Journal articles on the topic 'Post-hoc explainabil'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 journal articles for your research on the topic 'Post-hoc explainabil.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zednik, Carlos, and Hannes Boelsen. "Scientific Exploration and Explainable Artificial Intelligence." Minds and Machines 32, no. 1 (March 2022): 219–39. http://dx.doi.org/10.1007/s11023-021-09583-6.
Full textFauvel, Kevin, Tao Lin, Véronique Masson, Élisa Fromont, and Alexandre Termier. "XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification." Mathematics 9, no. 23 (December 5, 2021): 3137. http://dx.doi.org/10.3390/math9233137.
Full textRoscher, R., B. Bohn, M. F. Duarte, and J. Garcke. "EXPLAIN IT TO ME – FACING REMOTE SENSING CHALLENGES IN THE BIO- AND GEOSCIENCES WITH EXPLAINABLE MACHINE LEARNING." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2020 (August 3, 2020): 817–24. http://dx.doi.org/10.5194/isprs-annals-v-3-2020-817-2020.
Full textGadzinski, Gregory, and Alessio Castello. "Combining white box models, black box machines and human interventions for interpretable decision strategies." Judgment and Decision Making 17, no. 3 (May 2022): 598–627. http://dx.doi.org/10.1017/s1930297500003594.
Full textShen, Yifan, Li Liu, Zhihao Tang, Zongyi Chen, Guixiang Ma, Jiyan Dong, Xi Zhang, Lin Yang, and Qingfeng Zheng. "Explainable Survival Analysis with Convolution-Involved Vision Transformer." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (June 28, 2022): 2207–15. http://dx.doi.org/10.1609/aaai.v36i2.20118.
Full textGill, Navdeep, Patrick Hall, Kim Montgomery, and Nicholas Schmidt. "A Responsible Machine Learning Workflow with Focus on Interpretable Models, Post-hoc Explanation, and Discrimination Testing." Information 11, no. 3 (February 29, 2020): 137. http://dx.doi.org/10.3390/info11030137.
Full textAslam, Nida, Irfan Ullah Khan, Samiha Mirza, Alanoud AlOwayed, Fatima M. Anis, Reef M. Aljuaid, and Reham Baageel. "Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI)." Sustainability 14, no. 12 (June 16, 2022): 7375. http://dx.doi.org/10.3390/su14127375.
Full textMikołajczyk, Agnieszka, Michał Grochowski, and Arkadiusz Kwasigroch. "Towards Explainable Classifiers Using the Counterfactual Approach - Global Explanations for Discovering Bias in Data." Journal of Artificial Intelligence and Soft Computing Research 11, no. 1 (January 1, 2021): 51–67. http://dx.doi.org/10.2478/jaiscr-2021-0004.
Full textKumar, Akshi, Shubham Dikshit, and Victor Hugo C. Albuquerque. "Explainable Artificial Intelligence for Sarcasm Detection in Dialogues." Wireless Communications and Mobile Computing 2021 (July 2, 2021): 1–13. http://dx.doi.org/10.1155/2021/2939334.
Full textKnapič, Samanta, Avleen Malhi, Rohit Saluja, and Kary Främling. "Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain." Machine Learning and Knowledge Extraction 3, no. 3 (September 19, 2021): 740–70. http://dx.doi.org/10.3390/make3030037.
Full textVieira, Carla Piazzon Ramos, and Luciano Antonio Digiampietri. "A study about Explainable Articial Intelligence: using decision tree to explain SVM." Revista Brasileira de Computação Aplicada 12, no. 1 (January 8, 2020): 113–21. http://dx.doi.org/10.5335/rbca.v12i1.10247.
Full textApostolopoulos, Ioannis D., Ifigeneia Athanasoula, Mpesi Tzani, and Peter P. Groumpos. "An Explainable Deep Learning Framework for Detecting and Localising Smoke and Fire Incidents: Evaluation of Grad-CAM++ and LIME." Machine Learning and Knowledge Extraction 4, no. 4 (December 6, 2022): 1124–35. http://dx.doi.org/10.3390/make4040057.
Full textLossos, Christian, Simon Geschwill, and Frank Morelli. "Offenheit durch XAI bei ML-unterstützten Entscheidungen: Ein Baustein zur Optimierung von Entscheidungen im Unternehmen?" HMD Praxis der Wirtschaftsinformatik 58, no. 2 (March 3, 2021): 303–20. http://dx.doi.org/10.1365/s40702-021-00707-1.
Full textSudars, Kaspars, Ivars Namatēvs, and Kaspars Ozols. "Improving Performance of the PRYSTINE Traffic Sign Classification by Using a Perturbation-Based Explainability Approach." Journal of Imaging 8, no. 2 (January 30, 2022): 30. http://dx.doi.org/10.3390/jimaging8020030.
Full textAbbas, Asmaa, Mohamed Medhat Gaber, and Mohammed M. Abdelsamea. "XDecompo: Explainable Decomposition Approach in Convolutional Neural Networks for Tumour Image Classification." Sensors 22, no. 24 (December 15, 2022): 9875. http://dx.doi.org/10.3390/s22249875.
Full textSrinivasu, Parvathaneni Naga, N. Sandhya, Rutvij H. Jhaveri, and Roshani Raut. "From Blackbox to Explainable AI in Healthcare: Existing Tools and Case Studies." Mobile Information Systems 2022 (June 13, 2022): 1–20. http://dx.doi.org/10.1155/2022/8167821.
Full textNtakolia, Charis, Christos Kokkotis, Patrik Karlsson, and Serafeim Moustakidis. "An Explainable Machine Learning Model for Material Backorder Prediction in Inventory Management." Sensors 21, no. 23 (November 27, 2021): 7926. http://dx.doi.org/10.3390/s21237926.
Full textForetic, Nikola, Vladimir Pavlinovic, and Miodrag Spasic. "Differences in Specific Power Performance among Playing Positions in Top Level Female Handball." Sport Mont 20, no. 1 (February 1, 2022): 109–13. http://dx.doi.org/10.26773/smj.220219.
Full textBiswas, Shreyan, Lorenzo Corti, Stefan Buijsman, and Jie Yang. "CHIME: Causal Human-in-the-Loop Model Explanations." Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 10, no. 1 (October 14, 2022): 27–39. http://dx.doi.org/10.1609/hcomp.v10i1.21985.
Full textNtakolia, Charis, Dimitrios Priftis, Mariana Charakopoulou-Travlou, Ioanna Rannou, Konstantina Magklara, Ioanna Giannopoulou, Konstantinos Kotsis, et al. "An Explainable Machine Learning Approach for COVID-19’s Impact on Mood States of Children and Adolescents during the First Lockdown in Greece." Healthcare 10, no. 1 (January 13, 2022): 149. http://dx.doi.org/10.3390/healthcare10010149.
Full textAntoniadi, Anna Markella, Yuhan Du, Yasmine Guendouz, Lan Wei, Claudia Mazo, Brett A. Becker, and Catherine Mooney. "Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review." Applied Sciences 11, no. 11 (May 31, 2021): 5088. http://dx.doi.org/10.3390/app11115088.
Full textChatterjee, Soumick, Arnab Das, Chirag Mandal, Budhaditya Mukhopadhyay, Manish Vipinraj, Aniruddh Shukla, Rajatha Nagaraja Rao, Chompunuch Sarasaen, Oliver Speck, and Andreas Nürnberger. "TorchEsegeta: Framework for Interpretability and Explainability of Image-Based Deep Learning Models." Applied Sciences 12, no. 4 (February 10, 2022): 1834. http://dx.doi.org/10.3390/app12041834.
Full textMeng, Deyu, Hongzhi Guo, Siyu Liang, Zhibo Tian, Ran Wang, Guang Yang, and Ziheng Wang. "Effectiveness of a Hybrid Exercise Program on the Physical Abilities of Frail Elderly and Explainable Artificial-Intelligence-Based Clinical Assistance." International Journal of Environmental Research and Public Health 19, no. 12 (June 7, 2022): 6988. http://dx.doi.org/10.3390/ijerph19126988.
Full textWei, Meiqi, Deyu Meng, Hongzhi Guo, Shichun He, Zhibo Tian, Ziyi Wang, Guang Yang, and Ziheng Wang. "Hybrid Exercise Program for Sarcopenia in Older Adults: The Effectiveness of Explainable Artificial Intelligence-Based Clinical Assistance in Assessing Skeletal Muscle Area." International Journal of Environmental Research and Public Health 19, no. 16 (August 12, 2022): 9952. http://dx.doi.org/10.3390/ijerph19169952.
Full textXie, Yibing, Nichakorn Pongsakornsathien, Alessandro Gardi, and Roberto Sabatini. "Explanation of Machine-Learning Solutions in Air-Traffic Management." Aerospace 8, no. 8 (August 12, 2021): 224. http://dx.doi.org/10.3390/aerospace8080224.
Full textSadler, Sophie, Derek Greene, and Daniel Archambault. "Towards explainable community finding." Applied Network Science 7, no. 1 (December 8, 2022). http://dx.doi.org/10.1007/s41109-022-00515-6.
Full textFarahani, Farzad V., Krzysztof Fiok, Behshad Lahijanian, Waldemar Karwowski, and Pamela K. Douglas. "Explainable AI: A review of applications to neuroimaging data." Frontiers in Neuroscience 16 (December 1, 2022). http://dx.doi.org/10.3389/fnins.2022.906290.
Full textVale, Daniel, Ali El-Sharif, and Muhammed Ali. "Explainable artificial intelligence (XAI) post-hoc explainability methods: risks and limitations in non-discrimination law." AI and Ethics, March 15, 2022. http://dx.doi.org/10.1007/s43681-022-00142-y.
Full textKarim, Muhammad Monjurul, Yu Li, and Ruwen Qin. "Toward Explainable Artificial Intelligence for Early Anticipation of Traffic Accidents." Transportation Research Record: Journal of the Transportation Research Board, February 18, 2022, 036119812210761. http://dx.doi.org/10.1177/03611981221076121.
Full textFleisher, Will. "Understanding, Idealization, and Explainable AI." Episteme, November 3, 2022, 1–27. http://dx.doi.org/10.1017/epi.2022.39.
Full textYang, Chu-I., and Yi-Pei Li. "Explainable uncertainty quantifications for deep learning-based molecular property prediction." Journal of Cheminformatics 15, no. 1 (February 3, 2023). http://dx.doi.org/10.1186/s13321-023-00682-3.
Full textLee, Minyoung, Joohyoung Jeon, and Hongchul Lee. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels." Journal of Intelligent Manufacturing, March 26, 2021. http://dx.doi.org/10.1007/s10845-021-01758-3.
Full textBelle, Vaishak, and Ioannis Papantonis. "Principles and Practice of Explainable Machine Learning." Frontiers in Big Data 4 (July 1, 2021). http://dx.doi.org/10.3389/fdata.2021.688969.
Full textOkazaki, Kotaro, and Katsumi Inoue. "Explainable Model Fusion for Customer Journey Mapping." Frontiers in Artificial Intelligence 5 (May 11, 2022). http://dx.doi.org/10.3389/frai.2022.824197.
Full textHegselmann, Stefan, Christian Ertmer, Thomas Volkert, Antje Gottschalk, Martin Dugas, and Julian Varghese. "Development and validation of an interpretable 3 day intensive care unit readmission prediction model using explainable boosting machines." Frontiers in Medicine 9 (August 23, 2022). http://dx.doi.org/10.3389/fmed.2022.960296.
Full textWeber, Patrick, K. Valerie Carl, and Oliver Hinz. "Applications of Explainable Artificial Intelligence in Finance—a systematic review of Finance, Information Systems, and Computer Science literature." Management Review Quarterly, February 28, 2023. http://dx.doi.org/10.1007/s11301-023-00320-0.
Full textLee, Kyungtae, Mukil V. Ayyasamy, Yangfeng Ji, and Prasanna V. Balachandran. "A comparison of explainable artificial intelligence methods in the phase classification of multi-principal element alloys." Scientific Reports 12, no. 1 (July 8, 2022). http://dx.doi.org/10.1038/s41598-022-15618-4.
Full textPapagni, Guglielmo, Jesse de Pagter, Setareh Zafari, Michael Filzmoser, and Sabine T. Koeszegi. "Artificial agents’ explainability to support trust: considerations on timing and context." AI & SOCIETY, June 27, 2022. http://dx.doi.org/10.1007/s00146-022-01462-7.
Full textKucklick, Jan-Peter, and Oliver Müller. "Tackling the Accuracy–Interpretability Trade-off: Interpretable Deep Learning Models for Satellite Image-based Real Estate Appraisal." ACM Transactions on Management Information Systems, October 10, 2022. http://dx.doi.org/10.1145/3567430.
Full textNguyen, Sam, Ryan Chan, Jose Cadena, Braden Soper, Paul Kiszka, Lucas Womack, Mark Work, et al. "Budget constrained machine learning for early prediction of adverse outcomes for COVID-19 patients." Scientific Reports 11, no. 1 (October 1, 2021). http://dx.doi.org/10.1038/s41598-021-98071-z.
Full textChen, Ruoyu, Jingzhi Li, Hua Zhang, Changchong Sheng, Li Liu, and Xiaochun Cao. "Sim2Word: Explaining Similarity with Representative Attribute Words via Counterfactual Explanations." ACM Transactions on Multimedia Computing, Communications, and Applications, September 8, 2022. http://dx.doi.org/10.1145/3563039.
Full textZini, Julia El, and Mariette Awad. "On the Explainability of Natural Language Processing Deep Models." ACM Computing Surveys, July 19, 2022. http://dx.doi.org/10.1145/3529755.
Full textAbdelsamea, Mohammed M., Mohamed Medhat Gaber, Aliyuda Ali, Marios Kyriakou, and Shams Fawki. "A logarithmically amortising temperature effect for supervised learning of wheat solar disinfestation of rice weevil Sitophilus oryzae (Coleoptera: Curculionidae) using plastic bags." Scientific Reports 13, no. 1 (February 14, 2023). http://dx.doi.org/10.1038/s41598-023-29594-w.
Full text