Academic literature on the topic 'Post-orogenic extension'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Post-orogenic extension.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Post-orogenic extension"

1

Tavarnelli, Enrico. "Normal faults in thrust sheets: pre-orogenic extension, post-orogenic extension, or both?" Journal of Structural Geology 21, no. 8-9 (August 1999): 1011–18. http://dx.doi.org/10.1016/s0191-8141(99)00034-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gaudemer, Yves, Claude Jaupart, and Paul Tapponnier. "Thermal control on post-orogenic extension in collision belts." Earth and Planetary Science Letters 89, no. 1 (June 1988): 48–62. http://dx.doi.org/10.1016/0012-821x(88)90032-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mareschal, Jean-Claude. "Thermal regime and post-orogenic extension in collision belts." Tectonophysics 238, no. 1-4 (November 1994): 471–84. http://dx.doi.org/10.1016/0040-1951(94)90069-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

PACE, PAOLO, VALERIA PASQUI, ENRICO TAVARNELLI, and FERNANDO CALAMITA. "Foreland-directed gravitational collapse along curved thrust fronts: insights from a minor thrust-related shear zone in the Umbria–Marche belt, central-northern Italy." Geological Magazine 154, no. 2 (April 14, 2016): 381–92. http://dx.doi.org/10.1017/s0016756816000200.

Full text
Abstract:
AbstractGravitational collapse occurs during the mature evolution of orogenic belts, but its signature is difficult to discriminate in macroscopic structures from that of pre-, syn- or late-/post-orogenic extension, so reliable mesoscopic examples are particularly useful. A composite fabric developed along a lateral thrust ramp in the Apennines reveals mesoscopic normal faults that truncate the thrust surface, overprint the S-fabric and merge downwards in a foreland-directed splay, leaving the thrust footwall undeformed. These relationships indicate syn-/late-thrusting extension, which we interpret as induced by hanging-wall gravitational collapse. Our study provides critical constraints for reconstructing the kinematic evolution of collapsing thrust fronts.
APA, Harvard, Vancouver, ISO, and other styles
5

Braathen, Alvar, and Per Terje Osmundsen. "Extensional tectonics rooted in orogenic collapse: Long-lived disintegration of the Semail Ophiolite, Oman." Geology 48, no. 3 (December 9, 2019): 258–62. http://dx.doi.org/10.1130/g47077.1.

Full text
Abstract:
Abstract Significant post-orogenic extension of the renowned Semail Ophiolite and substrata in Oman resulted in the formation of metamorphic core complexes juxtaposed with an array of Maastrichtian-Paleogene extensional basins. During this evolution, basins became progressively localized. The geometry of the large-scale and long-lived extensional system changes laterally across the core complexes and reveals several generations of domes and detachments, some of which were progressively exhumed. Progressive excision and dismemberment of the ophiolite link to major fabrics in the core complexes and gradual focusing of extensional basins.
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Aiai, Hao Guan, Lifei Zou, and Lanlan Sun. "Geochemical Characteristics and Tectonic Significance of the Acidic Volcanic Rocks from the Shetang-Boyang Area, Western Qinling Orogenic Belt, China." Earth Science Research 5, no. 2 (July 30, 2016): 209. http://dx.doi.org/10.5539/esr.v5n2p209.

Full text
Abstract:
Acidic volcanic rocks of Shetang-Boyang area are located in the western Qinling orogenic belt, consist of rhyolite and granite porphyry. They are comparable in the chemical composition, enriched in Si, alkali, Al and a little bit of Mg, Ca and Ti. The contents of HFSE (Zr, Hf) and LILE (Rb, Th, U) are high, however, the content of Ba, Sr, Ti, P have obviously depleted and there are obvious negative Eu anomalies (Eu/Eu*=0.06-0.13). These geochemical characteristics are revealed that these volcanic rocks have an A1 type affinity. Geochemical data combined with regional studies, show that these volcanic rocks were formed in a continental extension setting and the western Qinling orogenic belt in 211Ma has been in the tectonic setting of post-collisional extension.
APA, Harvard, Vancouver, ISO, and other styles
7

Spencer, B. M., J. R. Thigpen, R. D. Law, C. A. Mako, C. S. McDonald, K. V. Hodges, and K. T. Ashley. "Rapid cooling during late-stage orogenesis and implications for the collapse of the Scandian retrowedge, northern Scotland." Journal of the Geological Society 178, no. 1 (August 13, 2020): jgs2020–022. http://dx.doi.org/10.1144/jgs2020-022.

Full text
Abstract:
New 40Ar/39Ar thermochronological and deformation temperature analyses in the Scandian (c. 435–420 Ma) orogenic retrowedge of northern Scotland demonstrate accelerated cooling during late syn- to post-orogenic exhumation of the high-grade orogenic core. Initial cooling rates of 10–30°C myr−1 immediately following peak orogenesis transitioned to rapid rates of 45–90°C myr−1 during final exhumation of the Naver thrust sheet in the orogenic core. The flanking ductile thrust sheets exhibit a similar, albeit less pronounced, acceleration of cooling, with rates increasing by c. 150–300% following peak orogenesis. Closer to the foreland, the Moine thrust sheet did not experience increased cooling rates. Calculated unroofing rates of 3.75 mm a−1 in the high-grade Naver thrust sheet suggest increasing, rapid exhumation in the orogenic core during a presumed collapse phase of orogenesis. This is contrary to the expectation of decreasing erosional efficiency as topography is diminished and is interpreted to suggest that unroofing of the Scottish Caledonides may have been partially enhanced by upper crustal extensional deformation during ductile flow of the infrastructure of the orogenic core. Similar processes have been interpreted in the East Greenland Caledonides, which form the northern extension of the Scandian retrowedge.Supplementary material:40Ar/39Ar analytical data for muscovite (Supplementary Data Table 1), 40Ar/39Ar analytical data for amphibole (Supplementary Data Table 2), and electron microprobe analytical data for amphibole samples (Supplementary Data Table 3) is available at: https://doi.org/10.6084/m9.figshare.c.5087057
APA, Harvard, Vancouver, ISO, and other styles
8

Chenin, Pauline, Suzanne Picazo, Suzon Jammes, Gianreto Manatschal, Othmar Müntener, and Garry Karner. "Potential role of lithospheric mantle composition in the Wilson cycle: a North Atlantic perspective." Geological Society, London, Special Publications 470, no. 1 (March 6, 2018): 157–72. http://dx.doi.org/10.1144/sp470.10.

Full text
Abstract:
AbstractAlthough the Wilson cycle is usually considered in terms of wide oceans floored with normal oceanic crust, numerous orogens result from the closure of embryonic oceans. We discuss how orogenic and post-orogenic processes may be controlled by the size/maturity of the inverted basin. We focus on the role of lithospheric mantle in controlling deformation and the magmatic budget. We describe the physical properties (composition, density, rheology) of three types of mantle: inherited, fertilized and depleted oceanic mantle. By comparing these, we highlight that fertilized mantle underlying embryonic oceans is mechanically weaker, less dense and more fertile than other types of mantle. We suggest that orogens resulting from the closure of a narrow, immature extensional system are essentially controlled by mechanical processes without significant thermal and lithological modification. The underlying mantle is fertile and thus has a high potential for magma generation during subsequent tectonic events. Conversely, the thermal state and lithology of orogens resulting from the closure of a wide, mature ocean are largely modified by subduction-related arc magmatism. The underlying mantle wedge is depleted, which may inhibit magma generation during post-orogenic extension. These end-member considerations are supported by observations derived from the Western Europe–North Atlantic region.
APA, Harvard, Vancouver, ISO, and other styles
9

Vozárová, Anna, Sergey Presnyakov, Katarína Šarinová, and Miloš Šmelko. "First evidence for Permian-Triassic boundary volcanism in the Northern Gemericum: geochemistry and U-Pb zircon geochronology." Geologica Carpathica 66, no. 5 (October 1, 2015): 375–91. http://dx.doi.org/10.1515/geoca-2015-0032.

Full text
Abstract:
AbstractSeveral magmatic events based on U-Pb zircon geochronology were recognized in the Permian sedimentary succession of the Northern Gemeric Unit (NGU). The Kungurian magmatic event is dominant. The later magmatism stage was documented at the Permian-Triassic boundary. The detrital zircon assemblages from surrounding sediments documented the Sakmarian magmatic age. The post-orogenic extensional/transtensional faulting controlled the magma ascent and its emplacement. The magmatic products are represented by the calc-alkaline volcanic rocks, ranging from basaltic metaandesite to metarhyolite, associated with subordinate metabasalt. The whole group of the studied NGU Permian metavolcanics has values for the Nb/La ratio at (0.44–0.27) and for the Nb/U ratio at (9.55–4.18), which suggests that they represent mainly crustal melts. Magma derivation from continental crust or underplated crust is also indicated by high values of Y/Nb ratios, ranging from 1.63 to 4.01. The new206U–238Pb zircon ages (concordia age at 269 ± 7 Ma) confirm the dominant Kungurian volcanic event in the NGU Permian sedimentary basin. Simultaneously, the Permian-Triassic boundary volcanism at 251 ± 4 Ma has been found for the first time. The NGU Permian volcanic activity was related to a polyphase extensional tectonic regime. Based on the new and previous U-Pb zircon ages, the bulk of the NGU Permian magmatic activity occurred during the Sakmarian and Kungurian. It was linked to the post-orogenic transpression/transtension tectonic movements that reflected the consolidation of the Variscan orogenic belt. The Permian-Triassic boundary magmatism was accompanied by extension, connected with the beginning of the Alpine Wilson cycle.
APA, Harvard, Vancouver, ISO, and other styles
10

Jolivet, Laurent, Gaëtan Rimmelé, Roland Oberhänsli, Bruno Goffé, and Osman Candan. "Correlation of syn-orogenic tectonic and metamorphic events in the Cyclades, the Lycian nappes and the Menderes massif. Geodynamic implications." Bulletin de la Société Géologique de France 175, no. 3 (May 1, 2004): 217–38. http://dx.doi.org/10.2113/175.3.217.

Full text
Abstract:
Abstract The recent discovery of HP-LT parageneses in the basal unit of the Lycian nappes and in the Mesozoic cover of the Menderes massif leads us to reconsider and discuss the correlation of this region with the nearby collapsed Helle-nides in the Aegean domain. Although similarities have long been pointed out by various authors, a clear correlation has not yet been proposed and most authors insist more on differences than similarities. The Menderes massif is the eastern extension of the Aegean region but it has been less severely affected by the Aegean extension during the Oligo-Miocene. It would thus be useful to use the structure of the Menderes massif as an image of the Aegean region before a significant extension has considerably reduced its crustal thickness. But the lack of correlation between the two regions has so far hampered such comparisons. We describe the main tectonic units and metamorphic events in the two regions and propose a correlation. We then show possible sections of the two regions before the Aegean extension and discuss the involvement of continental basement in the Hellenic accretionary complex. In our interpretation the Hellenic-Tauric accretionary complex was composed of stacked basement and cover units which underwent variable P-T histories. Those which were not exhumed early enough later followed a high-T evolution which led to partial melting in the Cyclades during post-orogenic extension. Although the Menderes massif contains a larger volume of basement units it does not show significant evidence for the Oligo-Miocene migmatites observed in the center of the Cyclades suggesting that crustal partial melting is strictly related to post-orogenic extension in this case.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Post-orogenic extension"

1

Shen, Wenlue. "Post-orogenic extension in the Pearl River Delta region (South China) an integrated morphological, structural, geophysical and thermochronological study /." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/HKUTO/record/B39558587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

沈文略 and Wenlue Shen. "Post-orogenic extension in the Pearl River Delta region (South China): an integrated morphological, structural,geophysical and thermochronological study." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B39558587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lyons, N. L. "Evidence for magmatic hydrothermal mineralisation at Kanmantoo Copper deposit, South Australia." Thesis, 2012. http://hdl.handle.net/2440/92910.

Full text
Abstract:
This item is only available electronically.
The Kanmantoo Cu-Au deposit is located 55km east of Adelaide, on the eastern edge of the Mt Lofty Ranges, South Australia. It is of Delamerian age and is hosted in the Tapanappa series of the Kanmantoo Group, a pelitic turbidite sequence metamorphosed to amphibolites facies. Models for mineralisation vary from sedimentary exhalative system to epigenetic mineralisation. Despite recent work, the structural evolution of the deposit is largely unknown and this allows for the absence of a definitive model for mineralisation. Detailed face mapping of the 1190RL bench in conjunction with handheld X-Ray Fluorescence Niton gun was adopted to further investigate the relationship between key structural features and element distribution. Micro analysis by petrographic studies, Edax element maps and δ34S isotope analysis was completed to gain understanding into fluid-rock relationships and origin of mineralising fluids. The findings of this study strongly suggest timing of copper mineralisation was associated with the first phase of orogenic extension at 490 ± 3 Ma. The extensional reactivation of compressional D3 shear zones, along with the injection of partially oxidised igneous derived fluids interacting with Fe-rich sediments, allows for the formation of the Kanmantoo magmatic hydrothermal deposit. Sulphur isotope results, and the mapping of magnetite-pyrite-chalcopyrite bearing K-feldspar veins are a very strong evidence of an igneous influence. Cu precipitation is as a result of a cooling oxidised magmatic hydrothermal fluids reacting with Fe in metasediments, and partially interacting with a reducing environment, rather than being directly associated with Fe rich metasomatism. Broad unmineralised zones of chlorite alteration suggest circulation of magmatic hydrothermal fluid with copper mineralisation preferentially precipitating in veins within and adjacent to reactivated D3 shears and D3 antiformal zones.
Thesis (B.Sc.(Hons)) -- University of Adelaide, School of Earth and Environmental Sciences, 2012
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Post-orogenic extension"

