To see the other types of publications on this topic, follow the link: Potential energy surfaces – Congresses.

Journal articles on the topic 'Potential energy surfaces – Congresses'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Potential energy surfaces – Congresses.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Moore, C. E., Allan Banks, and H. H. Jaffe. "Potential energy surfaces." Journal of Chemical Education 64, no. 5 (May 1987): 395. http://dx.doi.org/10.1021/ed064p395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tonge, Kenneth H. "Potential energy surfaces." Journal of Chemical Education 65, no. 1 (January 1988): 65. http://dx.doi.org/10.1021/ed065p65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gale, J. "Potential Energy Surfaces." EPJ Web of Conferences 14 (2011): 02002. http://dx.doi.org/10.1051/epjconf/20111402002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Yudong, Jeffrey D. Schmitt, and Roberto Car. "Mapping potential energy surfaces." Journal of Chemical Physics 121, no. 3 (July 15, 2004): 1193–200. http://dx.doi.org/10.1063/1.1765651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jo/rgensen, Solvejg, Mark A. Ratner, and Kurt V. Mikkelsen. "Potential energy surfaces of image potential states." Journal of Chemical Physics 114, no. 8 (February 22, 2001): 3790–99. http://dx.doi.org/10.1063/1.1342860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Topaler, Maria S., Donald G. Truhlar, Xiao Yan Chang, Piotr Piecuch, and John C. Polanyi. "Potential energy surfaces of NaFH." Journal of Chemical Physics 108, no. 13 (April 1998): 5349–77. http://dx.doi.org/10.1063/1.475344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Qu, Chen, Qi Yu, and Joel M. Bowman. "Permutationally Invariant Potential Energy Surfaces." Annual Review of Physical Chemistry 69, no. 1 (April 20, 2018): 151–75. http://dx.doi.org/10.1146/annurev-physchem-050317-021139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fernández, Ariel. "Homology of Potential Energy Surfaces." Zeitschrift für Naturforschung A 41, no. 9 (September 1, 1986): 1118–22. http://dx.doi.org/10.1515/zna-1986-0905.

Full text
Abstract:
It is shown that all the adjacency relations for the basins of attraction of stable chemical species and transition states can be derived from the topology of the pattern of intrinsic-reaction-coordinate- and-separatix trajectories in the nuclear configuration space.The results are applied to thermal [1,3] sigmatropic rearrangements and they show that even the symmetry-forbidden path proceeds concertedly. The corresponding homological formulas giving the adjacency relations are derived.
APA, Harvard, Vancouver, ISO, and other styles
9

Fernandez, G. M., J. A. Sordo, and T. L. Sordo. "Analysis of potential energy surfaces." Journal of Chemical Education 65, no. 8 (August 1988): 665. http://dx.doi.org/10.1021/ed065p665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tan, Hang, Muzhen Liao, and K. Balasubramanian. "Potential energy surfaces of RuCO." Chemical Physics Letters 284, no. 1-2 (February 1998): 1–5. http://dx.doi.org/10.1016/s0009-2614(97)01370-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tan, Hang, Muzhen Liao, and K. Balasubramanian. "Potential energy surfaces of OsCO." Chemical Physics Letters 290, no. 4-6 (July 1998): 458–64. http://dx.doi.org/10.1016/s0009-2614(98)00536-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tan, Hang, Muzhen Liao, Dingguo Dai, and K. Balasubramanian. "Potential energy surfaces of NbCO." Chemical Physics Letters 297, no. 3-4 (November 1998): 173–80. http://dx.doi.org/10.1016/s0009-2614(98)01145-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nichols, Jeff, Hugh Taylor, Peter Schmidt, and Jack Simons. "Walking on potential energy surfaces." Journal of Chemical Physics 92, no. 1 (January 1990): 340–46. http://dx.doi.org/10.1063/1.458435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Xu, F. R., P. M. Walker, J. A. Sheikh, and R. Wyss. "Multi-quasiparticle potential-energy surfaces." Physics Letters B 435, no. 3-4 (September 1998): 257–63. http://dx.doi.org/10.1016/s0370-2693(98)00857-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dai, Dingguo, and K. Balasubramanian. "Potential energy surfaces for OsH2." Theoretica Chimica Acta 83, no. 1-2 (1992): 141–54. http://dx.doi.org/10.1007/bf01113247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Atchity, Gregory J., Sotirios S. Xantheas, and Klaus Ruedenberg. "Potential energy surfaces near intersections." Journal of Chemical Physics 95, no. 3 (August 1991): 1862–76. http://dx.doi.org/10.1063/1.461036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Western, C. M. "Spectroscopy and potential energy surfaces." Chemical Society Reviews 24, no. 4 (1995): 299. http://dx.doi.org/10.1039/cs9952400299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bernier, Anne, and Philippe Millié. "Potential energy surfaces of HgH2." Chemical Physics Letters 134, no. 3 (February 1987): 245–50. http://dx.doi.org/10.1016/0009-2614(87)87129-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

M. Neumark, Daniel. "Spectroscopy of reactive potential energy surfaces." PhysChemComm 5, no. 11 (2002): 76. http://dx.doi.org/10.1039/b202218d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schwenke, David W., Susan C. Tucker, Rozeanne Steckler, Franklin B. Brown, Gillian C. Lynch, Donald G. Truhlar, and Bruce C. Garrett. "Global potential‐energy surfaces for H2Cl." Journal of Chemical Physics 90, no. 6 (March 15, 1989): 3110–20. http://dx.doi.org/10.1063/1.455914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nerlo-Pomorska, B., K. Pomorski, C. Schmitt, and J. Bartel. "Potential energy surfaces of Polonium isotopes." Physica Scripta 90, no. 11 (October 29, 2015): 114010. http://dx.doi.org/10.1088/0031-8949/90/11/114010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bender, M., K. Rutz, P. G. Reinhard, J. A. Maruhn, and W. Greiner. "Potential energy surfaces of superheavy nuclei." Physical Review C 58, no. 4 (October 1, 1998): 2126–32. http://dx.doi.org/10.1103/physrevc.58.2126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rohrbacher, Andreas, Jason Williams, and Kenneth C. Janda. "Rare gas–dihalogen potential energy surfaces." Physical Chemistry Chemical Physics 1, no. 23 (1999): 5263–76. http://dx.doi.org/10.1039/a906664k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Evenhuis, Christian R., and Michael A. Collins. "Interpolation of diabatic potential energy surfaces." Journal of Chemical Physics 121, no. 6 (2004): 2515. http://dx.doi.org/10.1063/1.1770756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Frey, Regina F., and Ernest R. Davidson. "Potential energy surfaces of CH+4." Journal of Chemical Physics 88, no. 3 (February 1988): 1775–85. http://dx.doi.org/10.1063/1.454101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Xantheas, Sotiris S., Gregory J. Atchity, Stephen T. Elbert, and Klaus Ruedenberg. "Potential energy surfaces of ozone. I." Journal of Chemical Physics 94, no. 12 (June 15, 1991): 8054–69. http://dx.doi.org/10.1063/1.460140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hirschmann, T., B. Montag, and J. Meyer. "Potential energy surfaces of sodium clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 37, no. 1 (April 15, 1996): 63–74. http://dx.doi.org/10.1007/s004600050010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hirsch, Michael, and Wolfgang Quapp. "Newton leaves on potential energy surfaces." Theoretical Chemistry Accounts 113, no. 1 (November 16, 2004): 58–62. http://dx.doi.org/10.1007/s00214-004-0608-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cassam-Chenaï, Patrick. "On non-adiabatic potential energy surfaces." Chemical Physics Letters 420, no. 4-6 (March 2006): 354–57. http://dx.doi.org/10.1016/j.cplett.2006.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wales, David J. "Potential energy surfaces and coordinate dependence." Journal of Chemical Physics 113, no. 9 (September 2000): 3926–27. http://dx.doi.org/10.1063/1.1288003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Das, Kalyan K., and K. Balasubramanian. "Potential energy surfaces for dihydridorhodium(1+)." Journal of Physical Chemistry 95, no. 18 (September 1991): 6880–83. http://dx.doi.org/10.1021/j100171a027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jäckle, A., and H. ‐D Meyer. "Product representation of potential energy surfaces." Journal of Chemical Physics 104, no. 20 (May 22, 1996): 7974–84. http://dx.doi.org/10.1063/1.471513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Majumder, Moumita, Steve Alexandre Ndengue, and Richard Dawes. "Automated construction of potential energy surfaces." Molecular Physics 114, no. 1 (October 26, 2015): 1–18. http://dx.doi.org/10.1080/00268976.2015.1096974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ischtwan, Josef, and Michael A. Collins. "Molecular potential energy surfaces by interpolation." Journal of Chemical Physics 100, no. 11 (June 1994): 8080–88. http://dx.doi.org/10.1063/1.466801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ruedenberg, Klaus, and Jun‐Qiang Sun. "Gradient fields of potential energy surfaces." Journal of Chemical Physics 100, no. 8 (April 15, 1994): 5836–48. http://dx.doi.org/10.1063/1.467147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Honda, Kazuhiko, and Koji Kato. "Potential energy surfaces for liquid water." Chemical Physics Letters 229, no. 1-2 (October 1994): 65–70. http://dx.doi.org/10.1016/0009-2614(94)01010-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Soares, Cinthia S., and Clarissa O. da Silva. "Solvated potential energy surfaces for MePC." Structural Chemistry 22, no. 4 (March 12, 2011): 885–91. http://dx.doi.org/10.1007/s11224-011-9775-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Xantheas, Sotiris S., and Klaus Ruedenberg. "Potential energy surfaces of carbon dioxide." International Journal of Quantum Chemistry 49, no. 4 (February 5, 1994): 409–27. http://dx.doi.org/10.1002/qua.560490408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Castaños, O., P. O. Hess, J. P. Draayer, and P. Rochford. "Microscopic interpretation of potential energy surfaces." Physics Letters B 277, no. 1-2 (February 1992): 27–32. http://dx.doi.org/10.1016/0370-2693(92)90951-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tran, Vinh, Alain Buleon, Anne Imberty, and Serge Perez. "Relaxed potential energy surfaces of maltose." Biopolymers 28, no. 2 (February 1989): 679–90. http://dx.doi.org/10.1002/bip.360280211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bernardi, Fernando, Andrea Bottoni, Massimo Olivucci, Joseph J. W. McDouall, Michael A. Robb, and Glauco Tonachini. "Potential energy surfaces of cycloaddition reactions." Journal of Molecular Structure: THEOCHEM 165, no. 3-4 (May 1988): 341–51. http://dx.doi.org/10.1016/0166-1280(88)87031-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Garrison, Barbara J., and Deepak Srivastava. "Potential Energy Surfaces for Chemical Reactions at Solid Surfaces." Annual Review of Physical Chemistry 46, no. 1 (October 1995): 373–96. http://dx.doi.org/10.1146/annurev.pc.46.100195.002105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Varga, Zoltan, Yang Liu, Jun Li, Yuliya Paukku, Hua Guo, and Donald G. Truhlar. "Potential energy surfaces for high-energy N + O2 collisions." Journal of Chemical Physics 154, no. 8 (February 28, 2021): 084304. http://dx.doi.org/10.1063/5.0039771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kratochvíl, Martin, Ola Engkvist, Jaroslav Vacek, Pavel Jungwirth, and Pavel Hobza. "Methylated uracil dimers: potential energy and free energy surfaces." Physical Chemistry Chemical Physics 2, no. 10 (2000): 2419–24. http://dx.doi.org/10.1039/b001022g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Klaiman, Shachar, and Nimrod Moiseyev. "Narrow resonances in complex potential energy surfaces." Journal of Physics B: Atomic, Molecular and Optical Physics 42, no. 4 (February 3, 2009): 044004. http://dx.doi.org/10.1088/0953-4075/42/4/044004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wille, L. T. "Searching potential energy surfaces by simulated annealing." Nature 324, no. 6092 (November 6, 1986): 46–48. http://dx.doi.org/10.1038/324046a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wille, L. T. "Searching potential energy surfaces by simulated annealing." Nature 325, no. 6102 (January 1987): 374. http://dx.doi.org/10.1038/325374c0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bitto, Herbert, Dean R. Guyer, William F. Polik, and C. Bradley Moore. "Dissociation on ground-state potential-energy surfaces." Faraday Discussions of the Chemical Society 82 (1986): 149. http://dx.doi.org/10.1039/dc9868200149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Galvão, B. R. L., V. C. Mota, and A. J. C. Varandas. "Modeling Cusps in Adiabatic Potential Energy Surfaces." Journal of Physical Chemistry A 119, no. 8 (February 11, 2015): 1415–21. http://dx.doi.org/10.1021/jp512671q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Smith, Paul M., and Mario F. Borunda. "Torsional Potential Energy Surfaces of Dinitrobenzene Isomers." Advances in Condensed Matter Physics 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/3296845.

Full text
Abstract:
The torsional potential energy surfaces of 1,2-dinitrobenzene, 1,3-dinitrobenzene, and 1,4-dinitrobenzene were calculated using the B3LYP functional with 6-31G(d) basis sets. Three-dimensional energy surfaces were created, allowing each of the two C-N bonds to rotate through 64 positions. Dinitrobenzene was chosen for the study because each of the three different isomers has widely varying steric hindrances and bond hybridization, which affect the energy of each conformation of the isomers as the nitro functional groups rotate. The accuracy of the method is determined by comparison with previous theoretical and experimental results. The surfaces provide valuable insight into the mechanics of conjugated molecules. The computation of potential energy surfaces has powerful application in modeling molecular structures, making the determination of the lowest energy conformations of complex molecules far more computationally accessible.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography