Journal articles on the topic 'Potassium channels'

To see the other types of publications on this topic, follow the link: Potassium channels.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Potassium channels.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wrzosek, Antoni, Bartłomiej Augustynek, Monika Żochowska, and Adam Szewczyk. "Mitochondrial Potassium Channels as Druggable Targets." Biomolecules 10, no. 8 (August 18, 2020): 1200. http://dx.doi.org/10.3390/biom10081200.

Full text
Abstract:
Mitochondrial potassium channels have been described as important factors in cell pro-life and death phenomena. The activation of mitochondrial potassium channels, such as ATP-regulated or calcium-activated large conductance potassium channels, may have cytoprotective effects in cardiac or neuronal tissue. It has also been shown that inhibition of the mitochondrial Kv1.3 channel may lead to cancer cell death. Hence, in this paper, we examine the concept of the druggability of mitochondrial potassium channels. To what extent are mitochondrial potassium channels an important, novel, and promising drug target in various organs and tissues? The druggability of mitochondrial potassium channels will be discussed within the context of channel molecular identity, the specificity of potassium channel openers and inhibitors, and the unique regulatory properties of mitochondrial potassium channels. Future prospects of the druggability concept of mitochondrial potassium channels will be evaluated in this paper.
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Xi, and Lily Yeh Jan. "Targeting potassium channels in cancer." Journal of Cell Biology 206, no. 2 (July 21, 2014): 151–62. http://dx.doi.org/10.1083/jcb.201404136.

Full text
Abstract:
Potassium channels are pore-forming transmembrane proteins that regulate a multitude of biological processes by controlling potassium flow across cell membranes. Aberrant potassium channel functions contribute to diseases such as epilepsy, cardiac arrhythmia, and neuromuscular symptoms collectively known as channelopathies. Increasing evidence suggests that cancer constitutes another category of channelopathies associated with dysregulated channel expression. Indeed, potassium channel–modulating agents have demonstrated antitumor efficacy. Potassium channels regulate cancer cell behaviors such as proliferation and migration through both canonical ion permeation–dependent and noncanonical ion permeation–independent functions. Given their cell surface localization and well-known pharmacology, pharmacological strategies to target potassium channel could prove to be promising cancer therapeutics.
APA, Harvard, Vancouver, ISO, and other styles
3

Orfali, Razan, and Nora Albanyan. "Ca2+-Sensitive Potassium Channels." Molecules 28, no. 2 (January 16, 2023): 885. http://dx.doi.org/10.3390/molecules28020885.

Full text
Abstract:
The Ca2+ ion is used ubiquitously as an intracellular signaling molecule due to its high external and low internal concentration. Many Ca2+-sensing ion channel proteins have evolved to receive and propagate Ca2+ signals. Among them are the Ca2+-activated potassium channels, a large family of potassium channels activated by rises in cytosolic calcium in response to Ca2+ influx via Ca2+-permeable channels that open during the action potential or Ca2+ release from the endoplasmic reticulum. The Ca2+ sensitivity of these channels allows internal Ca2+ to regulate the electrical activity of the cell membrane. Activating these potassium channels controls many physiological processes, from the firing properties of neurons to the control of transmitter release. This review will discuss what is understood about the Ca2+ sensitivity of the two best-studied groups of Ca2+-sensitive potassium channels: large-conductance Ca2+-activated K+ channels, KCa1.1, and small/intermediate-conductance Ca2+-activated K+ channels, KCa2.x/KCa3.1.
APA, Harvard, Vancouver, ISO, and other styles
4

Korn, S. J., and J. G. Trapani. "Potassium Channels." IEEE Transactions on Nanobioscience 4, no. 1 (March 2005): 21–33. http://dx.doi.org/10.1109/tnb.2004.842466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yost, Spencer C. "Potassium Channels." Anesthesiology 90, no. 4 (April 1, 1999): 1186–203. http://dx.doi.org/10.1097/00000542-199904000-00035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Papazian, Diane M. "Potassium Channels." Neuron 23, no. 1 (May 1999): 7–10. http://dx.doi.org/10.1016/s0896-6273(00)80746-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

MacKinnon, Roderick. "Potassium channels." FEBS Letters 555, no. 1 (October 7, 2003): 62–65. http://dx.doi.org/10.1016/s0014-5793(03)01104-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spires, S., and T. Begenisich. "Modification of potassium channel kinetics by histidine-specific reagents." Journal of General Physiology 96, no. 4 (October 1, 1990): 757–75. http://dx.doi.org/10.1085/jgp.96.4.757.

Full text
Abstract:
We have examined the actions of histidine-specific reagents on potassium channels in squid giant axons. External application of 20-500 microM diethylpyrocarbonate (DEP) slowed the opening of potassium channels with little or no effect on closing rates. Sodium channels were not affected by these low external concentrations of DEP. Internal application of up to 2 mM DEP had no effect on potassium channel kinetics. Steady-state potassium channel currents were reduced in an apparently voltage-dependent manner by external treatment with this reagent. The shape of the instantaneous current-voltage relation was not altered. The voltage-dependent probability of channel opening was shifted toward more positive membrane potentials, thus accounting for the apparent voltage-dependent reduction of steady-state current. Histidine-specific photo-oxidation catalyzed by rose bengal produced alterations in potassium channel properties similar to those observed with DEP. The rate of action of DEP was consistent with a single kinetic class of histidine residues. In contrast to the effects on ionic currents, potassium channel gating currents were not modified by treatment with DEP. These results suggest the existence of a histidyl group (or groups) on the external surface of potassium channels important for a weakly voltage-dependent conformational transition. These effects can be reproduced by a simple kinetic model of potassium channels.
APA, Harvard, Vancouver, ISO, and other styles
9

Vyas, Vivek K., Palak Parikh, Jonali Ramani, and Manjunath Ghate. "Medicinal Chemistry of Potassium Channel Modulators: An Update of Recent Progress (2011-2017)." Current Medicinal Chemistry 26, no. 12 (July 1, 2019): 2062–84. http://dx.doi.org/10.2174/0929867325666180430152023.

Full text
Abstract:
Background: Potassium (K+) channels participate in many physiological processes, cardiac function, cell proliferation, neuronal signaling, muscle contractility, immune function, hormone secretion, osmotic pressure, changes in gene expression, and are involved in critical biological functions, and in a variety of diseases. Potassium channels represent a large family of tetrameric membrane proteins. Potassium channels activation reduces excitability, whereas channel inhibition increases excitability. Objective: Small molecule K+ channel activators and inhibitors interact with voltage-gated, inward rectifying, and two-pore tandem potassium channels. Due to their involvement in biological functions, and in a variety of diseases, small molecules as potassium channel modulators have received great scientific attention. Methods: : In this review, we have compiled the literature, patents and patent applications (2011 to 2017) related to different chemical classes of potassium channel openers and blockers as therapeutic agents for the treatment of various diseases. Many different chemical classes of selective small molecule have emerged as potassium channel modulators over the past years. Conclusion: This review discussed the current understanding of medicinal chemistry research in the field of potassium channel modulators to update the key advances in this field.
APA, Harvard, Vancouver, ISO, and other styles
10

Al-Karagholi, Mohammad Al-Mahdi. "Involvement of Potassium Channel Signalling in Migraine Pathophysiology." Pharmaceuticals 16, no. 3 (March 14, 2023): 438. http://dx.doi.org/10.3390/ph16030438.

Full text
Abstract:
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
APA, Harvard, Vancouver, ISO, and other styles
11

Park, Kang-Sik, Jae-Won Yang, Edward Seikel, and James S. Trimmer. "Potassium Channel Phosphorylation in Excitable Cells: Providing Dynamic Functional Variability to a Diverse Family of Ion Channels." Physiology 23, no. 1 (February 2008): 49–57. http://dx.doi.org/10.1152/physiol.00031.2007.

Full text
Abstract:
Phosphorylation of potassium channels affects their function and plays a major role in regulating cell physiology. Here, we review previous studies of potassium channel phosphorylation, focusing first on studies employing site-directed mutagenesis of recombinant channels expressed in heterologous cells. We then discuss recent mass spectrometric-based approaches to identify and quantify phosphorylation at specific sites on native and recombinant potassium channels, and newly developed mass spectrometric-based techniques that may prove beneficial to future studies of potassium channel phosphorylation, its regulation, and its mechanism of channel modulation.
APA, Harvard, Vancouver, ISO, and other styles
12

Walewska, Agnieszka, Adam Szewczyk, and Piotr Koprowski. "Gas Signaling Molecules and Mitochondrial Potassium Channels." International Journal of Molecular Sciences 19, no. 10 (October 18, 2018): 3227. http://dx.doi.org/10.3390/ijms19103227.

Full text
Abstract:
Recently, gaseous signaling molecules, such as carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), which were previously considered to be highly toxic, have been of increasing interest due to their beneficial effects at low concentrations. These so-called gasotransmitters affect many cellular processes, such as apoptosis, proliferation, cytoprotection, oxygen sensing, ATP synthesis, and cellular respiration. It is thought that mitochondria, specifically their respiratory complexes, constitute an important target for these gases. On the other hand, increasing evidence of a cytoprotective role for mitochondrial potassium channels provides motivation for the analysis of the role of gasotransmitters in the regulation of channel function. A number of potassium channels have been shown to exhibit activity within the inner mitochondrial membrane, including ATP-sensitive potassium channels, Ca2+-activated potassium channels, voltage-gated Kv potassium channels, and TWIK-related acid-sensitive K+ channel 3 (TASK-3). The effects of these channels include the regulation of mitochondrial respiration and membrane potential. Additionally, they may modulate the synthesis of reactive oxygen species within mitochondria. The opening of mitochondrial potassium channels is believed to induce cytoprotection, while channel inhibition may facilitate cell death. The molecular mechanisms underlying the action of gasotransmitters are complex. In this review, we focus on the molecular mechanisms underlying the action of H2S, NO, and CO on potassium channels present within mitochondria.
APA, Harvard, Vancouver, ISO, and other styles
13

Kicińska, A., G. D bska, W. Kunz, and A. Szewczyk. "Mitochondrial potassium and chloride channels." Acta Biochimica Polonica 47, no. 3 (September 30, 2000): 541–51. http://dx.doi.org/10.18388/abp.2000_3977.

Full text
Abstract:
Channels selective for potassium or chloride ions are present in inner mitochondrial membranes. They probably play an important role in mitochondrial events such as the formation of delta pH and regulation of mitochondrial volume changes. Mitochondrial potassium and chloride channels could also be the targets for pharmacologically active compounds such as potassium channel openers and antidiabetic sulfonylureas. This review describes the properties, pharmacology, and current observations concerning the functional role of mitochondrial potassium and chloride channels.
APA, Harvard, Vancouver, ISO, and other styles
14

Barman, Scott A. "Potassium channels modulate hypoxic pulmonary vasoconstriction." American Journal of Physiology-Lung Cellular and Molecular Physiology 275, no. 1 (July 1, 1998): L64—L70. http://dx.doi.org/10.1152/ajplung.1998.275.1.l64.

Full text
Abstract:
The role of Ca2+-activated K+-channel, ATP-sensitive K+-channel, and delayed rectifier K+-channel modulation in the canine pulmonary vascular response to hypoxia was determined in the isolated blood-perfused dog lung. Pulmonary vascular resistances and compliances were measured with vascular occlusion techniques. Under normoxia, the Ca2+-activated K+-channel blocker tetraethylammonium (1 mM), the ATP-sensitive K+-channel inhibitor glibenclamide (10−5 M), and the delayed rectifier K+-channel blocker 4-aminopyridine (10−4 M) elicited a small but significant increase in pulmonary arterial pressure. Hypoxia significantly increased pulmonary arterial and venous resistances and pulmonary capillary pressure and decreased total vascular compliance by decreasing both microvascular and large-vessel compliances. Tetraethylammonium, glibenclamide, and 4-aminopyridine potentiated the response to hypoxia on the arterial segments but not on the venous segments and also further decreased pulmonary vascular compliance. In contrast, the ATP-sensitive K+-channel opener cromakalim and the L-type voltage-dependent Ca2+-channel blocker verapamil (10−5 M) inhibited the vasoconstrictor effect of hypoxia on both the arterial and venous vessels. These results indicate that closure of the Ca2+-activated K+ channels, ATP-sensitive K+ channels, and delayed rectifier K+ channels potentiate the canine pulmonary arterial response under hypoxic conditions and that L-type voltage-dependent Ca2+ channels modulate hypoxic vasoconstriction. Therefore, the possibility exists that K+-channel inhibition is a key event that links hypoxia to pulmonary vasoconstriction by eliciting membrane depolarization and subsequent Ca2+-channel activation, leading to Ca2+ influx.
APA, Harvard, Vancouver, ISO, and other styles
15

Zhao, Yonghui, Zongyun Chen, Zhijian Cao, Wenxin Li, and Yingliang Wu. "Diverse Structural Features of Potassium Channels Characterized by Scorpion Toxins as Molecular Probes." Molecules 24, no. 11 (May 29, 2019): 2045. http://dx.doi.org/10.3390/molecules24112045.

Full text
Abstract:
Scorpion toxins are well-known as the largest potassium channel peptide blocker family. They have been successfully proven to be valuable molecular probes for structural research on diverse potassium channels. The potassium channel pore region, including the turret and filter regions, is the binding interface for scorpion toxins, and structural features from different potassium channels have been identified using different scorpion toxins. According to the spatial orientation of channel turrets with differential sequence lengths and identities, conformational changes and molecular surface properties, the potassium channel turrets can be divided into the following three states: open state with less hindering effects on toxin binding, half-open state or half-closed state with certain effects on toxin binding, and closed state with remarkable effects on toxin binding. In this review, we summarized the diverse structural features of potassium channels explored using scorpion toxin tools and discuss future work in the field of scorpion toxin-potassium channel interactions.
APA, Harvard, Vancouver, ISO, and other styles
16

Gomez-Sanchez, Celso E., and Kenji Oki. "Minireview: Potassium Channels and Aldosterone Dysregulation: Is Primary Aldosteronism a Potassium Channelopathy?" Endocrinology 155, no. 1 (January 1, 2014): 47–55. http://dx.doi.org/10.1210/en.2013-1733.

