Academic literature on the topic 'POTENTIAL CATHODE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'POTENTIAL CATHODE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "POTENTIAL CATHODE"
Drennan, Dina M., Raji E. Koshy, David B. Gent, and Charles E. Schaefer. "Electrochemical treatment for greywater reuse: effects of cell configuration on COD reduction and disinfection byproduct formation and removal." Water Supply 19, no. 3 (July 27, 2018): 891–98. http://dx.doi.org/10.2166/ws.2018.138.
Full textKolesnikov, A. V., and E. I. Ageenko. "Comparative studies of the discharge of hydronium ions on zinc, copper and aluminum cathodes." Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy) 28, no. 6 (December 7, 2022): 22–31. http://dx.doi.org/10.17073/0021-3438-2022-6-22-31.
Full textPratama, Affiano Akbar Nur, Ahmad Jihad, Salsabila Ainun Nisa, Ike Puji Lestari, Cornelius Satria Yudha, and Agus Purwanto. "Manganese Sulphate Fertilizer Potential as Raw Material of LMR-NMC Lithium-Ion Batteries: A Review." Materials Science Forum 1044 (August 27, 2021): 59–72. http://dx.doi.org/10.4028/www.scientific.net/msf.1044.59.
Full textKaterina Rutkovska, Hennadii Tulskyi, Valerii Homozov, and Alexandr Rusinov. "SUBSTANTIATION OF TECHNOLOGICAL INDICATORS OF APPLICATION OF A GAS-DIFFUSION CATHODE IN ELECTROCHEMICAL SYNTHESIS OF HYPOCHLORITE SOLUTIONS." Bulletin of the National Technical University "KhPI". Series: Chemistry, Chemical Technology and Ecology, no. 2 (4) (July 28, 2022): 11–17. http://dx.doi.org/10.20998/2079-0821.2020.02.02.
Full textXie, Lin, and Donald Kirk. "Stability of a Fe-Rich Cathode Catalyst in an Anion Exchange Membrane Fuel Cell." Catalysis Research 01, no. 03 (June 9, 2021): 1. http://dx.doi.org/10.21926/cr.2103003.
Full textTremblay, Pier-Luc, Neda Faraghiparapari, and Tian Zhang. "Accelerated H2 Evolution during Microbial Electrosynthesis with Sporomusa ovata." Catalysts 9, no. 2 (February 8, 2019): 166. http://dx.doi.org/10.3390/catal9020166.
Full textPayman, Adele R., and Dan M. Goebel. "Development of a 50-A heaterless hollow cathode for electric thrusters." Review of Scientific Instruments 93, no. 11 (November 1, 2022): 113543. http://dx.doi.org/10.1063/5.0124694.
Full textMatos, Luís, and José Martins. "Analysis of an Educational Cathodic Protection System with a Single Drainage Point: Modeling and Experimental Validation in Aqueous Medium." Materials 11, no. 11 (October 25, 2018): 2099. http://dx.doi.org/10.3390/ma11112099.
Full textMitsushima, Shigenori, Ashraf Abdel Haleem, Kensaku Nagasawa, Yoshiyuki Kuroda, Akihiro Kato, Zaenal Awaludin, Yoshinori Nishiki, and Takuto Araki. "(Invited) Leak Current Analysis of Stop Operation and Its Modeling for the Development of Bipolar Alkaline Water Electrolyzer Electrodes." ECS Meeting Abstracts MA2022-01, no. 33 (July 7, 2022): 1344. http://dx.doi.org/10.1149/ma2022-01331344mtgabs.
Full textHonda, Hisashi, and Katsuhide Misono. "the Cathode fall potential of cold cathode fluorescent lamps." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 73, Appendix (1989): 8. http://dx.doi.org/10.2150/jieij1980.73.appendix_8.
Full textDissertations / Theses on the topic "POTENTIAL CATHODE"
Siegfried, Adam. "Exploratory synthesis of polyanion-based open-framework solids as potential candidates for cathode material applications." Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1211391125/.
Full textPfluge, Matthew Edward. "Study of praseodymium strontium manganite for the potential use as a solid oxide fuel cell cathode." Thesis, Montana State University, 2005. http://etd.lib.montana.edu/etd/2005/pfluge/PflugeM0505.pdf.
