteo-Induction of Human Adipose Derived Stem Cells Cultured on Poly (L-Lactic Acid) Scaffolds Prepared by Thermally Induced Phase Separation Method." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51906.
Full textShanjani, Yaser, Naveen Chandrashekar, and Ehsan Toyserkani. "Prediction of Biomechanical Properties of Bone Implant Scaffolds." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43001.
Full textReports on the topic "Potential Scaffolds"
Hassan, Mozan, Abbas Khaleel, Sherif Karam, Ali Al-Marzouqi, Ihtesham Ur Rehman, and Sahar Mohsin. Bacterial inhibition and osteogenic potentials of Sr/Zn co-doped nano-hydroxyapatite-PLGA composite scaffold for bone tissue engineering applications. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p7862520.
Full textMorrison, Mark, Joshuah Miron, Edward A. Bayer, and Raphael Lamed. Molecular Analysis of Cellulosome Organization in Ruminococcus Albus and Fibrobacter Intestinalis for Optimization of Fiber Digestibility in Ruminants. United States Department of Agriculture, March 2004. http://dx.doi.org/10.32747/2004.7586475.bard.
Full text