Full text
Abstract:
Primary aldosteronism is the most common form of secondary hypertension and has significant cardiovascular consequences. Aldosterone-producing adenomas (APAs) are responsible for half the cases of primary aldosteronism, and about half have mutations of the G protein-activated inward rectifying potassium channel Kir3.4. Under basal conditions, the adrenal zona glomerulosa cells are hyperpolarized with negative resting potentials determined by membrane permeability to K+ mediated through various K+ channels, including the leak K+ channels TASK-1, TASK-3, and Twik-Related Potassium Channel 1, and G protein inward rectifying potassium channel Kir3.4. Angiotensin II decreases the activity of the leak K+ channels and Kir3.4 channel and decreases the expression of the Kir3.4 channel, resulting in membrane depolarization, increased intracellular calcium, calcium-calmodulin pathway activation, and increased expression of cytochrome P450 aldosterone synthase (CYP11B2), the last enzyme for aldosterone production. Somatic mutations of the selectivity filter of the Kir3.4 channel in APA results in loss of selectivity for K+ and entry of sodium, resulting in membrane depolarization, calcium mobilization, increased CYP11B2 expression, and hyperaldosteronism. Germ cell mutations cause familial hyperaldosteronism type 3, which is associated with adrenal zona glomerulosa hyperplasia, rather than adenoma. Less commonly, somatic mutations of the sodium-potassium ATPase, calcium ATPase, or the calcium channel calcium channel voltage-dependent L type alpha 1D have been found in some APAs. The regulation of aldosterone secretion is exerted to a significant degree by activation of membrane K+ and calcium channels or pumps, so it is not surprising that the known causes of disorders of aldosterone secretion in APA have been channelopathies, which activate mechanisms that increase aldosterone synthesis.
APA, Harvard, Vancouver, ISO, and other styles
17

Grigoriev, Nikita G., J. David Spafford, and Andrew N. Spencer. "Modulation of Jellyfish Potassium Channels by External Potassium Ions." Journal of Neurophysiology 82, no. 4 (October 1, 1999): 1728–39. http://dx.doi.org/10.1152/jn.1999.82.4.1728.

Full text
Abstract:
The amplitude of an A-like potassium current ( I Kfast) in identified cultured motor neurons isolated from the jellyfish Polyorchis penicillatus was found to be strongly modulated by extracellular potassium ([K+]out). When expressed in Xenopus oocytes, two jellyfish Shaker-like genes, jShak1 and jShak2, coding for potassium channels, exhibited similar modulation by [K+]out over a range of concentrations from 0 to 100 mM. jShak2-encoded channels also showed a decreased rate of inactivation and an increased rate of recovery from inactivation at high [K+]out. Using site-directed mutagenesis we show that inactivation of jShak2 can be ascribed to an unusual combination of a weak “implicit” N-type inactivation mechanism and a strong, fast, potassium-sensitive C-type mechanism. Interaction between the two forms of inactivation is responsible for the potassium dependence of cumulative inactivation. Inactivation of jShak1 was determined primarily by a strong “ball and chain” mechanism similar to fruit fly Shaker channels. Experiments using fast perfusion of outside-out patches with jShak2 channels were used to establish that the effects of [K+]out on the peak current amplitude and inactivation were due to processes occurring at either different sites located at the external channel mouth with different retention times for potassium ions, or at the same site(s) where retention time is determined by state-dependent conformations of the channel protein. The possible physiological implications of potassium sensitivity of high-threshold potassium A-like currents is discussed.
APA, Harvard, Vancouver, ISO, and other styles
18

Kicinska, Anna, Bartlomiej Augustynek, Bogusz Kulawiak, Wieslawa Jarmuszkiewicz, Adam Szewczyk, and Piotr Bednarczyk. "A large-conductance calcium-regulated K+ channel in human dermal fibroblast mitochondria." Biochemical Journal 473, no. 23 (November 25, 2016): 4457–71. http://dx.doi.org/10.1042/bcj20160732.

Full text
Abstract:
Potassium channels have been found in the inner mitochondrial membrane of various cells. These channels regulate the mitochondrial membrane potential, respiration and production of reactive oxygen species. In the present study, we identified the activity of a mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa channel) in mitoplasts isolated from a primary human dermal fibroblast cell line. A potassium selective current was recorded with a mean conductance of 280 ± 2 pS in a symmetrical 150 mM KCl solution. The mitoBKCa channel was activated by the Ca2+ and by potassium channel opener NS1619. The channel activity was irreversibly inhibited by paxilline, a selective inhibitor of the BKCa channels. In isolated fibroblast mitochondria NS1619 depolarized the mitochondrial membrane potential, stimulated nonphosphorylating respiration and decreased superoxide formation. Additionally, the α- and β-subunits (predominantly the β3-form) of the BKCa channels were identified in fibroblast mitochondria. Our findings indicate, for the first time, the presence of a large-conductance Ca2+-regulated potassium channel in the inner mitochondrial membrane of human dermal fibroblasts.
APA, Harvard, Vancouver, ISO, and other styles
19

E, Akyuz. "Inwardly Rectifying Potassium Channels in Neurological Diseases in Last Decade." Journal of Natural & Ayurvedic Medicine 3, no. 2 (April 16, 2019): 1–5. http://dx.doi.org/10.23880/jonam-16000188.

Full text
Abstract:
Along the last decade, the central role of ion channels in neurological diseases has been carefully studying. Especially, inwardly-rectifying potassium (Kir) channels controlling the cell excitability by acting towards the hyperpolarization phase of neuronal action potential are vital in the neurological disease mechanism. Recent functional studies have shown that the Kir channels associating with various neurological disorders, primarily epilepsy cannot carry K+ ions into the cell due to dysfunction. Investigations into the role of Kir channels with 7 subfamilies in the mechanism of neurological disorders (epilepsy, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, autism, etc.) have shown that the Kir channels functionally may change. After the key role of Kir channels in the pathophysiology is shown, novel drug studies targeting these channels have begun to be developed. Mutations in genes encoding ion channel protein dysfunction have also been included in this review. This is the review to our knowledge in neurological disorders showing the functional expression of Kir channels. Our review shows that Kir channels may play a role in pathophysiology associated with neurologic diseases. In review, the role of Kir channels in various common neurological diseases will be classified and a resource will be created for the researchers.
APA, Harvard, Vancouver, ISO, and other styles
20

Pozdnyakov, Ilya, Olga Matantseva, and Sergei Skarlato. "Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology." Algae 36, no. 4 (December 15, 2021): 315–26. http://dx.doi.org/10.4490/algae.2021.36.12.2.

Full text
Abstract:
Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5- trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of Gprotein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.
APA, Harvard, Vancouver, ISO, and other styles
21

Walewska, Agnieszka, Milena Krajewska, Aleksandra Stefanowska, Aleksandra Buta, Renata Bilewicz, Paweł Krysiński, Piotr Bednarczyk, Piotr Koprowski, and Adam Szewczyk. "Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment." International Journal of Molecular Sciences 23, no. 3 (January 21, 2022): 1210. http://dx.doi.org/10.3390/ijms23031210.

Full text
Abstract:
In this paper, the techniques used to study the function of mitochondrial potassium channels are critically reviewed. The majority of these techniques have been known for many years as a result of research on plasma membrane ion channels. Hence, in this review, we focus on the critical evaluation of techniques used in the studies of mitochondrial potassium channels, describing their advantages and limitations. Functional analysis of mitochondrial potassium channels in comparison to that of plasmalemmal channels presents additional experimental challenges. The reliability of functional studies of mitochondrial potassium channels is often affected by the need to isolate mitochondria and by functional properties of mitochondria such as respiration, metabolic activity, swelling capacity, or high electrical potential. Three types of techniques are critically evaluated: electrophysiological techniques, potassium flux measurements, and biochemical techniques related to potassium flux measurements. Finally, new possible approaches to the study of the function of mitochondrial potassium channels are presented. We hope that this review will assist researchers in selecting reliable methods for studying, e.g., the effects of drugs on mitochondrial potassium channel function. Additionally, this review should aid in the critical evaluation of the results reported in various articles on mitochondrial potassium channels.
APA, Harvard, Vancouver, ISO, and other styles
22

Debska, G., A. Kicińska, J. Skalska, and A. Szewczyk. "Intracellular potassium and chloride channels: an update." Acta Biochimica Polonica 48, no. 1 (March 31, 2001): 137–44. http://dx.doi.org/10.18388/abp.2001_5120.

Full text
Abstract:
Channels selective for potassium or chloride ions are present in all intracellular membranes such as mitochondrial membranes, sarcoplasmic/endoplasmic reticulum, nuclear membrane and chromaffin granule membranes. They probably play an important role in events such as acidification of intracellular compartments and regulation of organelle volume. Additionally, intracellular ion channels are targets for pharmacologically active compounds, e.g. mitochondrial potassium channels interact with potassium channel openers such as diazoxide. This review describes current observations concerning the properties and functional roles of intracellular potassium and chloride channels.
APA, Harvard, Vancouver, ISO, and other styles
23

Fox, J. A., B. A. Pfeffer, and G. L. Fain. "Single-channel recordings from cultured human retinal pigment epithelial cells." Journal of General Physiology 91, no. 2 (February 1, 1988): 193–222. http://dx.doi.org/10.1085/jgp.91.2.193.

Full text
Abstract:
We have applied patch-clamp techniques to on-cell and excised-membrane patches from human retinal pigment epithelial cells in tissue culture. Single-channel currents from at least four ion channel types were observed: three or more potassium-selective channels with single-channel slope conductances near 100, 45, and 25 pS as measured in on-cell patches with physiological saline in the pipette, and a relatively nonselective channel with subconductance states, which has a main-state conductance of approximately 300 pS at physiological ion concentrations. The permeability ratios, PK/PNa, measured in excised patches were 21 for the 100-pS channels, 3 for the 25-pS channels, and 0.8 for the 300-pS nonselective channel. The 45-pS channels appeared to be of at least two types, with PK/PNa's of approximately 41 for one type and 3 for the other. The potassium-selective channels were spontaneously active at all potentials examined. The average open time for these channels ranged from a few milliseconds to many tens of milliseconds. No consistent trend relating potassium-selective channel kinetics to membrane potential was apparent, which suggests that channel activity was not regulated by the membrane potential. In contrast to the potassium-selective channels, the activity of the nonselective channel was voltage dependent: the open probability of this channel declined to low values at large positive or negative membrane potentials and was maximal near zero. Single-channel conductances observed at several symmetrical KCl concentrations have been fitted with Michaelis-Menten curves in order to estimate maximum channel conductances and ion-binding constants for the different channel types. The channels we have recorded are probably responsible for the previously observed potassium permeability of the retinal pigment epithelium apical membrane.
APA, Harvard, Vancouver, ISO, and other styles
24

Kravenska, Yevheniia, Vanessa Checchetto, and Ildiko Szabo. "Routes for Potassium Ions across Mitochondrial Membranes: A Biophysical Point of View with Special Focus on the ATP-Sensitive K+ Channel." Biomolecules 11, no. 8 (August 8, 2021): 1172. http://dx.doi.org/10.3390/biom11081172.

Full text
Abstract:
Potassium ions can cross both the outer and inner mitochondrial membranes by means of multiple routes. A few potassium-permeable ion channels exist in the outer membrane, while in the inner membrane, a multitude of different potassium-selective and potassium-permeable channels mediate K+ uptake into energized mitochondria. In contrast, potassium is exported from the matrix thanks to an H+/K+ exchanger whose molecular identity is still debated. Among the K+ channels of the inner mitochondrial membrane, the most widely studied is the ATP-dependent potassium channel, whose pharmacological activation protects cells against ischemic damage and neuronal injury. In this review, we briefly summarize and compare the different hypotheses regarding the molecular identity of this patho-physiologically relevant channel, taking into account the electrophysiological characteristics of the proposed components. In addition, we discuss the characteristics of the other channels sharing localization to both the plasma membrane and mitochondria.
APA, Harvard, Vancouver, ISO, and other styles
25

HAMILTON, C. A., G. BERG, K. MCARTHUR, J. L. REID, and A. F. DOMINICZAK. "Does potassium channel opening contribute to endothelium-dependent relaxation in human internal thoracic artery?" Clinical Science 96, no. 6 (May 11, 1999): 631–38. http://dx.doi.org/10.1042/cs0960631.

Full text
Abstract:
Opening of potassium channels can cause hyperpolarization and relaxation of vascular smooth muscle cells. The aim of this work was to investigate the contribution of potassium channel activation to vasorelaxation in internal thoracic artery taken from patients undergoing coronary artery bypass graft surgery. Relaxations to carbachol and sodium nitroprusside were studied in isolated rings of internal thoracic artery in the absence and presence of nitric oxide synthase inhibitors and potassium channel blockers. The nitric oxide synthase inhibitors Nω-nitro-⌊-arginine methyl ester and NG-monomethyl-⌊-arginine abolished relaxations to carbachol. Relaxations to both carbachol and sodium nitroprusside were attenuated in the presence of raised extracellular potassium and the potassium channel blockers charybdotoxin, iberiotoxin and tetraethylammonium. Neither apamin nor glibenclamide modified relaxation. ODQ (1H-[1,2,4]oxadiazolol-[4,3a] quinoxalin-1-one), an inhibitor of soluble guanylate cyclase, abolished relaxation to carbachol in rings from some but not all subjects. These results suggest that potassium channel opening may make a small contribution to endothelium-dependent vasorelaxation in internal thoracic artery. The potassium channels had characteristics consistent with those of large-conductance calcium-dependent potassium channels.
APA, Harvard, Vancouver, ISO, and other styles
26

Vishwakarma, Vishal Kumar, Prabhat Kumar Upadhyay, Hridaya Shanker Chaurasiya, Ritesh Kumar Srivasatav, Tarique Mahmood Ansari, and Vivek Srivastava. "Mechanistic Pathways of ATP Sensitive Potassium Channels Referring to Cardio-Protective Effects and Cellular Functions." Drug Research 69, no. 07 (January 4, 2019): 365–73. http://dx.doi.org/10.1055/a-0806-7207.

Full text
Abstract:
AbstractA study of potassium channels correlates the fundamentals of mechanistic pathways and various physiological functions. The knowledge of these pathways provides the background, how to determine unit cell functions and to affect cardio protection. ATP sensitive potassium channels adjust excitability of membrane and functions as per metabolic status of cell. A lot of energy consumption primarily occurred in skeletal muscles which also express high number of potassium channels. The increase in calcium release and high heat production is occurred due to loss of potassium channels. Such type of mediations determines metabolic changes and energy required in the dissipation. IPC reduces infarct size in anesthetized mice. In ischemic-reperfusion, pressure in left ventricle was watched while contractile power recovery did not happen. It was seen that elements of intact potassium channel are fundamental for Ischemic preconditioning (IPC). If more prominent is enactment of potassium channels and their cardiologic effects create high heart rate. All the more as of late, it has been suggested that mitochondrial ATP sensitive potassium channels are critical as closing stage effectors which trigger IPC as opposed to sarcolemmal potassium channels. Nevertheless, the importance of the potassium channels reconsidered in cardio-protection in present findings. These discoveries recommend that potassium channels in the adjusting ischemic-reperfusion damage in mice. The heart rate of the mouse occurred during ischemia; enhance watchful extrapolation applied to larger warm blooded animals.
APA, Harvard, Vancouver, ISO, and other styles
27

Lindauer, Ute, Johannes Vogt, Sigrid Schuh-Hofer, Jens P. Dreier, and Ulrich Dirnagl. "Cerebrovascular Vasodilation to Extraluminal Acidosis Occurs via Combined Activation of ATP-Sensitive and Ca2+-Activated Potassium Channels." Journal of Cerebral Blood Flow & Metabolism 23, no. 10 (October 2003): 1227–38. http://dx.doi.org/10.1097/01.wcb.0000088764.02615.b7.

Full text
Abstract:
Albeit controversely discussed, it has been suggested by several authors that nitric oxide (NO) serves as a permissive factor in the cerebral blood flow response to systemic hypercapnia. Potassium channels are important regulators of cerebrovascular tone and may be modulated by a basal perivascular NO level. To elucidate the functional targets of the proposed NO modulation during hypercapnia-induced vasodilation, the authors performed experiments in isolated, cannulated, and pressurized rat middle cerebral arteries (MCA). Extracellular pH was reduced from 7.4 to 7.0 in the extraluminal bath to induce NO dependent vasdilation. Acidosis increased vessel diameter by 35 ± 10%. In separate experiments, ATP-sensitive potassium channels (KATP) were blocked by extraluminal application of glibenclamide (Glib), Ca2+-activated potassium channels (KCa) by tetraethylammonium (TEA), voltage-gated potassium channels (Kv) by 4-aminopyridine, and inward rectifier potassium channels (KIR) by BaCl2. Na+-K+-ATP-ase was inhibited by ouabain. Application of TEA slightly constricted the arteries at pH 7.4 and slightly but significantly attenuated the vasodilation to acidosis. Inhibition of the other potassium channels or Na+-K+-ATP-ase had no effect. Combined blockade of KATP and KCa channels further reduced resting diameter, and abolished acidosis induced vasodilation. The authors conclude that mainly KCa channels are active under resting conditions. KATP and KCa channels are responsible for vasodilation to acidosis. Activity of one of these potassium channel families is sufficient for vasodilation to acidosis, and only combined inhibition completely abolishes vasodilation. During NO synthase inhibition, dilation to the KATP channel opener pinacidil or the KCa channel opener NS1619 was attenuated or abolished, respectively. The authors suggest that a basal perivascular NO level is necessary for physiologic KATP and KCa channel function in rat MCA. Future studies have to elucidate whether this NO dependent effect on KATP and KCa channel function is a principle mechanism of NO induced modulation of cerebrovascular reactivity and whether the variability of findings in the literature concerning a modulatory role of NO can be explained by different levels of vascular NO/cGMP concentrations within the cerebrovascular tree.
APA, Harvard, Vancouver, ISO, and other styles
28

Abbott, Geoffrey W. "Biology of the KCNQ1 Potassium Channel." New Journal of Science 2014 (January 29, 2014): 1–26. http://dx.doi.org/10.1155/2014/237431.

Full text
Abstract:
Ion channels are essential for basic cellular function and for processes including sensory perception and intercellular communication in multicellular organisms. Voltage-gated potassium (Kv) channels facilitate dynamic cellular repolarization during an action potential, opening in response to membrane depolarization to facilitate K+ efflux. In both excitable and nonexcitable cells other, constitutively active, K+ channels provide a relatively constant repolarizing force to control membrane potential, ion homeostasis, and secretory processes. Of the forty known human Kv channel pore-forming α subunits that coassemble in various combinations to form the fundamental tetrameric channel pore and voltage sensor module, KCNQ1 is unique. KCNQ1 stands alone in having the capacity to form either channels that are voltage-dependent and require membrane depolarization for activation, or constitutively active channels. In mammals, KCNQ1 regulates processes including gastric acid secretion, thyroid hormone biosynthesis, salt and glucose homeostasis, and cell volume and in some species is required for rhythmic beating of the heart. In this review, the author discusses the unique functional properties, regulation, cell biology, diverse physiological roles, and involvement in human disease states of this chameleonic K+ channel.
APA, Harvard, Vancouver, ISO, and other styles
29

Peterson, OH. "Potassium Channels and Fluid Secretion." Physiology 1, no. 3 (June 1, 1986): 92–95. http://dx.doi.org/10.1152/physiologyonline.1986.1.3.92.

Full text
Abstract:
Fluid secretion from exocrine glands can be switched on and off with great precision. Recent patch-clamp recordings of single-channel currents in acinar cells reveals that neurotransmitters and hormones control the opening of K+ channels. However, fluid secretion is due to transport of Na+ and Cl-, and movement of these ions occurs only when K+ can be transported simultaneously. Thus, by controlling K+ channels, neurotransmitters or hormones regulate Na+ and Cl-secretion.
APA, Harvard, Vancouver, ISO, and other styles
30

Horrigan, Frank T. "Conformational coupling in BK potassium channels." Journal of General Physiology 140, no. 6 (November 26, 2012): 625–34. http://dx.doi.org/10.1085/jgp.201210849.

Full text
Abstract:
Large conductance calcium- and voltage-dependent BK potassium channels (aka BKCa, MaxiK, Slo1, KCa1.1, and KCNMA1) are expressed in a wide variety of tissues throughout the body and are activated by both intracellular Ca2+ and membrane depolarization. Owing to these properties, BK channels participate in diverse physiological processes from electrical excitability in neurons and secretory cells, and regulation of smooth muscle tone to tuning of auditory hair cells (Vergara et al., 1998; Ghatta et al., 2006). The response to voltage and Ca2+ allows BK channels to integrate electrical and calcium signaling, which is central to their physiological role. Understanding how BK and other multimodal channels are regulated by and integrate diverse stimuli is not only physiologically important but also relevant to the topic of conformational coupling. As a voltage- and ligand-dependent channel, BK channels contain both voltage-sensor and ligand-binding domains as well as a gate to regulate the flow of K+ through the pore. Coupling of conformational changes in one domain to another provides the basis for transducing voltage and ligand binding into channel opening and, therefore, defines, together with the functional properties of the gate and sensors, the signal transduction properties of the channel. The goal of this perspective is to provide an overview on the role and molecular basis of conformational coupling between functional domains in BK channels and outline some of the questions that remain to be answered.
APA, Harvard, Vancouver, ISO, and other styles
31

Perry, Matthew D., Vazhaikkurichi M. Rajendran, Kenneth A. MacLennan, and Geoffrey I. Sandle. "Segmental differences in upregulated apical potassium channels in mammalian colon during potassium adaptation." American Journal of Physiology-Gastrointestinal and Liver Physiology 311, no. 5 (November 1, 2016): G785—G793. http://dx.doi.org/10.1152/ajpgi.00181.2015.

Full text
Abstract:
Rat proximal and distal colon are net K+secretory and net K+absorptive epithelia, respectively. Chronic dietary K+loading increases net K+secretion in the proximal colon and transforms net K+absorption to net K+secretion in the distal colon, but changes in apical K+channel expression are unclear. We evaluated expression/activity of apical K+(BK) channels in surface colonocytes in proximal and distal colon of control and K+-loaded animals using patch-clamp recording, immunohistochemistry, and Western blot analyses. In controls, BK channels were more abundant in surface colonocytes from K+secretory proximal colon (39% of patches) than in those from K+-absorptive distal colon (12% of patches). Immunostaining demonstrated more pronounced BK channel α-subunit protein expression in surface cells and cells in the upper 25% of crypts in proximal colon, compared with distal colon. Dietary K+loading had no clear-cut effects on the abundance, immunolocalization, or expression of BK channels in proximal colon. By contrast, in distal colon, K+loading 1) increased BK channel abundance in patches from 12 to 41%; 2) increased density of immunostaining in surface cells, which extended along the upper 50% of crypts; and 3) increased expression of BK channel α-subunit protein when assessed by Western blotting ( P < 0.001). Thus apical BK channels are normally more abundant in K+secretory proximal colon than in K+absorptive distal colon, and apical BK channel expression in distal (but not proximal) colon is greatly stimulated as part of the enhanced K+secretory response to dietary K+loading.
APA, Harvard, Vancouver, ISO, and other styles
32

Sokolovic, Dragana, Dragana Drakul, Zorana Orescanin-Dusic, Nikola Tatalovic, Milica Pecelj, Slobodan Milovanovic, and Dusko Blagojevic. "The role of potassium channels and calcium in the relaxation mechanism of magnesium sulfate on the isolated rat uterus." Archives of Biological Sciences 71, no. 1 (2019): 5–11. http://dx.doi.org/10.2298/abs180615031s.

Full text
Abstract:
MgSO4 is used as a tocolytic agent. It is considered to be a calcium channel antagonist, but a different mechanism of its action might be involved. The aim of this study was to examine the contribution of calcium concentrations and potassium channels in the mechanism of MgSO4-mediated uterine relaxation. Isolated uteri from female Wister rats were treated with increasing MgSO4 concentrations (0.1-30 mM). MgSO4 induced dose-dependent inhibition of spontaneous activity. Addition of Ca2+ (6 mM and 12 mM) stimulated uterine contractile activity and attenuated the inhibitory activity of MgSO4. In order to analyze the role of different subtypes of potassium channels, Ca2+-stimulated uteri were pretreated with glibenclamide (Glib), a selective ATP-sensitive potassium channel inhibitor (KATP), tetraethylammonium (TEA), a non-specific inhibitor of large conductance calcium-activated potassium channels (BKCa), and 4-aminopyridine (4-AP), a voltage-sensitive potassium channel inhibitor (Kv), at concentrations that had no effect per se. Pretreatment with 4-AP had no effect on MgSO4-mediated relaxation of Ca2+-stimulated uteri. The relaxing effect of MgSO4 was potentiated by pretreatment with glibenclamide. Pretreatment with TEA attenuated the MgSO4-mediated decrease in frequency. Our results suggest that MgSO4 acts as a general calcium antagonist that influences Ca2+-mediated potassium channels. Furthermore, it seems that MgSO4 uterine relaxation activity is partially mediated by selective ATP-sensitive potassium channels, suggesting an ATP-dependent role.
APA, Harvard, Vancouver, ISO, and other styles
33

Liu, Renyu, Mayumi Ueda, Naoto Okazaki, and Yuichi Ishibe. "Role of Potassium Channels in Isoflurane- and Sevoflurane-induced Attenuation of Hypoxic Pulmonary Vasoconstriction in Isolated Perfused Rabbit Lungs." Anesthesiology 95, no. 4 (October 1, 2001): 939–46. http://dx.doi.org/10.1097/00000542-200110000-00024.

Full text
Abstract:
Background Although potassium channels are thought to be responsible for the initiation of hypoxic pulmonary vasoconstriction (HPV), their role in the HPV-inhibitory effect of volatile anesthetics is unclear. The current study tested if the HPV-inhibitory effect of isoflurane and sevoflurane can be affected by changing the potassium-channel opening status with specific potassium-channel inhibitors in isolated rabbit lungs. Methods Isolated rabbit lungs were divided into eight groups (n = 6 each in isoflurane groups and n = 8 in sevoflurane groups): those receiving no inhibitor treatment = control-isoflurane and control-sevoflurane groups; those treated with an adenosine triphosphate-sensitive potassium (K(ATP))-channel inhibitor, glibenclamide = glibenclamide-isoflurane and glibenclamide-sevoflurane groups; those treated with a high-conductance calcium-activated potassium (K(Ca))-channel inhibitor, iberiotoxin = iberiotoxin-isoflurane and iberiotoxin-sevoflurane groups; and those treated with a voltage-sensitive potassium (Kv)-channel inhibitor, 4-aminopyridine = 4-aminopyridine-isoflurane and 4-aminopyridine-sevoflurane groups. The effect of anesthetic on HPV was tested by exposure of the lungs to isoflurane at a concentration of 0, 0.5, 1, or 2 minimum alveolar concentration, or to sevoflurane at a concentration of 0, 0.5, 1, or 1.62 minimum alveolar concentration. The relation between anesthetic concentrations and the HPV response was analyzed by the Wagner equation. Results The inhibition of Kv channels by 4-aminopyridine and K(Ca) channels by iberiotoxin augmented the HPV response. The isoflurane-induced attenuation of HPV was attenuated by voltage-sensitive potassium-channel inhibition with 4-aminopyridine, potentiated by K(Ca)-channel inhibition with iberiotoxin, but not affected by K(ATP)-channel inhibition with glibenclamide. The sevoflurane-induced attenuation of HPV was not affected by any of the potassium-channel inhibitors. Conclusions Isoflurane may modulate the HPV response partially through K(Ca) and Kv channels, but sevoflurane may attenuate the HPV response through other pathways rather than through the currently investigated potassium channels in isolated rabbit lungs.
APA, Harvard, Vancouver, ISO, and other styles
34

Yan, Fei-Fei, Chia-Wei Lin, Etienne A. Cartier, and Show-Ling Shyng. "Role of ubiquitin-proteasome degradation pathway in biogenesis efficiency of β-cell ATP-sensitive potassium channels." American Journal of Physiology-Cell Physiology 289, no. 5 (November 2005): C1351—C1359. http://dx.doi.org/10.1152/ajpcell.00240.2005.

Full text
Abstract:
ATP-sensitive potassium (KATP) channels of pancreatic β-cells mediate glucose-induced insulin secretion by linking glucose metabolism to membrane excitability. The number of plasma membrane KATP channels determines the sensitivity of β-cells to glucose stimulation. The KATP channel is formed in the endoplasmic reticulum (ER) on coassembly of four inwardly rectifying potassium channel Kir6.2 subunits and four sulfonylurea receptor 1 (SUR1) subunits. Little is known about the cellular events that govern the channel's biogenesis efficiency and expression. Recent studies have implicated the ubiquitin-proteasome pathway in modulating surface expression of several ion channels. In this work, we investigated whether the ubiquitin-proteasome pathway plays a role in the biogenesis efficiency and surface expression of KATP channels. We provide evidence that, when expressed in COS cells, both Kir6.2 and SUR1 undergo ER-associated degradation via the ubiquitin-proteasome system. Moreover, treatment of cells with proteasome inhibitors MG132 or lactacystin leads to increased surface expression of KATP channels by increasing the efficiency of channel biogenesis. Importantly, inhibition of proteasome function in a pancreatic β-cell line, INS-1, that express endogenous KATP channels also results in increased channel number at the cell surface, as assessed by surface biotinylation and whole cell patch-clamp recordings. Our results support a role of the ubiquitin-proteasome pathway in the biogenesis efficiency and surface expression of β-cell KATP channels.
APA, Harvard, Vancouver, ISO, and other styles
35

Lagrange, Andre. "Retigabine: Bending Potassium Channels to Our Will." Epilepsy Currents 5, no. 5 (September 2005): 166–68. http://dx.doi.org/10.1111/j.1535-7511.2005.00052.x.

Full text
Abstract:
The New Anticonvulsant Retigabine Favors Voltage-dependent Opening of the Kv7.2 (KCNQ2) Channel by Binding to Its Activation Gate Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H Mol Pharmacol 2005;67:1009–1017 Retigabine (RTG) is an anticonvulsant drug with a novel mechanism of action. It activates neuronal KCNQ-type K+ channels by inducing a large hyperpolarizing shift of steady-state activation. To identify the structural determinants of KCNQ channel activation by RTG, we constructed a set of chimeras by using the neuronal KV7.2 ( KCNQ2) channel, which is activated by RTG, and the cardiac KV7.1 ( KCNQ1) channel, which is not affected by this drug. Substitution of either the S5 or the S6 segment in KV7.2 by the respective parts of KV7.1 led to a complete loss of activation by RTG. Trp236 in the cytoplasmic part of S5 and the conserved Gly301 in S6 (KV7.2), considered as the gating hinge (Ala336 in KV7.1), were found to be crucial for the RTG effect: mutation of these residues could either knock out the effect in KV7.2 or restore it partially in KV7.1/KV7.2 chimeras. We propose that RTG binds to a hydrophobic pocket formed upon channel opening between the cytoplasmic parts of S5 and S6 involving Trp236 and the channel's gate, which could well explain the strong shift in voltage-dependent activation.
APA, Harvard, Vancouver, ISO, and other styles
36

Ogielska, Eva M., and Richard W. Aldrich. "A Mutation in S6 of Shaker Potassium Channels Decreases the K+ Affinity of an Ion Binding Site Revealing Ion–Ion Interactions in the Pore." Journal of General Physiology 112, no. 2 (August 1, 1998): 243–57. http://dx.doi.org/10.1085/jgp.112.2.243.

Full text
Abstract:
Under physiological conditions, potassium channels are extraordinarily selective for potassium over other ions. However, in the absence of potassium, certain potassium channels can conduct sodium. Sodium flux is blocked by the addition of low concentrations of potassium. Potassium affinity, and therefore the ability to block sodium current, varies among potassium channel subtypes (Korn, S.J., and S.R. Ikeda. 1995. Science. 269:410–412; Starkus, J.G., L. Kuschel, M.D. Rayner, and S.H. Heinemann. 1997. J. Gen. Physiol. 110:539–550). The Shaker potassium channel conducts sodium poorly in the presence of very low (micromolar) potassium due to its high potassium affinity (Starkus, J.G., L. Kuschel, M.D. Rayner, and S.H. Heinemann. 1997. J. Gen. Physiol. 110:539–550; Ogielska, E.M., and R.W. Aldrich. 1997. Biophys. J. 72:A233 [Abstr.]). We show that changing a single residue in S6, A463C, decreases the apparent internal potassium affinity of the Shaker channel pore from the micromolar to the millimolar range, as determined from the ability of potassium to block the sodium currents. Independent evidence that A463C decreases the apparent affinity of a binding site in the pore comes from a study of barium block of potassium currents. The A463C mutation decreases the internal barium affinity of the channel, as expected if barium blocks current by binding to a potassium site in the pore. The decrease in the apparent potassium affinity in A463C channels allows further study of possible ion interactions in the pore. Our results indicate that sodium and potassium can occupy the pore simultaneously and that multiple occupancy results in interactions between ions in the channel pore.
APA, Harvard, Vancouver, ISO, and other styles
37

Sek, Aleksandra, Rafal P. Kampa, Bogusz Kulawiak, Adam Szewczyk, and Piotr Bednarczyk. "Identification of the Large-Conductance Ca2+-Regulated Potassium Channel in Mitochondria of Human Bronchial Epithelial Cells." Molecules 26, no. 11 (May 27, 2021): 3233. http://dx.doi.org/10.3390/molecules26113233.

Full text
Abstract:
Mitochondria play a key role in energy metabolism within the cell. Potassium channels such as ATP-sensitive, voltage-gated or large-conductance Ca2+-regulated channels have been described in the inner mitochondrial membrane. Several hypotheses have been proposed to describe the important roles of mitochondrial potassium channels in cell survival and death pathways. In the current study, we identified two populations of mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channels in human bronchial epithelial (HBE) cells. The biophysical properties of the channels were characterized using the patch-clamp technique. We observed the activity of the channel with a mean conductance close to 285 pS in symmetric 150/150 mM KCl solution. Channel activity was increased upon application of the potassium channel opener NS11021 in the micromolar concentration range. The channel activity was completely inhibited by 1 µM paxilline and 300 nM iberiotoxin, selective inhibitors of the BKCa channels. Based on calcium and iberiotoxin modulation, we suggest that the C-terminus of the protein is localized to the mitochondrial matrix. Additionally, using RT-PCR, we confirmed the presence of α pore-forming (Slo1) and auxiliary β3-β4 subunits of BKCa channel in HBE cells. Western blot analysis of cellular fractions confirmed the mitochondrial localization of α pore-forming and predominately β3 subunits. Additionally, the regulation of oxygen consumption and membrane potential of human bronchial epithelial mitochondria in the presence of the potassium channel opener NS11021 and inhibitor paxilline were also studied. In summary, for the first time, the electrophysiological and functional properties of the mitoBKCa channel in a bronchial epithelial cell line were described.
APA, Harvard, Vancouver, ISO, and other styles
38

Pappone, P. A., and M. T. Lucero. "Pandinus imperator scorpion venom blocks voltage-gated potassium channels in GH3 cells." Journal of General Physiology 91, no. 6 (June 1, 1988): 817–33. http://dx.doi.org/10.1085/jgp.91.6.817.

Full text
Abstract:
We examined the effects of Pandinus imperator scorpion venom on voltage-gated potassium channels in cultured clonal rat anterior pituitary cells (GH3 cells) using the gigohm-seal voltage-clamp method in the whole-cell configuration. We found that Pandinus venom blocks the voltage-gated potassium channels of GH3 cells in a voltage-dependent and dose-dependent manner. Crude venom in concentrations of 50-500 micrograms/ml produced 50-70% block of potassium currents measured at -20 mV, compared with 25-60% block measured at +50 mV. The venom both decreased the peak potassium current and shifted the voltage dependence of potassium current activation to more positive potentials. Pandinus venom affected potassium channel kinetics by slowing channel opening, speeding deactivation slightly, and increasing inactivation rates. Potassium currents in cells exposed to Pandinus venom did not recover control amplitudes or kinetics even after 20-40 min of washing with venom-free solution. The concentration dependence of crude venom block indicates that the toxins it contains are effective in the nanomolar range of concentrations. The effects of Pandinus venom were mimicked by zinc at concentrations less than or equal to 0.2 mM. Block of potassium current by zinc was voltage dependent and resembled Pandinus venom block, except that block by zinc was rapidly reversible. Since zinc is found in crude Pandinus venom, it could be important in the interaction of the venom with the potassium channel. We conclude that Pandinus venom contains toxins that bind tightly to voltage-dependent potassium channels in GH3 cells. Because of its high affinity for voltage-gated potassium channels and its irreversibility, Pandinus venom may be useful in the isolation, mapping, and characterization of voltage-gated potassium channels.
APA, Harvard, Vancouver, ISO, and other styles
39

Feng, Xinghua, Zhuangzhuang Zhao, Qian Li, and Zhiyong Tan. "Lysosomal Potassium Channels: Potential Roles in Lysosomal Function and Neurodegenerative Diseases." CNS & Neurological Disorders - Drug Targets 17, no. 4 (July 6, 2018): 261–66. http://dx.doi.org/10.2174/1871527317666180202110717.

Full text
Abstract:
Background & Objective: The lysosome is a membrane-enclosed organelle widely found in every eukaryotic cell. It has been deemed as the stomach of the cells. Recent studies revealed that it also functions as an intracellular calcium store and is a platform for nutrient-dependent signal transduction. Similar with the plasma membrane, the lysosome membrane is furnished with various proteins, including pumps, ion channels and transporters. So far, two types of lysosomal potassium channels have been identified: large-conductance and Ca2+-activated potassium channel (BK) and TMEM175. TMEM175 has been linked to several neurodegeneration diseases, such as the Alzheimer and Parkinson disease. Recent studies showed that TMEM175 is a lysosomal potassium channel with novel architecture and plays important roles in setting the lysosomal membrane potential and maintaining pH stability. TMEM175 deficiency leads to compromised lysosomal function, which might be responsible for the pathogenesis of related diseases. BK is a well-known potassium channel for its function on the plasma membrane. Studies from two independent groups revealed that functional BK channels are also expressed on the lysosomal plasma membrane. Dysfunction of BK causes impaired lysosomal calcium signaling and abnormal lipid accumulation, a featured phenotype of most lysosomal storage diseases (LSDs). Boosting BK activity could rescue the lipid accumulation in several LSD cell models. Overall, the lysosomal potassium channels are essential for the lysosome physiological function, including lysosomal calcium signaling and autophagy. The dysfunction of lysosomal potassium channels is related to some neurodegeneration disorders. Conclusion: Therefore, lysosomal potassium channels are suggested as potential targets for the intervention of lysosomal disorders.
APA, Harvard, Vancouver, ISO, and other styles
40

Haris, Parvez I. "Synthetic Peptide Fragments as Probes for Structure Determination of Potassium Ion-Channel Proteins." Bioscience Reports 18, no. 6 (December 1, 1998): 299–312. http://dx.doi.org/10.1023/a:1020257215577.

Full text
Abstract:
Potassium channels are a diverse class of transmembrane proteins that are responsible for diffusion of potassium ion across cell membranes. The lack of large quantities of these proteins from natural sources, is a major hindrance in their structural characterization using biophysical techniques. Synthetic peptide fragments corresponding to functionally important domains of these proteins provide an attractive approach towards characterizing the structural organization of these ion-channels. Conformational properties of peptides from three different potassium channels (Shaker, ROMK1 and minK) have been characterized in aqueous media, organic solvents and in phospholipid membranes. Techniques used for these studies include FTIR, CD and 2D-NMR spectroscopy. FTIR spectroscopy has been a particularly valuable tool for characterizing the folding of the ion-channel peptides in phospholipid membranes; the three different types of potassium channels all share a common transmembrane folding pattern that is composed of a predominantly α-helical structure. There is no evidence to suggest the presence of any significant β-sheet structure. These results are in excellent agreement with the crystal structure of a bacterial potassium channel (Doyle, D. A. et al. (1998) Science280:69–77), and suggest that all potassium channel proteins may share a common folding motif where the ion-channel structure is constructed entirely from α-helices.
APA, Harvard, Vancouver, ISO, and other styles
41

El Hachmane, Mickael-F., Kathryn A. Rees, Emma L. Veale, Vadim V. Sumbayev, and Alistair Mathie. "Enhancement of TWIK-related Acid-sensitive Potassium Channel 3 (TASK3) Two-pore Domain Potassium Channel Activity by Tumor Necrosis Factor α." Journal of Biological Chemistry 289, no. 3 (December 4, 2013): 1388–401. http://dx.doi.org/10.1074/jbc.m113.500033.

Full text
Abstract:
TASK3 two-pore domain potassium (K2P) channels are responsible for native leak K channels in many cell types which regulate cell resting membrane potential and excitability. In addition, TASK3 channels contribute to the regulation of cellular potassium homeostasis. Because TASK3 channels are important for cell viability, having putative roles in both neuronal apoptosis and oncogenesis, we sought to determine their behavior under inflammatory conditions by investigating the effect of TNFα on TASK3 channel current. TASK3 channels were expressed in tsA-201 cells, and the current through them was measured using whole cell voltage clamp recordings. We show that THP-1 human myeloid leukemia monocytes, co-cultured with hTASK3-transfected tsA-201 cells, can be activated by the specific Toll-like receptor 7/8 activator, R848, to release TNFα that subsequently enhances hTASK3 current. Both hTASK3 and mTASK3 channel activity is increased by incubation with recombinant TNFα (10 ng/ml for 2–15 h), but other K2P channels (hTASK1, hTASK2, hTREK1, and hTRESK) are unaffected. This enhancement by TNFα is not due to alterations in levels of channel expression at the membrane but rather to an alteration in channel gating. The enhancement by TNFα can be blocked by extracellular acidification but persists for mutated TASK3 (H98A) channels that are no longer acid-sensitive even in an acidic extracellular environment. TNFα action on TASK3 channels is mediated through the intracellular C terminus of the channel. Furthermore, it occurs through the ASK1 pathway and is JNK- and p38-dependent. In combination, TNFα activation and TASK3 channel activity can promote cellular apoptosis.
APA, Harvard, Vancouver, ISO, and other styles
42

Wu, Yi, Mengnan Xu, Pingping Wang, Alia Kazim Rizvi Syeda, Peng Huang, and Xian-Ping Dong. "Lysosomal potassium channels." Cell Calcium 102 (March 2022): 102536. http://dx.doi.org/10.1016/j.ceca.2022.102536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nia, A. M., N. Gassanov, M. Ortega, and F. Er. "Drunk potassium channels." Europace 13, no. 9 (April 6, 2011): 1352–53. http://dx.doi.org/10.1093/europace/eur100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tu, Wanzhu, and J. Howard Pratt. "Small Potassium Channels." Hypertension 68, no. 3 (September 2016): 542–43. http://dx.doi.org/10.1161/hypertensionaha.116.07938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

BEILBY, M. J. "Potassium Channels atCharaPlasmalemma." Journal of Experimental Botany 36, no. 2 (1985): 228–39. http://dx.doi.org/10.1093/jxb/36.2.228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Roeper, Jochen, and Olaf Pongs. "Presynaptic potassium channels." Current Opinion in Neurobiology 6, no. 3 (June 1996): 338–41. http://dx.doi.org/10.1016/s0959-4388(96)80117-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Szewczyk, Adam, Wieslawa Jarmuszkiewicz, and Wolfram S. Kunz. "Mitochondrial potassium channels." IUBMB Life 61, no. 2 (February 2009): 134–43. http://dx.doi.org/10.1002/iub.155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Swanson, Richard. "Introduction: Potassium channels." Seminars in Neuroscience 5, no. 2 (April 1993): 77–78. http://dx.doi.org/10.1016/s1044-5765(05)80001-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

McCoy, Michael T., Subramaniam Jayanthi, and Jean Lud Cadet. "Potassium Channels and Their Potential Roles in Substance Use Disorders." International Journal of Molecular Sciences 22, no. 3 (January 27, 2021): 1249. http://dx.doi.org/10.3390/ijms22031249.

Full text
Abstract:
Substance use disorders (SUDs) are ubiquitous throughout the world. However, much remains to be done to develop pharmacotherapies that are very efficacious because the focus has been mostly on using dopaminergic agents or opioid agonists. Herein we discuss the potential of using potassium channel activators in SUD treatment because evidence has accumulated to support a role of these channels in the effects of rewarding drugs. Potassium channels regulate neuronal action potential via effects on threshold, burst firing, and firing frequency. They are located in brain regions identified as important for the behavioral responses to rewarding drugs. In addition, their expression profiles are influenced by administration of rewarding substances. Genetic studies have also implicated variants in genes that encode potassium channels. Importantly, administration of potassium agonists have been shown to reduce alcohol intake and to augment the behavioral effects of opioid drugs. Potassium channel expression is also increased in animals with reduced intake of methamphetamine. Together, these results support the idea of further investing in studies that focus on elucidating the role of potassium channels as targets for therapeutic interventions against SUDs.
APA, Harvard, Vancouver, ISO, and other styles
50

Shvetsova, Anastasia A., Dina K. Gaynullina, Olga S. Tarasova, and Rudolf Schubert. "Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels." International Journal of Molecular Sciences 22, no. 11 (May 21, 2021): 5413. http://dx.doi.org/10.3390/ijms22115413.

Full text
Abstract:
Maturation of the cardiovascular system is associated with crucial structural and functional remodeling. Thickening of the arterial wall, maturation of the sympathetic innervation, and switching of the mechanisms of arterial contraction from calcium-independent to calcium-dependent occur during postnatal development. All these processes promote an almost doubling of blood pressure from the moment of birth to reaching adulthood. This review focuses on the developmental alterations of potassium channels functioning as key smooth muscle membrane potential determinants and, consequently, vascular tone regulators. We present evidence that the pattern of potassium channel contribution to vascular control changes from Kir2, Kv1, Kv7 and TASK-1 channels to BKCa channels with maturation. The differences in the contribution of potassium channels to vasomotor tone at different stages of postnatal life should be considered in treatment strategies of cardiovascular diseases associated with potassium channel malfunction.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography