Academic literature on the topic 'Post-hoc Explainability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Post-hoc Explainability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Post-hoc Explainability"
Fauvel, Kevin, Tao Lin, Véronique Masson, Élisa Fromont, and Alexandre Termier. "XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification." Mathematics 9, no. 23 (December 5, 2021): 3137. http://dx.doi.org/10.3390/math9233137.
Full textMochaourab, Rami, Arun Venkitaraman, Isak Samsten, Panagiotis Papapetrou, and Cristian R. Rojas. "Post Hoc Explainability for Time Series Classification: Toward a signal processing perspective." IEEE Signal Processing Magazine 39, no. 4 (July 2022): 119–29. http://dx.doi.org/10.1109/msp.2022.3155955.
Full textLee, Gin Chong, and Chu Kiong Loo. "On the Post Hoc Explainability of Optimized Self-Organizing Reservoir Network for Action Recognition." Sensors 22, no. 5 (March 1, 2022): 1905. http://dx.doi.org/10.3390/s22051905.
Full textMaree, Charl, and Christian Omlin. "Reinforcement Learning Your Way: Agent Characterization through Policy Regularization." AI 3, no. 2 (March 24, 2022): 250–59. http://dx.doi.org/10.3390/ai3020015.
Full textYan, Fei, Yunqing Chen, Yiwen Xia, Zhiliang Wang, and Ruoxiu Xiao. "An Explainable Brain Tumor Detection Framework for MRI Analysis." Applied Sciences 13, no. 6 (March 8, 2023): 3438. http://dx.doi.org/10.3390/app13063438.
Full textMaarten Schraagen, Jan, Sabin Kerwien Lopez, Carolin Schneider, Vivien Schneider, Stephanie Tönjes, and Emma Wiechmann. "The Role of Transparency and Explainability in Automated Systems." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 65, no. 1 (September 2021): 27–31. http://dx.doi.org/10.1177/1071181321651063.
Full textSrinivasu, Parvathaneni Naga, N. Sandhya, Rutvij H. Jhaveri, and Roshani Raut. "From Blackbox to Explainable AI in Healthcare: Existing Tools and Case Studies." Mobile Information Systems 2022 (June 13, 2022): 1–20. http://dx.doi.org/10.1155/2022/8167821.
Full textCho, Hyeoncheol, Youngrock Oh, and Eunjoo Jeon. "SEEN: Seen: Sharpening Explanations for Graph Neural Networks Using Explanations From Neighborhoods." Advances in Artificial Intelligence and Machine Learning 03, no. 02 (2023): 1165–79. http://dx.doi.org/10.54364/aaiml.2023.1168.
Full textChatterjee, Soumick, Arnab Das, Chirag Mandal, Budhaditya Mukhopadhyay, Manish Vipinraj, Aniruddh Shukla, Rajatha Nagaraja Rao, Chompunuch Sarasaen, Oliver Speck, and Andreas Nürnberger. "TorchEsegeta: Framework for Interpretability and Explainability of Image-Based Deep Learning Models." Applied Sciences 12, no. 4 (February 10, 2022): 1834. http://dx.doi.org/10.3390/app12041834.
Full textRoscher, R., B. Bohn, M. F. Duarte, and J. Garcke. "EXPLAIN IT TO ME – FACING REMOTE SENSING CHALLENGES IN THE BIO- AND GEOSCIENCES WITH EXPLAINABLE MACHINE LEARNING." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2020 (August 3, 2020): 817–24. http://dx.doi.org/10.5194/isprs-annals-v-3-2020-817-2020.
Full textDissertations / Theses on the topic "Post-hoc Explainability"
Bhattacharya, Debarpan. "A Learnable Distillation Approach For Model-agnostic Explainability With Multimodal Applications." Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6108.
Full textBook chapters on the topic "Post-hoc Explainability"
Stevens, Alexander, Johannes De Smedt, and Jari Peeperkorn. "Quantifying Explainability in Outcome-Oriented Predictive Process Monitoring." In Lecture Notes in Business Information Processing, 194–206. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98581-3_15.
Full textBaniecki, Hubert, Wojciech Kretowicz, and Przemyslaw Biecek. "Fooling Partial Dependence via Data Poisoning." In Machine Learning and Knowledge Discovery in Databases, 121–36. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26409-2_8.
Full textMoustakidis, Serafeim, Charis Ntakolia, Dimitrios E. Diamantis, Nikolaos Papandrianos, and Elpiniki I. Papageorgiou. "Application and post-hoc explainability of deep convolutional neural networks for bone cancer metastasis classification in prostate patients." In Artificial Intelligence in Cancer Diagnosis and Prognosis, Volume 3, 10–1. IOP Publishing, 2022. http://dx.doi.org/10.1088/978-0-7503-3603-1ch10.
Full textConference papers on the topic "Post-hoc Explainability"
Zhou, Tongyu, Haoyu Sheng, and Iris Howley. "Assessing Post-hoc Explainability of the BKT Algorithm." In AIES '20: AAAI/ACM Conference on AI, Ethics, and Society. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3375627.3375856.
Full textSaini, Aditya, and Ranjitha Prasad. "Select Wisely and Explain: Active Learning and Probabilistic Local Post-hoc Explainability." In AIES '22: AAAI/ACM Conference on AI, Ethics, and Society. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3514094.3534191.
Full textKokkotis, Christos, Serafeim Moustakidis, Elpiniki Papageorgiou, Giannis Giakas, and Dimitrios Tsaopoulos. "A Machine Learning workflow for Diagnosis of Knee Osteoarthritis with a focus on post-hoc explainability." In 2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, 2020. http://dx.doi.org/10.1109/iisa50023.2020.9284354.
Full textHaid, Charlotte, Alicia Lang, and Johannes Fottner. "Explaining algorithmic decisions: design guidelines for explanations in User Interfaces." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003764.
Full text