Academic literature on the topic 'POTENTIAL CATHODE'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'POTENTIAL CATHODE.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "POTENTIAL CATHODE"

1

Drennan, Dina M., Raji E. Koshy, David B. Gent, and Charles E. Schaefer. "Electrochemical treatment for greywater reuse: effects of cell configuration on COD reduction and disinfection byproduct formation and removal." Water Supply 19, no. 3 (2018): 891–98. http://dx.doi.org/10.2166/ws.2018.138.

Full text
Abstract:
Abstract Electrochemical (EC) treatment presents a low-energy, water-reuse strategy with potential application to decentralized greywater treatment. This study focused on evaluating the impacts of cell configuration, current density, and cathode material on chemical oxygen demand (COD) removal and disinfection byproduct (DBP) formation in greywater. The formation and/or cathodic removal of active chlorine, perchlorate, haloacetic acids, and trihalomethanes were assessed during EC treatment. DBP formation was proportional to current density in undivided EC cells. Sequential anodic-cathodic trea
APA, Harvard, Vancouver, ISO, and other styles
2

Kolesnikov, A. V., and E. I. Ageenko. "Comparative studies of the discharge of hydronium ions on zinc, copper and aluminum cathodes." Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy) 28, no. 6 (2022): 22–31. http://dx.doi.org/10.17073/0021-3438-2022-6-22-31.

Full text
Abstract:
Electrochemical reduction of hydrogen (hydronium ion) was carried out on zinc, aluminum and copper cathodes from acidic aqueous solutions containing sulfuric acid (0.09, 0.18 and 0.36 mol/l) to study the effect of electrolyte acidity, the type of cathodes used and potential values on electrolysis indicators. The studies were carried out on the potentiostat using a three-electrode cell under conditions of intensive electrolyte stirring with a magnetic stirrer. At the initial stage, electrolysis was performed in the following modes: potentiodynamic measurements at a sweep rate of 1 mV/s in the p
APA, Harvard, Vancouver, ISO, and other styles
3

Pratama, Affiano Akbar Nur, Ahmad Jihad, Salsabila Ainun Nisa, Ike Puji Lestari, Cornelius Satria Yudha, and Agus Purwanto. "Manganese Sulphate Fertilizer Potential as Raw Material of LMR-NMC Lithium-Ion Batteries: A Review." Materials Science Forum 1044 (August 27, 2021): 59–72. http://dx.doi.org/10.4028/www.scientific.net/msf.1044.59.

Full text
Abstract:
Lithium-ion battery (Li-ion) is an energy storage device widely used in various types of electronic devices. The cathode is one of its main components, which was developed because it accelerates the transfer of electrons and battery cycle stability. Therefore, the LiNixMnyCozO2 (LNMC) cathode material, which has a discharge capacity of less than 200 mAh g−1, was further developed. Li-Mn-rich oxide cathode material (LMR-NMC) has also received considerable attention because it produces batteries with a specific capacity of more than 250 mAh g−1 at high voltages. The structure, synthesis method,
APA, Harvard, Vancouver, ISO, and other styles
4

Katerina Rutkovska, Hennadii Tulskyi, Valerii Homozov, and Alexandr Rusinov. "SUBSTANTIATION OF TECHNOLOGICAL INDICATORS OF APPLICATION OF A GAS-DIFFUSION CATHODE IN ELECTROCHEMICAL SYNTHESIS OF HYPOCHLORITE SOLUTIONS." Bulletin of the National Technical University "KhPI". Series: Chemistry, Chemical Technology and Ecology, no. 2 (4) (July 28, 2022): 11–17. http://dx.doi.org/10.20998/2079-0821.2020.02.02.

Full text
Abstract:
A gas diffusion electrode was used to implement depolarization of the cathodic process with atmospheric oxygen to improve the production of sodium hypochlorite by electrolysis of an aqueous solution of sodium chloride. As materials for the implementation of depolarization of the cathode process on a porous cathode from the grid, we selected: manganese oxides, cobalt oxides, ruthenium oxides. These oxides are characterized by low overvoltage of the oxygen reaction. Oxides of selected metals were applied to a mesh current lead by thermal decomposition of coating solutionsю. The gas diffusion ele
APA, Harvard, Vancouver, ISO, and other styles
5

Xie, Lin, and Donald Kirk. "Stability of a Fe-Rich Cathode Catalyst in an Anion Exchange Membrane Fuel Cell." Catalysis Research 01, no. 03 (2021): 1. http://dx.doi.org/10.21926/cr.2103003.

Full text
Abstract:
Fe-rich alloys have been widely studied as catalyst materials for the cathodic oxygen reduction reaction (ORR) in hydrogen fuel cells, and many have shown high activities. The stability of Fe-rich catalysts has also been researched, and some studies have shown promising results using an accelerated stress test (AST), which uses a potential cycling method. However, for commercial fuel cell applications, such as standby power systems, the catalyst has to tolerate a high potential for a long period, which can not be represented by the AST test. In this paper, the cathode stability of a Fe-rich ca
APA, Harvard, Vancouver, ISO, and other styles
6

Tremblay, Pier-Luc, Neda Faraghiparapari, and Tian Zhang. "Accelerated H2 Evolution during Microbial Electrosynthesis with Sporomusa ovata." Catalysts 9, no. 2 (2019): 166. http://dx.doi.org/10.3390/catal9020166.

Full text
Abstract:
Microbial electrosynthesis (MES) is a process where bacteria acquire electrons from a cathode to convert CO2 into multicarbon compounds or methane. In MES with Sporomusa ovata as the microbial catalyst, cathode potential has often been used as a benchmark to determine whether electron uptake is hydrogen-dependent. In this study, H2 was detected by a microsensor in proximity to the cathode. With a sterile fresh medium, H2 was produced at a potential of −700 mV versus Ag/AgCl, whereas H2 was detected at −500 mV versus Ag/AgCl with cell-free spent medium from a S. ovata culture. Furthermore, H2 e
APA, Harvard, Vancouver, ISO, and other styles
7

Payman, Adele R., and Dan M. Goebel. "Development of a 50-A heaterless hollow cathode for electric thrusters." Review of Scientific Instruments 93, no. 11 (2022): 113543. http://dx.doi.org/10.1063/5.0124694.

Full text
Abstract:
Hollow cathodes in electric thrusters normally use an external heater to raise the thermionic electron emitter to emission temperatures. These heaters are a potential single-point failure in the thruster and add a separate power supply to the power processing unit. Heaterless hollow cathodes are attractive for their compact size and potential higher reliability but have only been reliably demonstrated to date in small hollow cathodes capable of discharge currents below around 5 A. A new heaterless LaB6 hollow cathode has been developed that is capable of discharge currents from 5 to 50 A. The
APA, Harvard, Vancouver, ISO, and other styles
8

Matos, Luís, and José Martins. "Analysis of an Educational Cathodic Protection System with a Single Drainage Point: Modeling and Experimental Validation in Aqueous Medium." Materials 11, no. 11 (2018): 2099. http://dx.doi.org/10.3390/ma11112099.

Full text
Abstract:
Cathodic protection, often taught in curricular units, such as corrosion and materials science, is an important subject in the study of chemical engineering. The implementation of lab setups and experimental activities in this field, are core to promoting understanding of the underlying concepts and to developing “hands-on” skills fundamental to the success of future process engineers. This paper reports the influence of different variables on the electrical potential and current behaviors of an educational cathodic protection system operated with a single drainage point. The system comprised
APA, Harvard, Vancouver, ISO, and other styles
9

Mitsushima, Shigenori, Ashraf Abdel Haleem, Kensaku Nagasawa, et al. "(Invited) Leak Current Analysis of Stop Operation and Its Modeling for the Development of Bipolar Alkaline Water Electrolyzer Electrodes." ECS Meeting Abstracts MA2022-01, no. 33 (2022): 1344. http://dx.doi.org/10.1149/ma2022-01331344mtgabs.

Full text
Abstract:
Introduction Water electrolysis is expected a key device to introduce large-scale renewable electricity under management of power grid and electrification of non-electric sector. While alkaline water electrolysis (AWE) systems are well-developed large system, degradation under fluctuated operation with start and stop operation is significant issue to combine photovoltaic and/or wind turbine generation is significant issue. In this study, we have been investigated reverse current, which is leak current through manifold of bipolar alkaline water electrolyzers, and electrode potential behavior of
APA, Harvard, Vancouver, ISO, and other styles
10

Honda, Hisashi, and Katsuhide Misono. "the Cathode fall potential of cold cathode fluorescent lamps." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 73, Appendix (1989): 8. http://dx.doi.org/10.2150/jieij1980.73.appendix_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!