Journal articles on the topic 'Porus Framework'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Porus Framework.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mizutani, Yoichiro, Masateru Hattori, Masahiko Okuyama, Toshihiro Kasuga, and Masayuki Nogami. "Preparation of Porous Composites with a Porous Framework Using Hydroxyapatite Whiskers and Poly(L-Lactic Acid) Short Fibers." Key Engineering Materials 309-311 (May 2006): 1079–82. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.1079.
Full textAlves Brito-Neto, Jose Geraldo, Taku Matsuzaka, Yosuke Saito, and Masanori Hayase. "Porous Metal Frameworks on Silicon Substrates." Advances in Science and Technology 54 (September 2008): 416–21. http://dx.doi.org/10.4028/www.scientific.net/ast.54.416.
Full textWang, Sue-Lein. "Mesoporous Metal Phosphites with 3D Crystalline Frameworks." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1119. http://dx.doi.org/10.1107/s2053273314088809.
Full textLi, Pei-Zhou, Jie Su, Jie Liang, Jia Liu, Yuanyuan Zhang, Hongzhong Chen, and Yanli Zhao. "A highly porous metal–organic framework for large organic molecule capture and chromatographic separation." Chemical Communications 53, no. 24 (2017): 3434–37. http://dx.doi.org/10.1039/c7cc01063j.
Full textZharkov, Evgeny. "Post-Normal Times Laboratory." Philosophy. Journal of the Higher School of Economics V, no. 4 (December 31, 2021): 65–77. http://dx.doi.org/10.17323/2587-8719-2021-4-65-77.
Full textLi, Xiao-Hui, Yi-Wei Liu, Shu-Mei Liu, Shuang Wang, Li Xu, Zhong Zhang, Fang Luo, Ying Lu, and Shu-Xia Liu. "A gel-like/freeze-drying strategy to construct hierarchically porous polyoxometalate-based metal–organic framework catalysts." Journal of Materials Chemistry A 6, no. 11 (2018): 4678–85. http://dx.doi.org/10.1039/c7ta10334d.
Full textWang, Zi, and Zhongyu Hou. "Room-temperature fabrication of a three-dimensional porous silicon framework inspired by a polymer foaming process." Chemical Communications 53, no. 63 (2017): 8858–61. http://dx.doi.org/10.1039/c7cc04309k.
Full textPark, Seung-Keun, Jin-Sung Park, and Yun Chan Kang. "Selenium-infiltrated metal–organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li–Se batteries with high capacity and rate performance." Journal of Materials Chemistry A 6, no. 3 (2018): 1028–36. http://dx.doi.org/10.1039/c7ta09676c.
Full textLee, Seonghwan, Seok Jeong, Junmo Seong, Jaewoong Lim, Amitosh Sharma, Somi Won, Dohyun Moon, Seung Bin Baek, and Myoung Soo Lah. "Solvent-mediated framework flexibility of interdigitated 2D layered metal–organic frameworks." Materials Chemistry Frontiers 5, no. 9 (2021): 3621–27. http://dx.doi.org/10.1039/d1qm00251a.
Full textWang, Zhen, Yan-Qun Liu, Yu-Hang Zhao, Qing-Pu Zhang, Yu-Ling Sun, Bin-Bin Yang, Jian-Hua Bu, and Chun Zhang. "Highly covalent molecular cage based porous organic polymer: pore size control and pore property enhancement." RSC Advances 12, no. 26 (2022): 16486–90. http://dx.doi.org/10.1039/d2ra02343a.
Full textWang, Zhen, Yan-Qun Liu, Yu-Hang Zhao, Qing-Pu Zhang, Yu-Ling Sun, Bin-Bin Yang, Jian-Hua Bu, and Chun Zhang. "Highly covalent molecular cage based porous organic polymer: pore size control and pore property enhancement." RSC Advances 12, no. 26 (2022): 16486–90. http://dx.doi.org/10.1039/d2ra02343a.
Full textHan, Shao Wei, Wei Min Wang, Zheng Yi Fu, and Hao Wang. "Preparation of Titanium Diboride Reticulated Porous Ceramics." Key Engineering Materials 368-372 (February 2008): 964–66. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.964.
Full textTanaka, Daisuke, and Susumu Kitagawa. "Captured Molecules in Coordination Frameworks." MRS Bulletin 32, no. 7 (July 2007): 540–43. http://dx.doi.org/10.1557/mrs2007.103.
Full textYang, Lu, Yong Dou, Zhen Zhou, Daopeng Zhang, and Suna Wang. "A Versatile Porous Silver-Coordinated Material for the Heterogeneous Catalysis of Chemical Conversion with Propargylic Alcohols and CO2." Nanomaterials 9, no. 11 (November 5, 2019): 1566. http://dx.doi.org/10.3390/nano9111566.
Full textRaptopoulou, Catherine P. "Metal-Organic Frameworks: Synthetic Methods and Potential Applications." Materials 14, no. 2 (January 9, 2021): 310. http://dx.doi.org/10.3390/ma14020310.
Full textRaptopoulou, Catherine P. "Metal-Organic Frameworks: Synthetic Methods and Potential Applications." Materials 14, no. 2 (January 9, 2021): 310. http://dx.doi.org/10.3390/ma14020310.
Full textWilliams, Teresa E., Daniela Ushizima, Chenhui Zhu, André Anders, Delia J. Milliron, and Brett A. Helms. "Nearest-neighbour nanocrystal bonding dictates framework stability or collapse in colloidal nanocrystal frameworks." Chemical Communications 53, no. 35 (2017): 4853–56. http://dx.doi.org/10.1039/c6cc10183f.
Full textYun, Jonghyeok, Hong Rim Shin, Eun-Seo Won, and Jong-Won Lee. "Li Metal Storage in Porous Carbon Frameworks: Effect of Li–Substrate Interaction." ECS Meeting Abstracts MA2022-01, no. 4 (July 7, 2022): 529. http://dx.doi.org/10.1149/ma2022-014529mtgabs.
Full textMaji, Tapas Kumar, and Susumu Kitagawa. "Chemistry of porous coordination polymers." Pure and Applied Chemistry 79, no. 12 (January 1, 2007): 2155–77. http://dx.doi.org/10.1351/pac200779122155.
Full textZhang, An-An, Xiyue Cheng, Xu He, Wei Liu, Shuiquan Deng, Rong Cao, and Tian-Fu Liu. "Harnessing Electrostatic Interactions for Enhanced Conductivity in Metal-Organic Frameworks." Research 2021 (October 21, 2021): 1–11. http://dx.doi.org/10.34133/2021/9874273.
Full textLin, C., C. Xiao, and Z. Shen. "Nano pores evolution in hydroxyapatite microsphere during spark plasma sintering." Science of Sintering 43, no. 1 (2011): 39–46. http://dx.doi.org/10.2298/sos1101039l.
Full textSmithenry, Dennis W., Scott R. Wilson, Shirley Nakagaki, and Kenneth S. Suslick. "Sorption and catalysis by robust microporous metalloporphyrin framework solids." Journal of Porphyrins and Phthalocyanines 21, no. 12 (December 2017): 857–69. http://dx.doi.org/10.1142/s1088424617500791.
Full textBarsukova, Marina, Evgeny Dudko, Denis Samsonenko, Konstantin Kovalenko, Alexey Ryadun, Aleksandr Sapianik, and Vladimir Fedin. "Influence of Substituents in Terephthalate Linker on the Structure of MOFs Obtained from Presynthesized Heterometallic Complex." Inorganics 9, no. 1 (January 2, 2021): 4. http://dx.doi.org/10.3390/inorganics9010004.
Full textBoldyreva, O. Yu. "The propagation of surface waves in a cylindrical cavity in a saturated porous medium." Proceedings of the Mavlyutov Institute of Mechanics 5 (2007): 107–12. http://dx.doi.org/10.21662/uim2007.1.010.
Full textKim, Hyunwoo, Nayeong Kim, and Jungki Ryu. "Porous framework-based hybrid materials for solar-to-chemical energy conversion: from powder photocatalysts to photoelectrodes." Inorganic Chemistry Frontiers 8, no. 17 (2021): 4107–48. http://dx.doi.org/10.1039/d1qi00543j.
Full textCarrington, Elliot J., Iñigo J. Vitórica-Yrezábal, and Lee Brammer. "Crystallographic studies of gas sorption in metal–organic frameworks." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 70, no. 3 (May 24, 2014): 404–22. http://dx.doi.org/10.1107/s2052520614009834.
Full textPlonka, Anna, Debasis Banerjee, William Woerner, and John Parise. "In situ studies of gas sorption in porous networks." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1468. http://dx.doi.org/10.1107/s2053273314085313.
Full textLiu, Bo, Ya-Hui Jiang, Zhi-Sen Li, Lei Hou, and Yao-Yu Wang. "Selective CO2 adsorption in a microporous metal–organic framework with suitable pore sizes and open metal sites." Inorganic Chemistry Frontiers 2, no. 6 (2015): 550–57. http://dx.doi.org/10.1039/c5qi00025d.
Full textEbrahim, Asma, Mohsen Ghali, and Ahmed Abd El-Moneim. "Enhancing Thermoelectric Properties of Conductive Polymers Using Zr-Metal-Organic Frameworks Composite Materials." Materials Science Forum 1053 (February 17, 2022): 104–8. http://dx.doi.org/10.4028/p-5w654u.
Full textCui, Fengjuan, Qingfang Deng, and Li Sun. "Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform." RSC Advances 5, no. 119 (2015): 98215–21. http://dx.doi.org/10.1039/c5ra18589k.
Full textSu, Hongmin, Yang Zhou, Tao Huang, and Fuxing Sun. "Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin." Molecules 28, no. 13 (July 6, 2023): 5237. http://dx.doi.org/10.3390/molecules28135237.
Full textSomsri, Supattra, Naoto Kuwamura, Tatsuhiro Kojima, Nobuto Yoshinari, and Takumi Konno. "Self-assembly of cyclic hexamers of γ-cyclodextrin in a metallosupramolecular framework with d-penicillamine." Chemical Science 11, no. 34 (2020): 9246–53. http://dx.doi.org/10.1039/d0sc03925j.
Full textZhang, Shiji, Danqing Liu, and Guangtong Wang. "Covalent Organic Frameworks for Chemical and Biological Sensing." Molecules 27, no. 8 (April 18, 2022): 2586. http://dx.doi.org/10.3390/molecules27082586.
Full textArici, Mürsel, Tuğba Alp Arici, Hakan Demiral, Murat Taş, and Okan Zafer Yeşilel. "A porous Zn(ii)-coordination polymer based on a tetracarboxylic acid exhibiting selective CO2 adsorption and iodine uptake." Dalton Transactions 49, no. 31 (2020): 10824–31. http://dx.doi.org/10.1039/d0dt01875a.
Full textVaidhyanathan, Ramanathan, Isaac Martens, Jian-Bin Lin, Simon S. Iremonger, and George K. H. Shimizu. "Larger pores via shorter pillars in flexible layer coordination networks." Canadian Journal of Chemistry 94, no. 4 (April 2016): 449–52. http://dx.doi.org/10.1139/cjc-2015-0391.
Full textYuan, Yao, Xiaoyu Chen, Xing Zhang, Zumin Wang, and Ranbo Yu. "A MOF-derived CuCo(O)@ carbon–nitrogen framework as an efficient synergistic catalyst for the hydrolysis of ammonia borane." Inorganic Chemistry Frontiers 7, no. 10 (2020): 2043–49. http://dx.doi.org/10.1039/d0qi00023j.
Full textShimizu, George, and Benjamin Gelfand. "Designing Proton Conducting Metal Organic Frameworks." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1121. http://dx.doi.org/10.1107/s2053273314088780.
Full textGándara, Felipe, Hiroyasu Furukawa, Zhang Yue-Biao, Juncong Jiang, Wendy Queen, Matthew Hudson, and Omar Yaghi. "Synthesis, structure and water sorption in Zr metal-organic frameworks." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1240. http://dx.doi.org/10.1107/s2053273314087592.
Full textCherevko, Anton I., Igor A. Nikovskiy, Yulia V. Nelyubina, Kirill M. Skupov, Nikolay N. Efimov, and Valentin V. Novikov. "3D-Printed Porous Magnetic Carbon Materials Derived from Metal–Organic Frameworks." Polymers 13, no. 22 (November 10, 2021): 3881. http://dx.doi.org/10.3390/polym13223881.
Full textDalabaev, Umurdin. "Flow Simulation in a combined Region." E3S Web of Conferences 264 (2021): 01016. http://dx.doi.org/10.1051/e3sconf/202126401016.
Full textMínguez Espallargas, Guillermo, Mónica Giménez-Marqués, Néstor Calvo Galve, and Eugenio Coronado. "Responsive magnetic coordination polymers: effects of gas sorption." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C905. http://dx.doi.org/10.1107/s2053273314090949.
Full textRocío-Bautista, Taima-Mancera, Pasán, and Pino. "Metal-Organic Frameworks in Green Analytical Chemistry." Separations 6, no. 3 (June 27, 2019): 33. http://dx.doi.org/10.3390/separations6030033.
Full textFilinchuk, Yaroslav, Nikolay Tumanov, Voraksmy Ban, Hyunchul Oh, Michael Hirscher, Bo Richter, Torben Jensen, et al. "Unprecedented adsorption of molecular hydrogen in the porous hydride framework." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1473. http://dx.doi.org/10.1107/s205327331408526x.
Full textDerakhshandeh, Parviz Gohari, Sara Abednatanzi, Karen Leus, Jan Janczak, Rik Van Deun, Pascal Van Der Voort, and Kristof Van Hecke. "Ce(III)-Based Frameworks: From 1D Chain to 3D Porous Metal–Organic Framework." Crystal Growth & Design 19, no. 12 (October 24, 2019): 7096–105. http://dx.doi.org/10.1021/acs.cgd.9b00949.
Full textAbazari, Reza, Soheila Sanati, Ali Morsali, Alexandra M. Z. Slawin, Cameron L. Carpenter-Warren, Wei Chen, and Anmin Zheng. "Ultrafast post-synthetic modification of a pillared cobalt(ii)-based metal–organic framework via sulfurization of its pores for high-performance supercapacitors." Journal of Materials Chemistry A 7, no. 19 (2019): 11953–66. http://dx.doi.org/10.1039/c9ta01628g.
Full textLiang, Rong-Ran, Shu-Yan Jiang, Ru-Han A, and Xin Zhao. "Two-dimensional covalent organic frameworks with hierarchical porosity." Chemical Society Reviews 49, no. 12 (2020): 3920–51. http://dx.doi.org/10.1039/d0cs00049c.
Full textHanikel, Nikita, Xiaokun Pei, Saumil Chheda, Hao Lyu, WooSeok Jeong, Joachim Sauer, Laura Gagliardi, and Omar M. Yaghi. "Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting." Science 374, no. 6566 (October 22, 2021): 454–59. http://dx.doi.org/10.1126/science.abj0890.
Full textParkinson, Bruce Alan, John Hoberg, Katie Li-Oakey, and Phuoc Duong. "Selective Ion Sieving and Disorder in Membranes Constructed from Two-Dimensional Covalent Organic Frameworks." ECS Meeting Abstracts MA2022-01, no. 47 (July 7, 2022): 1987. http://dx.doi.org/10.1149/ma2022-01471987mtgabs.
Full textHawxwell, Samuel M., Guillermo Mínguez Espallargas, Darren Bradshaw, Matthew J. Rosseinsky, Timothy J. Prior, Alastair J. Florence, Jacco van de Streek, and Lee Brammer. "Ligand flexibility and framework rearrangement in a new family of porous metal–organic frameworks." Chem. Commun., no. 15 (2007): 1532–34. http://dx.doi.org/10.1039/b618796j.
Full textDincă, Mircea, and Jeffrey R. Long. "Introduction: Porous Framework Chemistry." Chemical Reviews 120, no. 16 (August 26, 2020): 8037–38. http://dx.doi.org/10.1021/acs.chemrev.0c00836.
Full text