Full textSharp, Matthew David. "The Ba-Pb-O system and its potential as a solid oxide fuel cell (SOFC) cathode material /." St Andrews, 2007. http://hdl.handle.net/10023/378.
Full textLobos, Aldo. "Bioleaching Potential of Filamentous Fungi to Mobilize Lithium and Cobalt from Spent Rechargeable Li-Ion Batteries." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/7051.
Full textNzaba, Sarre Kadia Myra. "Lithium manganese oxide modified with copper-gold nanocomposite cladding- a potential novel cathode material for spinel type lithium-ion batteries." University of the Western Cape, 2014. http://hdl.handle.net/11394/4444.
Full textSpinel lithium manganese oxide (LiMn2O4), for its low cost, easy preparation and nontoxicity, is regarded as a promising cathode material for lithium-ion batteries. However, a key problem prohibiting it from large scale commercialization is its severe capacity fading during cycling. The improvement of electrochemical cycling stability is greatly attributed to the suppression of Jahn-Teller distortion (Robertson et al., 1997) at the surface of the spinel LiMn2O4 particles. These side reactions result in Mn2+ dissolution mainly at the surface of the cathode during cycling, therefore surface modification of the cathode is deemed an effective way to reduce side reactions. The utilization of a nanocomposite which comprises of metallic Cu and Au were of interest because their oxidation gives rise to a variety of catalytically active configurations which advances the electrochemical property of Li-ion battery. In this research study, an experimental strategy based on doping the LiMn2O4 with small amounts of Cu-Au nanocomposite cations for substituting the Mn3+ ions, responsible for disproportionation, was employed in order to increase conductivity, improve structural stability and cycle life during successive charge and discharge cycles. The spinel cathode material was synthesized by coprecipitation method from a reaction of lithium hydroxide and manganese acetate using 1:2 ratio. The Cu-Au nanocomposite was synthesized via a chemical reduction method using copper acetate and gold acetate in a 1:3 ratio. Powder samples of LiMxMn2O4 (M = Cu-Au nanocomposite) was prepared from a mixture of stoichiometric amounts of Cu-Au nanocomposite and LiMn2O4 precursor. The novel LiMxMn2O4 material has a larger surface area which increases the Li+ diffusion coefficient and reduces the volumetric changes and lattice stresses caused by repeated Li+ insertion and expulsion. Structural and morphological sample analysis revealed that the modified cathode material have good crystallinity and well dispersed particles. These results corroborated the electrochemical behaviour of LiMxMn2O4 examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The diffusion coefficients for LiMn2O4 and LiMxMn2-xO4 obtained are 1.90 x10-3 cm2 / s and 6.09 x10-3 cm2 / s respectively which proved that the Cu-Au nanocomposite with energy band gap of 2.28 eV, effectively improved the electrochemical property. The charge / discharge value obtained from integrating the area under the curve of the oxidation peak and reduction peak for LiMxMn2-xO4 was 263.16 and 153.61 mAh / g compared to 239.16 mAh / g and 120 mAh / g for LiMn2O4. It is demonstrated that the presence of Cu-Au nanocomposite reduced side reactions and effectively improved the electrochemical performance of LiMn2O4.
Davies, Andrew. "A study and evaluation of some amorphous transition metal oxides as potential cathode active materials for secondary lithium polymer-electrolyte batteries." Thesis, University of Reading, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317606.
Full textKosgei, Cosmas Kipyego. "Investigation of the effect of basicity and Concentration ofproton accepting bases on the potential of Quinones for highpotential quinone based cathode materials." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-288369.
Full textYokoyama, Yuko. "Studies on Electrolytes for High-Voltage Aqueous Rechargeable Lithium-ion Batteries." Kyoto University, 2019. http://hdl.handle.net/2433/242525.
Full textWedig, Anja [Verfasser], and Joachim [Akademischer Betreuer] Maier. "Oxygen exchange kinetics of the potential solid oxide fuel cell cathode material (Bi,Sr)(Co,Fe)O3-delta / Anja Wedig. Betreuer: Joachim Maier." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2013. http://d-nb.info/1041622236/34.
Full textMillar, Laura. "Investigating the opportunity to increase the economic and environmental potential of the integrated-planar solid oxide fuel cell through choice of cathode current collector." Thesis, University of Surrey, 2009. http://epubs.surrey.ac.uk/843242/.