1

Lips, Adrianus Leonardus Wilhelmus. Temporal constraints on the kinematics of the destabilization of an orogen: Syn- to post-orogenic extensional collapse of the northern Aegean Region = Tijdscontrole op de kinematiek van de destabilisiering van een orogeen : syn- en post-orogene, extensie gedomineerde, instorting van het noordelijk Egeïsch gebied. [Utrecht: Universiteit Utrecht, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Post-orogenic extension"

1

Dubé, Benoît, and Patrick Mercier-Langevin. "Chapter 32: Gold Deposits of the Archean Abitibi Greenstone Belt, Canada." In Geology of the World’s Major Gold Deposits and Provinces, 669–708. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.32.

Full text
Abstract:
Abstract The Neoarchean Abitibi greenstone belt in the southern Superior Province has been one of the world’s major gold-producing regions for almost a century with >6,100 metric tons (t) Au produced and a total endowment, including production, reserves, and resources (measured and indicated), of >9,375 t Au. The Abitibi belt records continuous mafic to felsic submarine volcanism and plutonism from ca. 2740 to 2660 Ma. A significant part of that gold is synvolcanic and/or synmagmatic and was formed during the volcanic construction of the belt between ca. 2740 and 2695 Ma. However, >60% of the gold is hosted in late, orogenic quartz-carbonate vein-style deposits that formed between ca. 2660 and 2640 ± 10 Ma, predominantly along the Larder Lake-Cadillac and Destor-Porcupine fault zones. This ore-forming period coincides with the D3 deformation, a broad north-south main phase of regional shortening that followed a period of extension and associated crustal thinning, alkaline to subalkaline magmatism, and development of orogenic fluvial-alluvial sedimentary basins (ca. <2679–<2669 Ma). These sedimentary rocks are referred to, in the southern Abitibi, as Timiskaming-type. The tectonic inversion from extension to compression is <2669 Ma, the maximum age of the D3-deformed youngest Timiskaming rocks. In addition to the quartz-carbonate vein-style, stockwork-disseminated-replacement-style mineralization is hosted in and/or is associated with ca. 2683 to 2670 Ma, early-to syn-Timiskaming alkaline to subalkaline intrusions along major deformation corridors, especially in southern Abitibi. The bulk of such deposits formed late-to post-alkaline to subalkaline magmatism and the largest deposits are early- to syn-D3 (ca. 2670–2660 Ma), whereas the bulk of the quartz-carbonate vein systems formed syn- to late-D3 and metamorphism. At belt scale, these illustrate a gradual transition, as shortening increases, in ore styles in orogenic deposits throughout the duration of the D3 deformation event along the length of the Larder Lake-Cadillac and Destor-Porcupine faults. The sequence of events, although similar in all camps, was probably not perfectly synchronous at belt scale, but varied/migrated with time and crustal levels along the main deformation corridors and from north to south. The presence of high-level alkaline/shoshonitic intrusions, which are spatially associated with Timiskaming conglomerate and sandstone, large-scale hydrothermal alteration, and numerous gold deposits along the Larder Lake-Cadillac and Destor-Porcupine faults indicates that these structures were deeply rooted and tapped auriferous metamorphic-hydrothermal fluids and melts from the upper mantle and/or lower crust, late in the evolution of the belt. The metamorphic-hydrothermal fluids, rich in H2O, CO2, and H2S were capable of leaching and transporting gold to the upper crust along the major faults and their splays. Although most magmatic activity along the faults predates gold, magmas may have contributed fluids and/or metals to the hydrothermal systems in some cases. This great vertical reach explains why the Larder Lake-Cadillac and Destor-Porcupine fault zones are very fertile structures. The major endowment of the southern part of the Abitibi belt (>8,100 t Au) along the corridor defined by the Larder Lake-Cadillac and Destor-Porcupine faults may also suggest that these faults have tapped particularly fertile upper mantle-lower crust gold reservoirs. The concentration of large synvolcanic and synmagmatic gold deposits along that corridor supports the idea of gold-rich source(s) that may have contributed gold to the ore-forming systems at different times during the evolution of the belt.
APA, Harvard, Vancouver, ISO, and other styles
2

