Academic literature on the topic 'Portable air pollution sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Portable air pollution sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Portable air pollution sensors"
Agrawaal, Harsshit, Courtney Jones, and J. E. Thompson. "Personal Exposure Estimates via Portable and Wireless Sensing and Reporting of Particulate Pollution." International Journal of Environmental Research and Public Health 17, no. 3 (January 29, 2020): 843. http://dx.doi.org/10.3390/ijerph17030843.
Full textHarika, D., U. Sravya, V. Akshaya, and M. Kavyangali. "Arduino Based Air Pollution Monitoring System." Journal on Electronic and Automation Engineering 2, no. 2 (June 1, 2023): 01–03. http://dx.doi.org/10.46632/jeae/2/2/1.
Full textDessimond, Boris, Isabella Annesi-Maesano, Jean-Louis Pepin, Salim Srairi, and Giovanni Pau. "Academically Produced Air Pollution Sensors for Personal Exposure Assessment: The Canarin Project." Sensors 21, no. 5 (March 8, 2021): 1876. http://dx.doi.org/10.3390/s21051876.
Full textKortoçi, Pranvera, Naser Hossein Motlagh, Martha Arbayani Zaidan, Pak Lun Fung, Samu Varjonen, Andrew Rebeiro-Hargrave, Jarkko V. Niemi, et al. "Air pollution exposure monitoring using portable low-cost air quality sensors." Smart Health 23 (March 2022): 100241. http://dx.doi.org/10.1016/j.smhl.2021.100241.
Full textJoshi, Hiral M., Vibhutikumar G. Joshi, and Hiteshkumar J. Lad. "Distributed Embedded System for Air Quality Monitoring based on Long Range (LoRa) Technology." Current World Environment 19, no. 1 (May 10, 2024): 196–206. http://dx.doi.org/10.12944/cwe.19.1.18.
Full textK, Jaganathan. "Portable Air Quality Monitoring and Controlling System Using Vacuum Draw-Off." International Journal of Innovative Research in Advanced Engineering 10, no. 07 (July 31, 2023): 659–63. http://dx.doi.org/10.26562/ijirae.2023.v1007.38.
Full textChatzidiakou, Lia, Anika Krause, Olalekan A. M. Popoola, Andrea Di Antonio, Mike Kellaway, Yiqun Han, Freya A. Squires, et al. "Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments." Atmospheric Measurement Techniques 12, no. 8 (August 30, 2019): 4643–57. http://dx.doi.org/10.5194/amt-12-4643-2019.
Full textBodić, Milan, Vladimir Rajs, Marko Vasiljević Toskić, Jovan Bajić, Branislav Batinić, and Miloš Arbanas. "Methods of Measuring Air Pollution in Cities and Correlation of Air Pollutant Concentrations." Processes 11, no. 10 (October 15, 2023): 2984. http://dx.doi.org/10.3390/pr11102984.
Full textSesé, L., T. Gille, G. Pau, B. Dessimond, Y. Uzunhan, D. Bouvry, A. Hervé, et al. "Low-cost air quality portable sensors and their potential use in respiratory health." International Journal of Tuberculosis and Lung Disease 27, no. 11 (November 1, 2023): 803–9. http://dx.doi.org/10.5588/ijtld.23.0197.
Full textPark, Yoo Min, Sinan Sousan, Dillon Streuber, and Kai Zhao. "GeoAir—A Novel Portable, GPS-Enabled, Low-Cost Air-Pollution Sensor: Design Strategies to Facilitate Citizen Science Research and Geospatial Assessments of Personal Exposure." Sensors 21, no. 11 (May 28, 2021): 3761. http://dx.doi.org/10.3390/s21113761.
Full textDissertations / Theses on the topic "Portable air pollution sensors"
Dessimond, Boris. "Exposition individuelle à la pollution de l’air : mesure par capteurs miniatures, modélisation et évaluation des risques sanitaires associés." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS297.
Full textAir pollution contributes to the degradation of the quality of life and the reduction of life expectancy of the populations. The World Health Organization estimates that air pollution is responsible for 7 million deaths per year worldwide. It contributes to the aggravation of respiratory diseases, causes lung cancer and heart attacks. Air pollution has therefore significant health consequences on human life and biodiversity. Over the last few years, considerable progress has been made in the field of microcontrollers and telecommunications modules. These are more energy efficient, powerful, affordable, accessible, and are responsible for the growth of connected objects. In the meantime, the recent development of microelectromechanical systems and electrochemical sensors has allowed the miniaturization of technologies measuring many environmental parameters including air quality. These technological breakthroughs have enabled the design and production in an academic environment, of portable, connected, autonomous air quality sensors capable of performing acquisitions at a high temporal frequency. Until recently, one of the major obstacles to understanding the impact of air pollution on human health was the inability to track the real exposure of individuals during their daily lives; air pollution is complex, and varies according to the habits, activities and environments in which individuals spend their lives. Portable air quality sensors completely remove this obstacle as well as a number of other important constraints. These are designed to be used in mobility, over long periods of time, and produce immediately available granular data, which describes the exposure to air pollution of the person wearing it. Although the measurement modules embedded in these sensors are not currently as reliable as reference tools or remote sensing, when it comes to assessing individual exposure to air pollution, because they are as close as possible to the wearer, they provide the most accurate information, and are therefore an indispensable tool for the future of epidemiological research. In this context, we have been involved in the development and improvement of two air quality sensors; the CANARIN II and the CANARIN nano. The CANARIN II is a connected sensor communicating via Wi-Fi, which reports the concentration of 10, 2.5 and 1 micrometer diameter particles, as well as the environmental parameters of temperature, humidity, and pressure, every minute, making them available in real time. The CANARIN nano is a smaller sensor with the same capabilities of the CANARIN II, while additionally sensing volatile organic compounds levels. The CANARIN nano is able to operate autonomously, as it communicates through the cellular network. Two types of results have been obtained with the CANARIN sensors; on one hand, results produced from their use in real life conditions, and on the other hand, results related to the interpretation and understanding of the measurements produced by the particle sensors. These two sensors were both used in two research projects, in which we have helped deploy several heterogeneous sensor fleets and analyzed the acquired data. Firstly, in the POLLUSCOPE project funded by the French National Research Agency, where 86 volunteers from the general population wore a set of air pollution sensors for a total of 101 weeks, 35 of which the volunteers were also equipped with health sensors. Secondly, in the POLLAR project, where 43 subjects underwent polysomnography and then wore one CANARIN sensor for 10 days, thus allowing for the first time to explore the link between sleep apnea and particulate matter exposure. [...]
Halliday, Norman. "The detection of atmospheric vapours using optical waveguide sensors." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329774.
Full textMölder, Mikael. "A Mobile Platform for Measuring Air Pollution in Cities using Gas Sensors." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232121.
Full textTrots att föroreningar i luften är bland de största hoten mot mänsklig hälsa är den information som finns tillgänglig för allmänheten ofta både gles och inte tillräckligt noggrann eller uppdaterad. Till exempel finns det i hela Storstockholm endast mellan 5–10 luftkvalitetstationer som mäter föroreningar. Detta innebär att den data som finns tillgänglig är bra i närheten av mätutrustningen men kan skilja sig mycket enbart ett par kvarter bort. För att öka mängden information som är tillgänglig till allmänheten räcker inte längre enbart de stationära lösningarna som finns idag för att visa hur de rådande halterna av föroreningar står sig. Andra metoder måste införas, exempelvis genom att nyttja mobila mätningar från en plattform som kan röra sig fritt. GOEASY är ett projekt finansierat av den Europeiska Kommissionen, där Galileo, Europas nya navigationssystem används för att tillåta fler platsbaserade tjänster att äntra marknaden. Som en del av GOEASY projektet ingår evalueringen av potentialen i en applikation där användare samlar in data för att hjälpa individer med andningssvårigheter som astma. Denna avhandling presenterar valen till arkitekturen samt implementationen av en mobil plattform som en del av GOEASY. Lösningen använder sig av mobila luftkvalitetsensorer som kan monteras på en rad olika objekt som samlar data i realtid som görs tillgänglig för allmänheten. Resultatet är en mobil plattform och tillhörande Android applikation som med hjälp av luftkvalitetsensorer rapporterar halten av olika skadliga föroreningar tillsammans med platsinformation till en central server. Tack vare egenskaperna av de underliggande systemen som används, skapas en plattform som är mycket mer precis när det gäller positionering jämfört med liknande system som finns tillgängligt. Det resulterande systemet gör det möjligt för individer med andningssvårigheter att få tillgång till noggrannare samt mer uppdaterad information i större utsträckning än vad som för närvarande är tillgängligt. Systemet fyller även syftet med att demonstrera potentialen i den bakomliggande teknologin som en del av GOEASY.
Cai, Wei. "Novel sensors on vehicle measurement of emissions." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259567.
Full textKretsch, Amanda Renee. "Detection of Harmful Chemicals in the Air using Portable Membrane Inlet Mass Spectrometry." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1248526/.
Full textDe, Smedt Isabelle. "Long-term global observations of tropospheric formaldehyde retrieved from spaceborne nadir UV sensors." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209919.
Full textThis work reports on global observations of formaldehyde columns retrieved from the successive solar backscatter nadir sensors GOME, SCIAMACHY and GOME-2, respectively launched in 1995, 2002 and 2006. The retrieval procedure is based on the differential optical absorption spectroscopy technique (DOAS). Formaldehyde concentrations integrated along the mean atmospheric optical path are derived from the recorded spectra in the UV region, and further converted to vertical columns by means of calculated air mass factors. These are obtained from radiative transfer simulations, accounting for cloud coverage, surface properties and best-guess H2CO profiles, the latter being derived from the IMAGES chemistry transport model. A key task of the thesis has consisted in the optimisation of the H2CO retrieval settings from multiple sensors, taking into account the instrumental specificities of each sounder. As a result of these efforts, a homogeneous dataset of formaldehyde columns covering the period from 1996 to 2010 has been created. This comes with a comprehensive error budget that treats errors related to the spectral fit of the columns as well as those associated to the air mass factor evaluation. The time series of the GOME, SCIAMACHY and GOME-2 H2CO observations is shown to be consistent and stable over time. In addition, GOME-2 brings a significant reduction of the noise on spatiotemporally averaged observations, leading to a better identification of the emission sources. Our dataset is used to study the regional formaldehyde distribution, as well as its seasonal and interannual variations, principally related to temperature changes and fire events, but also to anthropogenic activities. Moreover, building on the quality of our 15-year time series, we present the first analysis of long-term changes in the H2CO columns. Positive trends, in the range of 1.5 to 4% yr-1, are found in Asia, more particularly in Eastern China and India, and are related to the known increase of anthropogenic NMVOC emissions in these regions. Finally, our dataset has been extensively used in several studies, in particular by the BIRA-IASB modelling team to constrain NMVOC emission fluxes. The results demonstrate the high potential of satellite data as top-down constraint for biogenic and biomass burning NMVOC emission inventories, especially in Tropical ecosystems, in Southeastern Asia, and in Southeastern US.
Le formaldéhyde (H2CO) joue un rôle central dans la chimie de la troposphère en tant que produit intermédiaire commun à la dégradation chimique de la plupart des composés organiques volatils dans l’atmosphère. L’oxydation du méthane est responsable de plus de la moitié de la concentration moyenne globale du formaldéhyde. Sur les continents en revanche, les hydrocarbures non-méthaniques (NMVOCs) émis par la végétation, les feux de biomasse et les activités humaines, augmentent de façon significative et localisée la concentration de H2CO. Les récents senseurs satellitaires à visée nadir offrent la possibilité de quantifier à l’échelle globale l’abondance du formaldéhyde dans la troposphère et de ce fait, d’améliorer notre connaissance des émissions de NMVOCs. Ceci est essentiel à la compréhension des mécanismes contrôlant la production et l’évolution de l’ozone troposphérique, élément clé pour la qualité de l’air et les changements climatiques, mais aussi du composé hydroxyle OH, le principal agent nettoyant de notre troposphère. C’est pourquoi, une méthode de plus en plus répandue pour améliorer les inventaires d’émissions des NMVOCs consiste en l’utilisation d’observations satellitaires de H2CO en combinaison avec un modèle de chimie et de transport troposphérique, dans une approche appelée modélisation inverse. Ce genre d’application demande des produits satellitaires bien caractérisés et dérivés de façon cohérente sur de longues périodes de temps.
Le travail présenté dans ce manuscrit porte sur l’inversion des colonnes de formaldéhyde à partir de spectres de la radiation solaire rétrodiffusée par l’atmosphère terrestre, mesurés par les senseurs GOME, SCIAMACHY et GOME-2, lancés successivement en 1995, 2002 et 2006. La méthode d’inversion est basée sur la spectroscopie d’absorption optique différentielle (DOAS). Les concentrations de formaldéhyde intégrées le long du chemin optique moyen dans l’atmosphère sont dérivées à partir des spectres mesurés, et ensuite transformées en colonnes verticales par le biais de facteurs de conversion appelés facteurs de masse d’air. Ces derniers sont calculés à l’aide d’un modèle de transfert radiatif, en tenant compte de la présence de nuages, des propriétés de la surface terrestre et la distribution verticale supposée du formaldéhyde, fournie par le modèle IMAGES. Un des objectifs principaux de la thèse a été d’optimiser les paramètres d’inversion pour H2CO, et ceci pour les trois senseurs, tout en tenant compte des spécificités de chaque instrument. Ces efforts ont conduit à la création d’un jeu de données homogène, couvrant la période de 1996 à 2010. Les colonnes sont fournies avec un bilan d’erreur complet, incluant les erreurs liées à l’inversion des concentrations dans les spectres, ainsi que celles provenant de l’évaluation des facteurs de masse d’air. La série temporelle des observations de GOME, SCIAMACHY et GOME-2 présente une bonne cohérence et stabilité sur toute la période. Nous montrons aussi que la meilleure couverture terrestre de GOME-2 entraîne une réduction significative du bruit sur les observations moyennées, permettant une meilleure identification des sources d’émission. Notre jeu de données est exploité pour étudier la distribution régionale du formaldéhyde, ainsi que ses variations saisonnières et interannuelles, principalement liées aux variations de température et aux feux de végétation, mais aussi aux activités anthropiques. De plus, en s’appuyant sur la qualité de la série temporelle de 15 ans, nous présentons la première analyse des variations à long terme des concentrations de H2CO. Des tendances positives, de l’ordre de 1.5 à 4% par an, sont observées en Asie, en particulier dans l’est de la Chine et en Inde, liées à l’augmentation des émissions anthropiques d’hydrocarbures dans ces régions. Finalement, nos données ont été largement exploitées par le groupe de modélisation de l’IASB pour faire des études de modélisation inverse des émissions de NMVOCs. Les résultats démontrent le haut potentiel des données satellitaires pour contraindre les inventaires d’émissions dues à la végétation et aux feux de biomasse, particulièrement dans les écosystèmes tropicaux, en Asie du sud-est, et dans le sud-est des Etats-Unis.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Stewart, Gregor Baird. "Characterisation and use of electrochemical sensors for measurements of personal exposure to gas-phase air pollution." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708277.
Full textIsiugo, Kelechi I. "Traffic-Related Air Pollutants: Measurement, Modeling and Respiratory Health Effects." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535464094176172.
Full textSmith, Jeffrey Paul. "AirSniffer: A Smartphone-Based Sensor Module for Personal Micro-Climate Monitoring." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849691/.
Full textPopoola, Olalekan Abdul Muiz. "Studies of urban air quality using electrochemical based sensor instruments." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243620.
Full textBooks on the topic "Portable air pollution sensors"
David, Williams. Air pollution and the market for monitors and sensors. Norwalk, CT: Business Communications Co., 1994.
Find full textLindsey, Keiran. Air pollution and the market for monitors and sensors. Norwalk, CT: Business Communications Co., 2003.
Find full textMulloy, Diana. Air pollution and the market for monitors and sensors. Norwalk, CT: Business Communications Co., 1989.
Find full textAherin, Robert A. Using sensors to detect potentially hazardous atmospheres in production agriculture. Beltsville, MD: U.S. Dept. of Agriculture, Agricultural Research Service, National Agricultural Library, Technology Transfer Information Center, 1996.
Find full textStoll, Peter J. Residential lit fireplace detection and density measurement using airborne mult-spectral [sic] sensors. Monterey, Calif: Naval Postgraduate School, 1997.
Find full textBerkley, Richard E. Evaluation of photovac 10S50 portable photoionization gas chromatograph for analysis of toxic organic pollutants in ambient air. Research Triangle Park, NC: U.S Environmental Protection Agency, Environmental Monitoring Systems Laboratory, 1987.
Find full textBerkley, Richard E. Evaluation of photovac 10S50 portable photoionization gas chromatograph for analysis of toxic organic pollutants in ambient air. Research Triangle Park, NC: U.S Environmental Protection Agency, Environmental Monitoring Systems Laboratory, 1987.
Find full textTorvela, Heikki. Detection Of Air Pollution And Studies On Ceramic Tin Dioxide Sensors Used To Sense Gases Emitted From Combustion Processes. Oulu: University of Oulu, 1987.
Find full textBook chapters on the topic "Portable air pollution sensors"
Suriano, D., R. Rossi, M. Alvisi, G. Cassano, V. Pfister, M. Penza, L. Trizio, M. Brattoli, M. Amodio, and G. De Gennaro. "A Portable Sensor System for Air Pollution Monitoring and Malodours Olfactometric Control." In Lecture Notes in Electrical Engineering, 87–92. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0935-9_15.
Full textShakmak, Bubaker, Matthew Watkins, and Amin Al-Habaibeh. "How Clean Is the Air You Breathe? Air Quality During Commuting Using Various Transport Modes in Nottingham." In Springer Proceedings in Energy, 247–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_31.
Full textPochwatko, Grzegorz, Zbigniew Jędrzejewski, Wiesław Kopeć, Kinga Skorupska, Rafał Masłyk, Anna Jaskulska, and Justyna Świdrak. "Representation of Air Pollution in Augmented Reality: Tools for Population–Wide Behavioral Change." In Digital Interaction and Machine Intelligence, 150–58. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37649-8_15.
Full textOsmond, Barry, and Yong-Mok Park. "Field-Portable Imaging System for Measurement of Chlorophyll Fluorescence Quenching." In Air Pollution and Plant Biotechnology, 309–19. Tokyo: Springer Japan, 2002. http://dx.doi.org/10.1007/978-4-431-68388-9_16.
Full textKar, Pradip. "Nanomaterials Based Sensors for Air Pollution Control." In Environmental Chemistry for a Sustainable World, 349–403. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26668-4_10.
Full textNichol, Janet E., Muhammad Bilal, Majid Nazeer, and Man Sing Wong. "Urban Pollution." In Urban Informatics, 243–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8983-6_16.
Full textFrederickson, Louise Bøge, Emma Amalie Petersen-Sonn, Yuwei Shen, Ole Hertel, Youwei Hong, Johan Schmidt, and Matthew Stanley Johnson. "Low-Cost Sensors for Indoor and Outdoor Pollution." In Air Pollution Sources, Statistics and Health Effects, 423–53. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0596-7_1084.
Full textSpittler, T. M. "The Use of Portable Instrumentation for Assessing Environmental Contamination in the Urals Region of Russia." In Air Pollution in the Ural Mountains, 115–26. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5208-2_9.
Full textSharma, Konika, and Shweta Yadav. "Air Quality Monitoring Using Geospatial Technology and Field Sensors." In Geospatial Analytics for Environmental Pollution Modeling, 91–118. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45300-7_4.
Full textKassandros, Theodosios, Evangelos Bagkis, and Kostas Karatzas. "Data Fusion for the Improvement of Low-Cost Air Quality Sensors." In Air Pollution Modeling and its Application XXVIII, 175–80. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12786-1_24.
Full textConference papers on the topic "Portable air pollution sensors"
ARROYO, PATRICIA, FÉLIX MELÉNDEZ, SERGIO RODRÍGUEZ, JOSÉ IGNACIO SUÁREZ, EDUARDO PINILLA, SERGIO MASA, ESTHER HONTAÑON, and JESÚS LOZANO. "LOW COST AND PORTABLE ELECTRONIC SYSTEM BASED ON ELECTROCHEMICAL AND PM SENSORS FOR THE MEASUREMENT OF AIR QUALITY MONITORING." In AIR POLLUTION 2020. Southampton UK: WIT Press, 2020. http://dx.doi.org/10.2495/air200031.
Full textFernetti, M., M. Gasparini, G. Manzoni, and A. Purga. "Air pollution mapping by portable sensors and DGPS positioning." In 4th EEGS Meeting. European Association of Geoscientists & Engineers, 1998. http://dx.doi.org/10.3997/2214-4609.201407029.
Full textPenza, Michele, Domenico Suriano, Gennaro Cassano, Valerio Pfister, Marco Alvisi, Riccardo Rossi, Paolo Rosario Dambruoso, Livia Trizio, and Gianluigi De Gennaro. "P2.9.23 Portable Chemical Sensor-System for Urban Air-Pollution Monitoring." In 14th International Meeting on Chemical Sensors - IMCS 2012. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2012. http://dx.doi.org/10.5162/imcs2012/p2.9.23.
Full textChen, Yinsheng, Deyun Chen, Tingting Song, and Kai Song. "An Intelligent and Portable Air Pollution Monitoring System Based on Chemical Sensor Array." In 2020 IEEE 4th International Conference on Frontiers of Sensors Technologies (ICFST). IEEE, 2020. http://dx.doi.org/10.1109/icfst51577.2020.9294761.
Full textZhao, Xuan, Siming Zuo, Rami Ghannam, Qammer H. Abbasi, and Hadi Heidari. "Design and Implementation of Portable Sensory System for Air Pollution Monitoring Monitoring." In 2018 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia). IEEE, 2018. http://dx.doi.org/10.1109/primeasia.2018.8597655.
Full textTerboven, Carla, Nico Steckhan, Eleni-Ira Panourgia, and Bert Arnrich. "Design, Implementation and Evaluation of an Air Quality Sonification System." In ICAD 2023: The 28th International Conference on Auditory Display. icad.org: International Community for Auditory Display, 2023. http://dx.doi.org/10.21785/icad2023.4922.
Full textCalderón-Guerrero, Carlos, Manuel Almestar, Miguel Marchamalo, Susana Sastre, and Margarita Martínez. "APPLICATION OF NATURE-BASED SOLUTIONS AND USE OF MONITORING AIR&WATER POLLUTION SENSORS THROUGH LOW-COST MINI-PORTABLE MEASUREMENT STATIONS TO PROMOTE ENVIRONMENTAL AWARENESS IN SECONDARY EDUCATION." In 14th International Conference on Education and New Learning Technologies. IATED, 2022. http://dx.doi.org/10.21125/edulearn.2022.2180.
Full textBAUEROVÁ, PETRA, ZBYNĚK NOVÁK, ŠTĚPÁN RYCHLÍK, and JOSEF KEDER. "SMALL AIR QUALITY SENSORS: IN VIVO TESTING OF ELECTROCHEMICAL CAIRPOL SENSORS IN COMPARISON TO REFERENCE MEASUREMENT." In AIR POLLUTION 2018. Southampton UK: WIT Press, 2018. http://dx.doi.org/10.2495/air180321.
Full textLOPES, MYRIAM, JOHNNY REIS, ANA P. FERNANDES, DIOGO LOPES, RÚBEN LOURENÇO, TERESA NUNES, CARLOS H. G. FARIA, CARLOS BORREGO, and ANA I. MIRANDA. "INDOOR AIR QUALITY STUDY USING LOW-COST SENSORS." In AIR POLLUTION 2020. Southampton UK: WIT Press, 2020. http://dx.doi.org/10.2495/air200011.
Full textTudose, Dan Stefan, Traian Alexandru Patrascu, Andrei Voinescu, Razvan Tataroiu, and Nicolae Tapus. "Mobile sensors in air pollution measurement." In 2011 8th Workshop on Positioning, Navigation and Communication (WPNC). IEEE, 2011. http://dx.doi.org/10.1109/wpnc.2011.5961035.
Full textReports on the topic "Portable air pollution sensors"
Kwon, Jaymin, Yushin Ahn, and Steve Chung. Spatio-Temporal Analysis of Roadside Transportation-Related Air Quality (StarTraq 2021): A Characterization of Bike Trails and Highways in the Fresno/Clovis Area. Mineta Transportation Institute, November 2022. http://dx.doi.org/10.31979/mti.2022.2128.
Full textGurtowski, Luke A., Joshua J. LeMonte, Jay Bennett, Matt Middleton, and Brandon J. Lafferty. Evaluation of multiparameter water meter for Environmental Toolkit for Expeditionary Operations. U.S. Army Engineer Research and Development Center, June 2022. http://dx.doi.org/10.21079/11681/44520.
Full textGurtowski, Luke, Joshua LeMonte, Jay Bennett, Brandon Lafferty, and Matthew Middleton. Qualification of Hanna Instruments HI9829 for the Environmental Toolkit for Expeditionary Operations. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45520.
Full textBajwa, Abdullah, and Timothy Jacobs. PR-457-17201-R03 Residual Gas Fraction Estimation Based on Measured In-Cylinder Pressure - Phase III. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2021. http://dx.doi.org/10.55274/r0011996.
Full text