Full textBooks on the topic "POTENTIAL CATHODE"
R, Sarver-Verhey Timothy, and Lewis Research Center, eds. International Space Station cathode life testing: ... contract NAS3-27186. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Find full textR, Sarver-Verhey Timothy, and Lewis Research Center, eds. International Space Station cathode life testing: ... contract NAS3-27186. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Find full textAlberia, T. B. Modelling and testing instant off potential measurement for cathodic protection. Manchester: UMIST, 1997.
Find full textWilliams, John D. Plasma contactor research, 1989: Annual report. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1990.
Find full textFlint, Thomas A. The application of cathodic potential scanning at a hanging mercury drop electrode to the quantitative determination of transition metals. Manchester: UMIST, 1997.
Find full textInternational Space Station cathode life testing: ... contract NAS3-27186. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Find full textCasas, Rogelio De Las, and Ronald Bianchetti. Potential Theory Applied to Cathodic Protection Design. Association for Materials Protection and Performance (AMPP), 2021.
Find full textOff-potential measurement systems for impressed current cathodic protection. [Champaign, IL]: US Army Construction Engineering Research Laboratories, 1994.
Find full textLee, Rupert Utak. Influence of Applied Potential, Fluid Velocity, PH and Temperature on Formation of Calcareous Deposits under Impressed Current Cathodic Protection. Creative Media Partners, LLC, 2015.
Find full textLee, Rupert Utak. Influence of Applied Potential, Fluid Velocity, PH and Temperature on Formation of Calcareous Deposits under Impressed Current Cathodic Protection. Creative Media Partners, LLC, 2018.
Find full textBook chapters on the topic "POTENTIAL CATHODE"
Sarkar, Ananta, Pallavi Raj, Manas Ranjan Panda, and Sagar Mitra. "High-Potential Cathode for Sodium-Ion Battery." In Advances in Energy Research, Vol. 1, 371–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2666-4_36.
Full textThomas, Anjumole P., Akhila Das, Leya Rose Raphael, Neethu T. M. Balakrishnan, Jou-Hyeon Ahn, M. J. Jabeen Fatima, and Raghavan Prasanth. "Lithium Cobalt Oxide (LiCoO2): A Potential Cathode Material for Advanced Lithium-Ion Batteries." In Electrospinning for Advanced Energy Storage Applications, 455–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8844-0_16.
Full textPfluge, Matthew E., Max C. Deibert, Greg W. Coffey, and Larry R. Pederson. "Study of Praseodyium Strontium Manganite for the Potential Use as a Solid Oxide Fuel Cell Cathode." In Ceramic Engineering and Science Proceedings, 121–28. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470291245.ch14.
Full textGoogan, Chris. "Protection potential – carbon steel." In Marine Corrosion and Cathodic Protection, 121–39. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003216070-6.
Full textTanjung, Iqbal, Affandi, Syifaul Huzni, and Syarizal Fonna. "Investigation the Effect of Concrete Element Size on the Potential Distribution of RC Cathodic Protection Simulation Using BEM 3D." In Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering, 189–98. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0736-3_19.
Full textKim, Seong Jong, Seok Ki Jang, and Jeong Il Kim. "Effects of Post-Weld Heat Treatment on Optimum Cathodic Protection Potential of High-Strength Steel in Marine Environment Conditions." In Materials Science Forum, 133–36. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-966-0.133.
Full text"High Potential LiNi0.5Mn1.5O4 Cathode for LIBs." In Materials Research Foundations, 28–50. Materials Research Forum LLC, 2017. http://dx.doi.org/10.21741/9781945291272-2.
Full textOriakhi, Christopher O. "Fundamentals of Electrochemistry." In Chemistry in Quantitative Language. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780195367997.003.0027.
Full textHuu Hieu, Nguyen. "Graphene-Based Material for Fabrication of Electrodes in Dye-Sensitized Solar Cells." In Solar Cells [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93637.
Full textNguyen, Thi Dieu Hien, Shih-Yang Lin, Hsien-Ching Chung, Wei-Bang Li, Ngoc Thanh Thuy Tran, Nguyen Thi Han, Hsin-Yi Liu, Hai Duong Pham, and Ming-Fa Lin. "Open issues and potential applications." In First-Principles Calculations for Cathode, Electrolyte and Anode Battery Materials. IOP Publishing, 2021. http://dx.doi.org/10.1088/978-0-7503-4685-6ch18.
Full textConference papers on the topic "POTENTIAL CATHODE"
Beilis, I. I. "Cathode potential drop at a transient cathode spot on a microprotrusion." In 2010 24th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2010. http://dx.doi.org/10.1109/deiv.2010.5625876.
Full textCelik, Ismail B., Randall S. Gemmen, and Suryanarayana R. Pakalapati. "A Modular Approach to Fuel Cell Modeling: Analysis of a SOFC Cathode." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33181.
Full textQin, Yu, Kan Xie, Qimeng Xia, and JiTing Ouyang. "The High Frequency Potential Oscillations Near the Hollow Cathode in Ion Thrusters." In 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-4629.
Full textMikellides, I., Ira Katz, and Dan Goebel. "Model of the Plasma Potential Distribution in the Plume of a Hollow Cathode." In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-4108.
Full textNakagawa, Tadahiro, Naoki Shikazono, and Nobuhide Kasagi. "Numerical Simulation of Electrochemical Reaction in Reconstructed Three-Dimensional LSM/YSZ Composite Cathode." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65027.
Full textBobzin, K., F. Ernst, J. Zwick, K. Richardt, D. Sporer, and R. J. Molz. "Triplex Pro 200 – Potential and Advanced Applications." In ITSC2007, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. ASM International, 2007. http://dx.doi.org/10.31399/asm.cp.itsc2007p0723.
Full textBanta, Larry E., Bernardo Restrepo, Alex J. Tsai, and David Tucker. "Cathode Temperature Management During Hybrid System Startup." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33121.
Full textDONALDSON, A., and M. KRISTIANSEN. "An assessment of erosion resistant cathode materials with potential application in high power electric propulsion devices." In 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2515.
Full textWang, Chunmei, and Shinichi Hirano. "Method to Enhance Fuel Cell Powertrain System Robustness by Reducing Cathode Potential during Start-Up Condition." In WCX™ 17: SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-01-1186.
Full textShaffer, James, Saeid Zare, and Omid Askari. "Structure and Measurement of Atmospheric and High-Pressure Ignition Plasma." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73138.
Full textReports on the topic "POTENTIAL CATHODE"
Rossi, Ruggero, David Jones, Jaewook Myung, Emily Zikmund, Wulin Yang, Yolanda Alvarez Gallego, Deepak Pant, et al. Evaluating a multi-panel air cathode through electrochemical and biotic tests. Engineer Research and Development Center (U.S.), December 2022. http://dx.doi.org/10.21079/11681/46320.
Full textBoris Merinov, Adri van Duin, Sossina Haile, and William A. Goddard III. REACTIVE FORCE FIELDS FOR Y-DOPED BaZrO3 ELECTROLYTE AND NI-ANODE. POTENTIAL CATHODE MATERIALS FOR APPLICATION IN PROTON CERAMIC FUEL CELLS. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/836617.
Full textKiefner. L51606 Technique Development for Polarized Pipe-to-Soil Potential Measurements. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 1989. http://dx.doi.org/10.55274/r0010103.
Full textThompson, N. G., and K. M. Lawson. PR-186-9126-R01 Evaluation of Commercial Systems for Measuring Cathodic Protection. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 1993. http://dx.doi.org/10.55274/r0011921.
Full textThompson and Lawson. L51888 Development of Coupons for Monitoring Cathodic Protection Systems. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2002. http://dx.doi.org/10.55274/r0010179.
Full textBarlo, Thomas. L51502 Investigation of Side-Drain Potential for Cathodic Protection of Bare Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 1986. http://dx.doi.org/10.55274/r0011425.
Full textYunovich and Tossey. L52128 Effect of High CP Potentials on Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2004. http://dx.doi.org/10.55274/r0011111.
Full textGummow. L51908 AC Grounding Effects on Cathodic Protection Performance in Pipeline Stations.pdf. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2001. http://dx.doi.org/10.55274/r0010269.
Full textGummow. L52106 Cathodic Protection Gap Analysis. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2003. http://dx.doi.org/10.55274/r0011098.
Full textSong, Frank. PR-015-0835-R01 Development of Variable Cathodic Protection Criteria. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 2010. http://dx.doi.org/10.55274/r0010716.
Full text