Academic literature on the topic 'Porphobilinogène'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Porphobilinogène.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Porphobilinogène"

1

Deybach, J. C., and H. Puy. "Porphobilinogène (PBG) : précurseur de la biosynthèse de l'hème." EMC - Biologie médicale 5, no. 3 (January 2010): 1–4. http://dx.doi.org/10.1016/s2211-9698(10)71427-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Deybach, J. C., and H. Puy. "Porphobilinogène (PBG) : précurseur de la biosynthèse de l'hème." EMC - Biologie Médicale 5, no. 3 (2010): 1–4. https://doi.org/10.1016/s0000-0000(10)51137-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schmitt, C., A. Poli, H. Manceau, H. Puy, L. Gouya, and T. Lefebvre. "Acide delta-aminolévulinique et porphobilinogène : précurseurs de la biosynthèse de l’hème." EMC - Biologie Médicale 18, no. 1 (January 2023): 1–7. https://doi.org/10.1016/s2211-9698(22)43395-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mami, I., A. Karras, H. Puy, P. Beaune, É. Thervet, and N. Pallet. "Caractérisation des modifications phénotypiques épithéliales rénales induites par l’acide delta aminolévulinique et le porphobilinogène." Néphrologie & Thérapeutique 9, no. 5 (September 2013): 380–81. http://dx.doi.org/10.1016/j.nephro.2013.07.356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leeper, Finian J., and Martin Rock. "Interaction of analogues of porphobilinogen with porphobilinogen deaminase." Journal of the Chemical Society, Perkin Transactions 1, no. 21 (1996): 2643. http://dx.doi.org/10.1039/p19960002643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SHOOLINGIN-JORDAN, Peter M., Martin J. WARREN, and Sarah J. AWAN. "Discovery that the assembly of the dipyrromethane cofactor of porphobilinogen deaminase holoenzyme proceeds initially by the reaction of preuroporphyrinogen with the apoenzyme." Biochemical Journal 316, no. 2 (June 1, 1996): 373–76. http://dx.doi.org/10.1042/bj3160373.

Full text
Abstract:
The assembly process of the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase holoenzyme is initiated by the reaction of the porphobilinogen deaminase apoenzyme with preuroporphyrinogen. The resulting enzyme-bound tetrapyrrole (bilane) is equivalent to the holoenzyme intermediate complex ES2 and yields the dipyrromethane cofactor by reactions of the normal catalytic cycle. These observations indicate that preuroporphyrinogen, rather than porphobilinogen, is the preferred precursor for the dipyrromethane cofactor and explain the existence of the D84A and D84N deaminase mutants as catalytically inactive ES2 complexes.
APA, Harvard, Vancouver, ISO, and other styles
7

Jordan, P. M., and P. N. Gibbs. "Mechanism of action of 5-aminolaevulinate dehydratase from human erythrocytes." Biochemical Journal 227, no. 3 (May 1, 1985): 1015–20. http://dx.doi.org/10.1042/bj2271015.

Full text
Abstract:
Purified 5-aminolaevulinate dehydratase (porphobilinogen synthase, EC 4.2.1.24) from human erythrocytes was incubated initially with limiting amounts of 5-amino [5-14C]laevulinate in a rapid-mixing apparatus. The single-turnover reaction with respect to the bound labelled 5-aminolaevulinate was completed by the addition of unlabelled 5-aminolaevulinate and the resulting radioactive porphobilinogen was isolated and degraded. The 14C label was found to be located predominantly at C-2 of the product, demonstrating that, of the two substrate molecules participating in the reaction, the 5-aminolaevulinate molecule initially bound to the enzyme provides the propionic acid ‘side’ of the porphobilinogen. The same enzyme-[14C]substrate species that yields regiospecific porphobilinogen may be trapped by reaction with NaBH4, showing that the substrate molecule initially bound to the enzyme does so in the form of a Schiff base. A conventional incubation with 5-amino[5-14C]laevulinate yielded porphobilinogen with an equal distribution of the label between C-2 and C-11. The reaction mechanism of the human erythrocyte 5-aminolaevulinate dehydratase thus follows the same course as that of other dehydratases studied in our laboratory by using single-turnover techniques.
APA, Harvard, Vancouver, ISO, and other styles
8

Hsiao, Kwang-Jen, Fa-Yauh Lee, Shew-Jen Wu, and Wei-Jan Chang. "Determination of erythrocyte porphobilinogen deaminase activity using porphobilinogen as substrate." Clinica Chimica Acta 168, no. 2 (September 1987): 257–58. http://dx.doi.org/10.1016/0009-8981(87)90296-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hart, G. J., C. Abell, and A. R. Battersby. "Purification, N-terminal amino acid sequence and properties of hydroxymethylbilane synthase (porphobilinogen deaminase) from Escherichia coli." Biochemical Journal 240, no. 1 (November 15, 1986): 273–76. http://dx.doi.org/10.1042/bj2400273.

Full text
Abstract:
Hydroxymethylbilane synthase (porphobilinogen deaminase) was purified to apparent homogeneity from Escherichia coli. The enzyme is a monomer of Mr approx. 40,000. The Km for porphobilinogen and relative Vmax. values have been obtained at various pH values over the range 6.2-8.8, enabling pK values for ionizable groups important for activity to be determined. The N-terminal amino acid sequence is presented.
APA, Harvard, Vancouver, ISO, and other styles
10

Heinemann, Ilka U., Claudia Schulz, Wolf-Dieter Schubert, Dirk W. Heinz, Yang-G. Wang, Yuichi Kobayashi, Yuuki Awa, Masaaki Wachi, Dieter Jahn, and Martina Jahn. "Structure of the Heme Biosynthetic Pseudomonas aeruginosa Porphobilinogen Synthase in Complex with the Antibiotic Alaremycin." Antimicrobial Agents and Chemotherapy 54, no. 1 (October 12, 2009): 267–72. http://dx.doi.org/10.1128/aac.00553-09.

Full text
Abstract:
ABSTRACT The recently discovered antibacterial compound alaremycin, produced by Streptomyces sp. A012304, structurally closely resembles 5-aminolevulinic acid, the substrate of porphobilinogen synthase. During the initial steps of heme biosynthesis, two molecules of 5-aminolevulinic acid are asymmetrically condensed to porphobilinogen. Alaremycin was found to efficiently inhibit the growth of both Gram-negative and Gram-positive bacteria. Using the newly created heme-permeable strain Escherichia coli CSA1, we are able to uncouple heme biosynthesis from bacterial growth and demonstrate that alaremycin targets the heme biosynthetic pathway. Further studies focused on the activity of alaremycin against the opportunistic pathogenic bacterium Pseudomonas aeruginosa. The MIC of alaremycin was determined to be 12 mM. Alaremycin was identified as a direct inhibitor of recombinant purified P. aeruginosa porphobilinogen synthase and had a Ki of 1.33 mM. To understand the molecular basis of alaremycin's antibiotic activity at the atomic level, the P. aeruginosa porphobilinogen synthase was cocrystallized with the alaremycin. At 1.75-Å resolution, the crystal structure reveals that the antibiotic efficiently blocks the active site of porphobilinogen synthase. The antibiotic binds as a reduced derivative of 5-acetamido-4-oxo-5-hexenoic acid. The corresponding methyl group is, however, not coordinated by any amino acid residues of the active site, excluding its functional relevance for alaremycin inhibition. Alaremycin is covalently bound by the catalytically important active-site lysine residue 260 and is tightly coordinated by several active-site amino acids. Our data provide a solid structural basis to further improve the activity of alaremycin for rational drug design. Potential approaches are discussed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Porphobilinogène"

1

Poli, Antoine. "Physiopathologie des porphyries : développement de méthodes d'analyses par spectrométrie de masse et application en contexte clinique, biodisponibilité du fer et porphyries érythropoïétiques : efficacité clinique de l'induction d'une carence martiale et caractérisation d'un modèle cellulaire." Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5206.

Full text
Abstract:
Les porphyries sont des maladies génétiques causées par une dysfonction d'une enzyme de la voie de biosynthèse de l'hème responsable de l'accumulation de métabolites toxiques. On distingue les porphyries d'origine hépatique, où l'hème est le principal régulateur de sa synthèse, des porphyries érythropoïétiques, où c'est la biodisponibilité du fer qui est le déterminant majeur de la synthèse d'hème. Lors de ce travail, des méthodes de dosages par spectrométrie de masse ont été développées afin de mieux caractériser la physiopathologie des porphyries. En premier lieu, le dosage des précurseurs de la voie, l'ALA et le PBG, dans le sang et les urines, qui a ensuite été appliqué au diagnostic et à l'amélioration du suivi de patients atteints de porphyrie hépatique aiguë. Dans une deuxième partie, ce travail s'est intéressé au lien entre métabolisme du fer et porphyrie érythropoïétique. Il a démontré l'efficacité biologique et clinique de l'induction d'une carence martiale chez des patients atteints de porphyrie érythropoïétique. L'étude de culture primaire de progéniteurs érythroïdes de patients a confirmé l'impact des variations de la biodisponibilité du fer sur l'accumulation des porphyrines toxiques. Enfin, un modèle de cellulaire de protoporphyrie érythropoïétique a été caractérisé, notamment par dosage de l'hème intracellulaire par spectrométrie de masse. Il récapitule les accumulations de porphyrines et les variations observées chez les patients en cas de carence martiale. Les développements méthodologiques des dosages par spectrométrie de masse, de l'ALA et du PBG, et du produit final, l'hème, présentés ici, sont une première étape nécessaire à l'étude de la voie métabolique sans l'angle du flux. Cette vision dynamique permettra de répondre à une série de questions fondamentales concernant la physiopathologie des porphyries, notamment hépatiques aiguës : la voie est-elle activée différemment chez les patients malades et porteurs ? Y-a-t-il une carence en hème à l'état basal ou lors d'une crise ? Une crise induit-elle une augmentation de synthèse de l'hème ?
Porphyrias are genetic diseases caused by dysfunction of an enzyme in the heme biosynthesis pathway, responsible for the accumulation of toxic metabolites. They are subdivided in porphyrias of hepatic origin, where heme is the main regulator of its synthesis, and erythropoietic porphyrias, where iron bioavailability is the main determinant of heme synthesis. In this work, mass spectrometry methods were developed to better characterize the pathophysiology of porphyrias. Firstly, the determination of the precursors of the pathway, ALA and PBG, in blood and urine, was applied to the diagnosis and improved monitoring of patients suffering from acute hepatic porphyrias. The second part of the project focused on the link between iron metabolism and erythropoietic porphyrias. It demonstrated the biological and clinical efficacy of inducing martial deficiency in patients with erythropoietic porphyrias. A study of the primary culture of patients' erythroid progenitors confirmed the impact of variations in iron bioavailability on the accumulation of toxic porphyrins. Finally, a cellular model of erythropoietic protoporphyria was characterized, in particular by determining intracellular heme using mass spectrometry. It reproduces the porphyrin accumulations and variations observed in patients with martial deficiency. The methodological developments in the mass spectrometric assays of ALA and PBG, and of the final product, heme, presented here, are a necessary first step in the study of the metabolic pathway from a flow perspective. This dynamic vision will provide answers to a series of fundamental questions concerning the pathophysiology of porphyrias, in particular acute hepatic porphyrias: is the pathway activated differently in patients with and without porphyria? Is there a heme deficiency in the basal state or during an attack? Does an attack induce an increase in heme synthesis?
APA, Harvard, Vancouver, ISO, and other styles
2

Delaunay, Anne-Marie. "5-aminolevulinate deshydratase : clonage et expression du gène de rhodobacter sphaeroïdes." Rouen, 1990. http://www.theses.fr/1990ROUE5009.

Full text
Abstract:
La construction d'une banque génomique de rhodobacter sphaeroïdes dans une souche d'escherichia coli (SHSP3) hem b#), mutée sur le gène codant pour la 5-aminolevulinate deshydratase (5-ALAD, E. C. 4. 2. 1. 24) a été réalisée. La 5-ALAD est une enzyme oligomérique synthétisant à partir de 5-ALA le porphobilinogène, monopyrrole précurseur des hemes. La banque obtenue après transformation de la souche SHSP3 présente des colonies de phénotypes différents. Certaines sont caractérisées par une croissance rapide. Nous avons sélectionné parmi ces colonies, 2 clones présentant une activité 5-ALAD, accompagnée de la production d'une protéine reconnue par des anticorps specifiques apres immunoempreinte. L'analyse de ces plasmides recombines indique que l'adn a été remanié au cours de la transformation. Toutefois l'un des plasmides conserve après purification et retransformation de la souche SHSP3, la possibilité de complémenter la délétion; ce plasmide possède au moins une partie de l'adn introduit, en particulier le gène codant pour la 5-ALAD. Le sous-clonage a été effectué dans le plasmide PUC19. La séquence codante pour la 5-ALAD est sous le contrôle du promoteur du vecteur d'expression
APA, Harvard, Vancouver, ISO, and other styles
3

Chretien, Stany. "Étude du gène de la Porphobilinogène Désaminase humaine : mise en évidence pour un même gène de deux promoteurs : l'un érythroïde spécifique, l'autre ubiquitaire." Paris 12, 1987. http://www.theses.fr/1987PA120043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raich, Natacha. "Clonage des ADNc et expression des gènes humains codant deux enzymes de la voie de biosynthèse de l'hème : la porphobilinogène désaminase et l'uroporphyrinogène décarboxylase." Paris 11, 1987. http://www.theses.fr/1987PA112456.

Full text
Abstract:
Les enzymes de la voie de biosynthèse de l'hème sont présentes dans toutes les cellules et leur activité augmente au cours de la différenciation érythrocytaire. Cette dualité d'expression n’a pas de base moléculaire. Ce mémoire traite d'une part du clonage et de la structure de deux ADNc codant deux enzymes de ce métabolique : la porphobilinogène désaminase (PBG-D° ET l'uroporphyrinogène décarboxylase (URO-D), et d'autre part de l'expression de ces deux gènes. Deux banques humaines ADNc ont été construites et criblées avec les sondes murines correspondant à ces deux enzymes. Nous avons ainsi isolé et séquencé les ADNc humains, ce qui nous a permis de déduire les séquences protéiques de la PBG-D érythrocytaire et de l'URO-D. Nous avons ensuite étudié l'expression de ces deux gènes. Lors de la différenciation érythropoïétique, l'augmentation d'activité de ces deux enzymes est due à une accumulation d'ARNm, causée en partie par une augmentation de la transcription de ces deux gènes. Afin de déterminer les séquences en cis, nécessaires à la régulation de ces deux gènes lors de la différention érythropoiétique, nous avons introduit les gènes clonés dans les cellules pouvant mimer cette différenciation (cellules de Friend). Les cinétiques d'apparition des ARNm des gènes transfectés ont montré que le fragment du gène URO-D transfecté n'était pas corégulé avec le gène endogène alors que le fragment PBG-D transfecté était corégulé avec le gène endogène. Les séquences qui permettent la régulation érythroïde du gène PBG-D se trouvent donc dans le fragment transfecté.
APA, Harvard, Vancouver, ISO, and other styles
5

Goodwin, C. "Mechanistic studies of porphobilinogen synthase." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599517.

Full text
Abstract:
Porphobilinogen Synthase (PBGS) is a key enzyme involved in tetrapyrrole biosynthesis. The enzyme catalyses the condensation of two molecules of 5-aminolevulinic acid (1) (ALA) to give the pyrrole porphobilinogen (2) (PBG) and is believed to exist in all organisms. This thesis describes mechanistic studies carried out on PBGS from bovine liver and Bacillus subtilis. Stereospecifically deuteriated ALA, (S)-[3-D1]ALA 3S, and (R)-[3-D1]ALA 3R, were synthesised in 13 steps from (S)- and (R)-glutamic acid respectively. The kinetics of PBGS from both bovine liver and B. subtilis were measured with the two substrates and kinetic isotope effects on Vmax observed. For both species of PBGS, a significantly larger kinetic isotope effect on Vmax was observed with 3R than 3S, suggesting that the first deprotonation at C3 of ALA is of the pro-R hydrogen. Based on available crystal structures of PBGSs a modified mechanism has been proposed. The potent inhibitor 3-acetyl-4-oxoheptane-1,7-dioc acid (4) (AOHD) was synthesised containing 13C labels at either C8 or C4. The inhibitor was irreversibly bound to the enzyme from B. subtilis by reduction of the Schiff’s base with sodium borohydride. Using 13C NMR, attempts were made to observe the bound AOHD and determine which ketone formed a Schiff’s base to a lysine in the active site. Studies were made towards the synthesis of novel compounds 5 and 6, as potential inhibitors of PBGS. The synthetic routes utilised were based on those used to synthesise the stereospecifically deuteriated ALAs 3S and 3R.
APA, Harvard, Vancouver, ISO, and other styles
6

Picken, Nichola Caryl. "Structural studies of porphobilinogen deaminase." Thesis, Birkbeck (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

George, Sharon Deena. "Mechanistic studies in porphobilinogen biosynthesis." Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/15431.

Full text
Abstract:
[4-15c]ALA.HC1 (50% enriched) and [15N]ALA.HC1 (50% enriched) have been synthesised and utilised in mechanistic studies. The synthesis of the former was achieved via a modified literature procedure, employing [2-13C] glycine (99.8% enriched) as the starting material. The NMR spectral data of the labelled materials have been fully characterised. 13C NMR studies of [4-13C]ALA.HCl (50% enriched) have demonstrated the forms of ALA and its autocondensation products under physiological conditions, 17O and 1H NMR studies have confirmed the existence of the alternative forms of ALA and its condensation products at neutral pH. The non-enzymatic cyclic dimerisation of ALA leads to the formation of 2,5-bis(2- carboxyethyl)pyrazine and under some circumstances, pseudo-PBG. The condensation products of ALA under a variety of conditions have been identified from their NMR spectra and mechanisms for their formation are proposed. The condensation of ALA and its 5-methyl analogue with a variety of carbonyl compounds have been investigated and the products (novel substituted pyrroles in some cases) characterised by their melting points, elementary analyses, mass spectra and NMR spectra. A hydrogen bonded enaminoketone in a chelated ring has been identified as the intermediate in the reaction between ALA and 1,l,l-trlfluoropentane-2,4-dione, by 1H and 15N NMR spectroscopy. 13C NMR kinetics of the reaction between ALA and pentane- 2,4-dione has revealed that the reaction proceeds via an enaminoketone intermediate. The nature of the intermediate species in the above reaction was confirmed by 15N NMR spectroscopy. On the basis of the kinetic evidence obtained for the reaction between ALA and 1,1, l-trifluoropentane-2,4-dione, a mechanism has been proposed for the Knorr and Fischer-Fink P3nrrole syntheses. Studies with the bovine liver enzyme, ALA dehydratase, has revealed that it is very specific in the reaction that it catalyses: the Knorr-type dimerisation of two molecules of ALA to form PBG. The substrate analogues, levulinic acid and the methyl ester of ALA were found to be a non-competitive inhibitor and a very poor substrate of the enzyme respectively. The substrate analogues, N,N-dimethyl- ALA and 5-methyl-ALA do not bind to the enzyme and therefore do not affect the rate of production of PBG. A mechanism has been postulated for PBG biosynthesis, similar to the one proposed for the Knorr pyrrole synthesis. Stopped-flow kinetics of the reaction between p-nitrophenyl- diazonium tetrafluoroborate and bilirubin ditaurate disodium salt has revealed that diazonium ions are solely responsible for the cleavage of the central methylene bridge of the bilirubin conjugate molecule. On the basis of the above evidence, a mechanism has been proposed for the diazo coupling reaction.
APA, Harvard, Vancouver, ISO, and other styles
8

Mosley, Julie Elizabeth. "Studies on recombinant ubiquitous and erythroid human porphobilinogen deaminase and mutational analysis of E. Coli porphobilinogen deaminase." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmed, R. A. A. "Rational design of inhibitors of porphobilinogen deaminase." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595387.

Full text
Abstract:
The thesis describes the synthesis of new analogues (53-57) of PBG and their inhibition of and mechanistic studies on the enzyme PBG deaminase from E. coli. The analogues with an additional alkyl group, 53 and 54, were successfully obtained in good yields in 10 steps. The caged compound 97 was also obtained but the final step of hydrogenolysis of the benzyl protecting groups also caused reduction of the nitro group on the 2-nitrobenzyl substituent. Testing of analogues 53 and 54 with the enzyme (PBGD), however, showed no inhibition. A new route for the synthesis of the conformationally restricted analogue 6, 11-ethanoPBG 56 was developed in this work and one stereoisomer of 56 was obtained (the cis-isomer). When this analogue was tested as an inhibitor it also showed no inhibition. This was thought to be due to the stereochemistry of the compound since modelling studies had predicted that the trans-isomer would bind tightly to the enzyme not the cis-isomer. Therefore, the 11-hydroxy-6,11-ethanoPBG analogue 57 was prepared and tested as an inhibitor with the enzyme. The result was only a modest effect on the enzyme's kinetics. 6-Methyl-PBG 55 which has the extra methyl group on the acetate side chain of PBG, was prepared to test the importance of this chain. When the compound was tested as an inhibitor of PBG deaminase it showed strong inhibition and a K1 value of about 3mM was determined. This is the strongest inhibitor ever obtained for the enzyme. When this analogue was tested as a substrate for the enzyme it appeared by UV/visible spectroscopy to form a novel porphyrin, although due to the small quantity, it was not possible to isolate this porphyrin. In addition, it was possible to isolate the covalent enzyme/analogue complexes by the use of the FPLC technique. It was also possible to confirm the formation of complexes of the enzyme with one and two molecules of the substrate analogue bound for the first time by the use of the LC-mass spectrometry. This work also describes attempts to crystallise some of the enzyme/analogue intermediates, which were isolated by the FPLC. These attempts were successful and single crystals were obtained. These crystals diffract well and currently further work is going on to solve their structure. DesaminoPBG 26 has been previously prepared and gave a K1of 75 mM with PBG deaminase from human erythrocytes. In this project it has been tested with the PBG deaminase from E. coli and shown to be a less powerful inhibitor. A new approach for preparing 2,3-disubstituted pyrroles was developed and the 2-methyl-3-pentylpyrrole 59 was obtained in 70% yield. This compound is used as a building block in the biosynthesis of the red pigment prodigiosin 168, one of a class of naturally occurring polypyrroles which exhibit antimicrobial and cytotoxic properties.
APA, Harvard, Vancouver, ISO, and other styles
10

Warren, M. J. "Investigations into the mechanisms of porphobilinogen deaminase." Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Porphobilinogène"

1

Deegan, Patrick. Porphyria. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0179.

Full text
Abstract:
This chapter discusses six diseases caused by inborn errors of metabolism affecting the biosynthesis of haem. Haem is a tetracyclic metal-binding compound involved in oxygen transport (in haemoglobin and myoglobin) and redox reactions (e.g. in the cytochrome P450 system). Each of these conditions is caused by a single gene defect in one of the enzymes involved in the biosynthesis of haem. Inheritance is usually autosomal dominant with incomplete penetrance. The enzyme defect results in disease, not as a result of deficiency of the reaction product, but as a result of accumulation of precursors. Early, soluble precursors, 5-aminolaevulinic acid, and porphobilinogen (not porphyrins as such) are neurotoxic and, when present in great excess, as occurs when flux through the haem synthetic pathway is increased in response to particular medications or hormones, lead to acute neurovisceral crises. Later cyclical precursors (porphyrins) in the pathway are also water soluble and excreted in urine, but are susceptible to activation by electromagnetic radiation in the visible spectrum and are converted to free-radical metabolites that cause pain, inflammation, and tissue damage in the skin. The final haem precursors (also porphyrins) are hydrophobic and excreted in the bile and faeces and are also activated by light to toxic metabolites.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Porphobilinogène"

1

Arndt, T., and T. Stauch. "Porphobilinogen." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_2483-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arndt, T., and T. Stauch. "Porphobilinogen." In Springer Reference Medizin, 1916–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schomburg, Dietmar, and Margit Salzmann. "Porphobilinogen synthase." In Enzyme Handbook 1, 675–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-86605-0_149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schomburg, Dietmar, and Margit Salzmann. "Porphobilinogen deaminase." In Enzyme Handbook 1, 1013–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-86605-0_228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braun-Falco, Markus, Henry J. Mankin, Sharon L. Wenger, Markus Braun-Falco, Stephan DiSean Kendall, Gerard C. Blobe, Christoph K. Weber, et al. "Porphobilinogen Deaminase Deficiency." In Encyclopedia of Molecular Mechanisms of Disease, 1688. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_8133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Falk, J. E. "Haem and Porphyrin Formation from Porphobilinogen Glycine, δ-Aminolaevulic Acid and Porphobilinogen." In Novartis Foundation Symposia, 63–71. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470718940.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lambert, R., P. D. Brownlie, S. C. Woodcock, G. V. Louie, J. C. Cooper, M. J. Warren, P. M. Jordan, T. L. Blundell, and S. P. Wood. "Structural Studies on Porphobilinogen Deaminase." In Ciba Foundation Symposium 180 - The Biosynthesis of the Tetrapyrrole Pigments, 97–110. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514535.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Formijne, P., and Nine J. Poulie. "Precursors of Porphyrin and Porphobilinogen." In Novartis Foundation Symposia, 246–53. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470718940.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schultz, Matthew J., Patricia L. Hall, and Silvia Tortorelli. "Porphyrins, Porphobilinogen, and δ-Aminolevulinic Acid." In Laboratory Guide to the Methods in Biochemical Genetics, 283–305. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58819-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gajdos, Alfred, and Marianne Gajdos-Torok. "Metabolism of Porphobilinogen and of Porphyrins in the Rabbit." In Novartis Foundation Symposia, 229–45. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470718940.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Porphobilinogène"

1

Neier, Reinhard. "A Novel Synthesis of Porphobilinogen: Synthetic and Biosynthetic Studies." In The 3rd International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 1999. http://dx.doi.org/10.3390/ecsoc-3-01765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moghe, Akshata, Csilla K. Hallberg, Ruksana Huda, Shalonda Turner, Rochelle Simmons, VM Sadagopa Ramanujam, and Karl E. Anderson. "04156 Recurrent acute intermittent porphyria attacks after normalization of porphobilinogen on givosiran prophylaxis." In Abstracts of the International Conference of Porphyrins and Porphyrias, Pamplona, Spain, 21–25 September 2024, A22.2—A22. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/bmjgast-2024-icpp.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heckl, C., A. Lang, M. Vogeser, T. Stauch, C. Homann, G. Hennig, R. Sroka, and H. Stepp. "Rapid spectrophotometric quantification of urinary porphyrins and porphobilinogen as screening tool for attacks of acute porphyria." In Translation of Lasers and Biophotonics Technologies and Procedures: Toward the Clinic, edited by Lothar D. Lilge and Carsten M. Philipp. SPIE, 2019. http://dx.doi.org/10.1117/12.2527105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neels, Antonia, Helen Stoeckli-Evans, Reinhard Neier, Pavel Bobál, and André Chaperon. "A Chemical Synthesis of Porphobilinogen Imitating the Pathway Proposed by Shemin for the Biosynthesis: Comparing Inhibition Studies with Investigations of Chemical Reactivity." In The 2nd International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 1998. http://dx.doi.org/10.3390/ecsoc-2-01693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography