Journal articles on the topic 'POTENTIAL INHIBITORS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'POTENTIAL INHIBITORS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lechner, Christian, Maren Flaßhoff, Hannes Falke, Lutz Preu, Nadége Loaëc, Laurent Meijer, Stefan Knapp, Apirat Chaikuad, and Conrad Kunick. "[b]-Annulated Halogen-Substituted Indoles as Potential DYRK1A Inhibitors." Molecules 24, no. 22 (November 13, 2019): 4090. http://dx.doi.org/10.3390/molecules24224090.
Full textSharma, Manish Kumar, Anil Kumar Sharma, and S. P. Mathur. "Solanum surrattence as Potential Corrosion Inhibitor." ISRN Corrosion 2012 (August 28, 2012): 1–5. http://dx.doi.org/10.5402/2012/907676.
Full textSamsudin, Sity Juaeiriah, Nurlidia Binti Mansor, Suriati Sufian, and Zakaria B. Man. "The Potential of Garlic Extract as Bio-Inhibitor in Urea Fertilizer." Key Engineering Materials 594-595 (December 2013): 296–300. http://dx.doi.org/10.4028/www.scientific.net/kem.594-595.296.
Full textBuolamwini, John K. "Nucleoside Transport Inhibitors: Structure-Activity Relationships and Potential Therapeutic Applications." Current Medicinal Chemistry 4, no. 1 (February 1997): 35–66. http://dx.doi.org/10.2174/0929867304666220309201038.
Full textChen, Xingchen, Darren Leahy, Jessica Van Haeften, Perry Hartfield, Peter J. Prentis, Chloé A. van der Burg, Joachim M. Surm, et al. "A Versatile and Robust Serine Protease Inhibitor Scaffold from Actinia tenebrosa." Marine Drugs 17, no. 12 (December 12, 2019): 701. http://dx.doi.org/10.3390/md17120701.
Full textŽbulj, Katarina, Gordana Bilić, Lidia Hrnčević, and Katarina Simon. "Potential of using plant extracts as green corrosion inhibitors in the petroleum industry." Rudarsko-geološko-naftni zbornik 36, no. 5 (2021): 132–39. http://dx.doi.org/10.17794/rgn.2021.5.12.
Full textSerio, Rosa, Flavia Mulé, and Alessandra Postorino. "Noradrenergic, noncholinergic inhibitory junction potentials in rat proximal colon: role of nitric oxide." Canadian Journal of Physiology and Pharmacology 73, no. 1 (January 1, 1995): 79–84. http://dx.doi.org/10.1139/y95-011.
Full textSliskovic, Drago R., and Bharat K. Trivedi. "ACAT Inhibitors: Potential Anti-atherosclerotic Agents." Current Medicinal Chemistry 1, no. 3 (October 1994): 204–55. http://dx.doi.org/10.2174/092986730103220214163743.
Full textRobina, Inmaculada, Antonio Moreno-Vargas, Ana Carmona, and Pierre Vogel. "Glycosidase Inhibitors as Potential HIV Entry Inhibitors?" Current Drug Metabolism 5, no. 4 (August 1, 2004): 329–61. http://dx.doi.org/10.2174/1389200043335513.
Full textEvans, Tarra, and Ursula Matulonis. "PARP inhibitors in ovarian cancer: evidence, experience and clinical potential." Therapeutic Advances in Medical Oncology 9, no. 4 (February 3, 2017): 253–67. http://dx.doi.org/10.1177/1758834016687254.
Full textShamkh, Israa M., Mohammed Al-Majidi, Ahmed Hassen Shntaif, Peter Tan Deng Kai, Ngoc Nh-Pham, Ishrat Rahman, Dalia Hamza, et al. "Nontoxic and Naturally Occurring Active Compounds as Potential Inhibitors of Biological Targets in Liriomyza trifolii." International Journal of Molecular Sciences 23, no. 21 (October 24, 2022): 12791. http://dx.doi.org/10.3390/ijms232112791.
Full textTábi, Tamás, László Vécsei, Moussa B. Youdim, Peter Riederer, and Éva Szökő. "Selegiline: a molecule with innovative potential." Journal of Neural Transmission 127, no. 5 (September 27, 2019): 831–42. http://dx.doi.org/10.1007/s00702-019-02082-0.
Full textBrown, Nancy J. "Review: Therapeutic potential of plasminogen activator inhibitor-1 inhibitors." Therapeutic Advances in Cardiovascular Disease 4, no. 5 (July 26, 2010): 315–24. http://dx.doi.org/10.1177/1753944710379126.
Full textHonisch, Claudia, Matteo Gazziero, Roberto Dallocchio, Alessandro Dessì, Davide Fabbri, Maria Antonietta Dettori, Giovanna Delogu, and Paolo Ruzza. "Antamanide Analogs as Potential Inhibitors of Tyrosinase." International Journal of Molecular Sciences 23, no. 11 (June 2, 2022): 6240. http://dx.doi.org/10.3390/ijms23116240.
Full textMcFadden, Karyn, Patricia Fletcher, Fiorella Rossi, Kantharaju, Muddagowda Umashankara, Vanessa Pirrone, Srivats Rajagopal, et al. "Antiviral Breadth and Combination Potential of Peptide Triazole HIV-1 Entry Inhibitors." Antimicrobial Agents and Chemotherapy 56, no. 2 (November 14, 2011): 1073–80. http://dx.doi.org/10.1128/aac.05555-11.
Full textYuasa, Hideya, Masayuki Izumi, and Hironobu Hashimoto. "Thiasugars: Potential Glycosidase Inhibitors." Current Topics in Medicinal Chemistry 9, no. 1 (January 1, 2009): 76–86. http://dx.doi.org/10.2174/156802609787354270.
Full textGao, Yinghong, Stephen P. Davies, Martin Augustin, Anna Woodward, Umesh A. Patel, Robert Kovelman, and Kevin J. Harvey. "A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery." Biochemical Journal 451, no. 2 (March 28, 2013): 313–28. http://dx.doi.org/10.1042/bj20121418.
Full textVenkatachalam, Prerana, and Varalakshmi Kilingar Nadumane. "Purification and Characterization of a Protease Inhibitor with Anticancer Potential from Bacillus endophyticus JUPR15." Current Cancer Therapy Reviews 15, no. 1 (February 22, 2019): 74–82. http://dx.doi.org/10.2174/1573394714666180321150605.
Full textZhang, Xiaoyin, Yue He, Zhanbo Xiong, Min Li, Ming Li, Nan Zheng, Shengguo Zhao, and Jiaqi Wang. "Chelerythrine Chloride: A Potential Rumen Microbial Urease Inhibitor Screened by Targeting UreG." International Journal of Molecular Sciences 22, no. 15 (July 30, 2021): 8212. http://dx.doi.org/10.3390/ijms22158212.
Full textSasaki-Tanaka, Reina, Kalyan C. Nagulapalli Venkata, Hiroaki Okamoto, Mitsuhiko Moriyama, and Tatsuo Kanda. "Evaluation of Potential Anti-Hepatitis A Virus 3C Protease Inhibitors Using Molecular Docking." International Journal of Molecular Sciences 23, no. 11 (May 27, 2022): 6044. http://dx.doi.org/10.3390/ijms23116044.
Full textHayashi, Masayasu, Yoshikane Kikushige, Takuya Harada, Toshihiro Miyamoto, Takahiro Maeda, and Koichi Akashi. "Somatic Mutations Potentiating RAS-MAPK Signaling Confer Resistant Potential Against FLT3-Inhibitors to Acute Myelogenous Leukemia." Blood 134, Supplement_1 (November 13, 2019): 910. http://dx.doi.org/10.1182/blood-2019-130694.
Full textSon, Yun Gon, Ju Yeon Kim, Jae Yeon Park, Kwang Dong Kim, Ki Hun Park, and Jeong Yoon Kim. "Inhibitory Potential of Quercetin Derivatives Isolated from the Aerial Parts of Siegesbeckia pubescens Makino against Bacterial Neuraminidase." Molecules 28, no. 14 (July 12, 2023): 5365. http://dx.doi.org/10.3390/molecules28145365.
Full textKhunluck, Tueanjai, Veerapol Kukongviriyapan, Laddawan Senggunprai, Wutthipong Duangarsong, and Auemduan Prawan. "The Inhibition Kinetics and Potential Anti-Migration Activity of NQO1 Inhibitory Coumarins on Cholangiocarcinoma Cells." Integrative Cancer Therapies 18 (December 25, 2018): 153473541882044. http://dx.doi.org/10.1177/1534735418820444.
Full textKurihara, Hideyuki, and Kazuki Kujira. "Phlorotannins Derived From the Brown Alga Colpomenia bullosa as Tyrosinase Inhibitors." Natural Product Communications 16, no. 7 (July 2021): 1934578X2110213. http://dx.doi.org/10.1177/1934578x211021317.
Full textHabash, Maha, Sami Alshakhshir, Shady Awwad, and Mahmoud Abu-Samak. "The discovery of potential tumor necrosis factor alpha converting enzyme inhibitors via implementation of K Nearest Neighbor QSAR analysis." Pharmacia 70, no. 2 (April 12, 2023): 247–61. http://dx.doi.org/10.3897/pharmacia.70.e96423.
Full textKopecký, Jindřich. "New potential checkpoint inhibitors in cancer therapy." Onkologie 16, no. 3 (May 16, 2022): 115–17. http://dx.doi.org/10.36290/xon.2022.022.
Full textJeng, Arco Y., Paul Mulder, Aij-Lie Kwan, and Bruno Battistini. "Nonpeptidic endothelin-converting enzyme inhibitors and their potential therapeutic applications." Canadian Journal of Physiology and Pharmacology 80, no. 5 (May 1, 2002): 440–49. http://dx.doi.org/10.1139/y02-025.
Full textHan, Yoo Kyong, Ji Sun Lee, Seo Young Yang, Ki Yong Lee, and Young Ho Kim. "In Vitro and In Silico Studies of Soluble Epoxide Hydrolase Inhibitors from the Roots of Lycopus lucidus." Plants 10, no. 2 (February 13, 2021): 356. http://dx.doi.org/10.3390/plants10020356.
Full textMia, Md Abdur Rashid, Qamar Uddin Ahmed, Sahena Ferdosh, Abul Bashar Mohammed Helaluddin, Md Shihabul Awal, Murni Nazira Sarian, Md Zaidul Islam Sarker, and Zainul Amiruddin Zakaria. "In Vitro, In Silico and Network Pharmacology Mechanistic Approach to Investigate the α-Glucosidase Inhibitors Identified by Q-ToF-LCMS from Phaleria macrocarpa Fruit Subcritical CO2 Extract." Metabolites 12, no. 12 (December 15, 2022): 1267. http://dx.doi.org/10.3390/metabo12121267.
Full textSattler, Martin, Isa Mambetsariev, Jeremy Fricke, Tingting Tan, Sariah Liu, Nagarajan Vaidehi, Evan Pisick, et al. "A Closer Look at EGFR Inhibitor Resistance in Non-Small Cell Lung Cancer through the Lens of Precision Medicine." Journal of Clinical Medicine 12, no. 5 (March 1, 2023): 1936. http://dx.doi.org/10.3390/jcm12051936.
Full textKondža, Martin, Mirza Bojić, Ivona Tomić, Željan Maleš, Valentina Rezić, and Ivan Ćavar. "Characterization of the CYP3A4 Enzyme Inhibition Potential of Selected Flavonoids." Molecules 26, no. 10 (May 19, 2021): 3018. http://dx.doi.org/10.3390/molecules26103018.
Full textColland, Frédéric. "The therapeutic potential of deubiquitinating enzyme inhibitors." Biochemical Society Transactions 38, no. 1 (January 19, 2010): 137–43. http://dx.doi.org/10.1042/bst0380137.
Full textPertwee, Roger G. "Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications." Proceedings of the Nutrition Society 73, no. 1 (October 18, 2013): 96–105. http://dx.doi.org/10.1017/s0029665113003649.
Full textSanni, Omotayo, Samuel Ayodele Iwarere, and Michael Olawale Daramola. "Investigation of Eggshell Agro-Industrial Waste as a Potential Corrosion Inhibitor for Mild Steel in Oil and Gas Industry." Sustainability 15, no. 7 (April 3, 2023): 6155. http://dx.doi.org/10.3390/su15076155.
Full textBasak, Debasish, David Gamez, and Subrata Deb. "SGLT2 Inhibitors as Potential Anticancer Agents." Biomedicines 11, no. 7 (June 30, 2023): 1867. http://dx.doi.org/10.3390/biomedicines11071867.
Full textKholilah, Tsaniyah, Nashi Widodo, and Nia Kurniawan. "in silico Study Reveals Potential Docking Sites of δ 2-isoxazolines derivates for Inhibiting Russell’s Viper PLA2 Toxin." Journal of Tropical Life Science 11, no. 1 (February 3, 2021): 45–51. http://dx.doi.org/10.11594/jtls.11.01.06.
Full textALIAS, ZAZALI, and NORA ASYIKIN RAMLI. "PURIFICATION AND PARTIAL CHARACTERISATION OF A PROTEASE INHIBITOR FROM Mimosa diplotricha." Malaysian Applied Biology 51, no. 4 (October 31, 2022): 169–75. http://dx.doi.org/10.55230/mabjournal.v51i4.26.
Full textHan, Seungmin, Kwang Suk Lim, Brody J. Blackburn, Jina Yun, Charles W. Putnam, David A. Bull, and Young-Wook Won. "The Potential of Topoisomerase Inhibitor-Based Antibody–Drug Conjugates." Pharmaceutics 14, no. 8 (August 16, 2022): 1707. http://dx.doi.org/10.3390/pharmaceutics14081707.
Full textZhang, Yi-Lin, Yong Yan, Xue-Jun Wang, and Ke-Wu Yang. "Synthesis and Bioactivity of Thiazolethioacetamides as Potential Metallo-β-Lactamase Inhibitors." Antibiotics 9, no. 3 (February 26, 2020): 99. http://dx.doi.org/10.3390/antibiotics9030099.
Full textChu, Ming-Jie, Wei Wang, Zi-Li Ren, Hao Liu, Xiang Cheng, Kai Mo, Li Wang, Feng Tang, and Xian-Hai Lv. "Discovery of Novel Triazole-Containing Pyrazole Ester Derivatives as Potential Antibacterial Agents." Molecules 24, no. 7 (April 3, 2019): 1311. http://dx.doi.org/10.3390/molecules24071311.
Full textR. Somani, Rakesh, and Mayuri H. Patel. "Telomerase Inhibitors: Potential Anticancer Agents." Mini-Reviews in Organic Chemistry 13, no. 1 (March 4, 2016): 49–61. http://dx.doi.org/10.2174/1570193x13666160225000624.
Full textElias, Daniel, and Henrik J. Ditzel. "The potential of Src inhibitors." Aging 7, no. 10 (October 2, 2015): 734–35. http://dx.doi.org/10.18632/aging.100821.
Full textLazarevic-Pasti, Tamara, Andreja Leskovac, and Vesna Vasic. "Myeloperoxidase Inhibitors as Potential Drugs." Current Drug Metabolism 16, no. 3 (August 12, 2015): 168–90. http://dx.doi.org/10.2174/138920021603150812120640.
Full textDerler, Isabella, Reinhard Fritsch, Rainer Schindl, and Christoph Romanin. "CRAC inhibitors: identification and potential." Expert Opinion on Drug Discovery 3, no. 7 (June 23, 2008): 787–800. http://dx.doi.org/10.1517/17460441.3.7.787.
Full textVerstovsek, Srdan. "Therapeutic Potential of JAK2 Inhibitors." Journal of OncoPathology 1, no. 1 (April 1, 2013): 76–79. http://dx.doi.org/10.13032/tjop.2052-5931.100024.
Full textMathe, Christophe, and Vasu Nair. "Potential Inhibitors of HIV Integrase." Nucleosides and Nucleotides 18, no. 4-5 (April 1999): 681–82. http://dx.doi.org/10.1080/15257779908041539.
Full textLOBL, T. J., H. E. RENIS, R. M. EPAND, L. L. MAGGIORA, and M. W. WATHEN. "Peptides as potential virus inhibitors." International Journal of Peptide and Protein Research 32, no. 5 (January 12, 2009): 326–30. http://dx.doi.org/10.1111/j.1399-3011.1988.tb01267.x.
Full textPerry, Martin J., and Gerald A. Higgs. "Chemotherapeutic potential of phosphodiesterase inhibitors." Current Opinion in Chemical Biology 2, no. 4 (January 1998): 472–81. http://dx.doi.org/10.1016/s1367-5931(98)80123-3.
Full textBedaiwy, Mohamed A., Noha A. Mousa, and Robert F. Casper. "Aromatase Inhibitors: Potential Reproductive Implications." Journal of Minimally Invasive Gynecology 16, no. 5 (September 2009): 533–39. http://dx.doi.org/10.1016/j.jmig.2009.05.009.
Full textLavin, Martin F., and Abrey J. Yeo. "Clinical potential of ATM inhibitors." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 821 (May 2020): 111695. http://dx.doi.org/10.1016/j.mrfmmm.2020.111695.
Full text