Mogk, David W., Carol D. Frost, Paul A. Mueller, B. Ronald Frost, and Darrell J. Henry. "Crustal genesis and evolution of the Archean Wyoming Province: Continental growth through vertical magmatic and horizontal tectonic processes." In Laurentia: Turning Points in the Evolution of a Continent. Geological Society of America, 2022. http://dx.doi.org/10.1130/2022.1220(01).

Full text
Abstract:
ABSTRACT The Archean Wyoming Province formed and subsequently grew through a combination of magmatic and tectonic processes from ca. 4.0 to 2.5 Ga. Turning points in crustal evolution are recorded in four distinct phases of magmatism: (1) Early mafic magmatism formed a primordial crust between 4.0 and 3.6 Ga and began the formation of a lithospheric keel below the Wyoming Province in response to active plume-like mantle upwelling in a “stagnant lid”–type tectonic environment; (2) earliest sialic crust formed in the Paleoarchean by melting of hydrated mafic crust to produce rocks of the tonalite-trondhjemite-granodiorite (TTG) suite from ca. 3.6 to 2.9 Ga, with a major crust-forming event at 3.3–3.2 Ga that was probably associated with a transition to plate tectonics by ca. 3.5 Ga; (3) extensive calc-alkalic magmatism occurred during the Mesoarchean and Neoarchean (ca. 2.85–2.6 Ga), forming plutons that are compositionally equivalent to modern-day continental arc plutons; and (4) a late stage of crustal differentiation occurred through intracrustal melting processes ca. 2.6–2.4 Ga. Periods of tectonic quiescence are recognized in the development of stable platform supracrustal sequences (e.g., orthoquartzites, pelitic schists, banded iron formation, metabasites, and marbles) between ca. 3.0 and 2.80 Ga. Evidence for late Archean tectonic thickening of the Wyoming Province through horizontal tectonics and lateral accretion was likely associated with processes similar to modern-style convergent-margin plate tectonics. Although the province is surrounded by Paleoproterozoic orogenic zones, no post-Archean penetrative deformation or calc-alkalic magmatism affected the Wyoming Province prior to the Laramide orogeny. Its Archean crustal evolution produced a strong cratonic continental nucleus prior to incorporation within Laurentia. Distinct lithologic suites, isotopic compositions, and ages provide essential reference markers for models of assembly and breakup of the long-lived Laurentian supercontinent.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Post-orogenic extension"

1

Ryan, J. J., A. Zagorevski, N. R. Cleven, A J Parsons, and N. L. Joyce. Architecture of pericratonic Yukon-Tanana terrane in the northern Cordillera. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/326062.

Full text
Abstract:
West-central Yukon and eastern Alaska are characterized by widespread metamorphic rocks that form part of the allochthonous, composite Yukon-Tanana terrane and parautochthonous North American margin. Structural windows through the Yukon-Tanana terrane expose parautochthonous North American margin in that broad region, particularly as mid-Cretaceous extensional core complexes. Both the Yukon-Tanana terrane and parautochthonous North American margin share the same Late Devonian history, making their discrimination difficult; however, distinct post-Late Devonian magmatic and metamorphic histories assist in discriminating Yukon-Tanana terrane from parautochthonous North American margin rocks. The suture between Yukon-Tanana terrane and parautochthonous North American margin is obscured by many episodes of high-strain deformation. Their main bounding structure is probably a Jurassic to Cretaceous thrust, which has been locally reactivated as a mid-Cretaceous extensional shear zone. Crustal-scale structures within composite Yukon-Tanana terrane (e.g. the Yukon River shear zone) are commonly marked by discontinuous mafic-ultramafic complexes. Some of these complexes represent orogenic peridotites that were structurally exhumed into the Yukon-Tanana terrane in the Middle Permian.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography