Academic literature on the topic 'Porous materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Porous materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Porous materials"
Szilágyi, Katalin, Adorján Borosnyói, and Zoltán Gyurkó. "Static hardness testing of porous building materials." Epitoanyag-Journal of Silicate Based and Composite Materials 65, no. 1 (2013): 6–10. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2013.2.
Full textBeck, J. S., C. T. Kresge, and S. B. McCullen. "Porous materials." Zeolites 15, no. 4 (May 1995): 382. http://dx.doi.org/10.1016/0144-2449(95)99128-a.
Full textClegg, W. J., and L. J. Vandeperre. "OS08W0147 Cracking and thermal shock in porous materials." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS08W0147. http://dx.doi.org/10.1299/jsmeatem.2003.2._os08w0147.
Full textSchaefer, Dale W. "Engineered Porous Materials." MRS Bulletin 19, no. 4 (April 1994): 14–19. http://dx.doi.org/10.1557/s0883769400039452.
Full textGoldsmid, Hiroshi. "Porous Thermoelectric Materials." Materials 2, no. 3 (August 5, 2009): 903–10. http://dx.doi.org/10.3390/ma2030903.
Full textŚlósarczyk, Anna, and Zofia Paszkiewicz. "Porous Bioceramic Materials." Key Engineering Materials 206-213 (December 2001): 1621–24. http://dx.doi.org/10.4028/www.scientific.net/kem.206-213.1621.
Full textZaworotko, Michael J. "Hybrid porous materials." Acta Crystallographica Section A Foundations and Advances 71, a1 (August 23, 2015): s112. http://dx.doi.org/10.1107/s2053273315098356.
Full textDanowski, Wojciech, Thomas van Leeuwen, Wesley R. Browne, and Ben L. Feringa. "Photoresponsive porous materials." Nanoscale Advances 3, no. 1 (2021): 24–40. http://dx.doi.org/10.1039/d0na00647e.
Full textKitagawa, Susumu. "Future Porous Materials." Accounts of Chemical Research 50, no. 3 (March 21, 2017): 514–16. http://dx.doi.org/10.1021/acs.accounts.6b00500.
Full textBarton, Thomas J., Lucy M. Bull, Walter G. Klemperer, Douglas A. Loy, Brian McEnaney, Makoto Misono, Peter A. Monson, et al. "Tailored Porous Materials." Chemistry of Materials 11, no. 10 (October 1999): 2633–56. http://dx.doi.org/10.1021/cm9805929.
Full textDissertations / Theses on the topic "Porous materials"
Zhang, Jin. "Shakedown of porous materials." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I044/document.
Full textThis thesis is devoted to the determination of shakedown limit states of porous ductile materials based on Melan's static theorem by considering the hollow sphere model, analytically and numerically. First of all, we determine the analytical macroscopic shakedown criterion of the considered unit cell with von Mises matrix under alternating and pulsating special loading cases. The proposed macroscopic analytical criterion depends on the first and second macroscopic stresses invariants, the sign of the third one and Poisson's ratio. Then, the procedure is extended to the general cyclically repeated loads by the construction of a more appropriate trial residual stress field allowing analytical computations and the improvement of the previous model simultaneously. Moreover, this approach is applied to porous materials with dilatant Drucker-Prager matrix.The idea relies firstly on the exact solution for the pure hydrostatic loading condition. It turns out that the collapse occurs by fatigue. Next, suitable trial stress fields are built with additional terms to capture the shear effects. The safety domain, defined by the intersection of the shakedown limit domain and the limit analysis domain corresponding to the sudden collapse by development of a mechanism at the first cycle, is fully compared with step-by-step incremental elastic-plastic simulations and simplified direct computations. At last, we provide a direct numerical method to predict the shakedown safety domain of porous materials subjected to multi-varying independent loadings by considering the critical loading path of the load domain instead of the whole history. The shakedown problem is transformed into a large-size optimization problem, which can be solved efficiently by the non-linear optimizer IPOPT to give out not only the limit load factor, but also the corresponding residual stress field for the shakedown state
Gong, Xuehui. "POROUS POLYMERIC FUNCTIONAL MATERIALS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595256175834586.
Full textNEGRONI, MATTIA. "Dynamics in Porous Materials." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/263115.
Full textMy thesis work was based on the characterization of porous materials, paying particular attention to the research of dynamic elements within the structures and to the study of adsorbed gases. I was able to detect the presence of ultrafast paraphenylenic rotors in both porous molecular crystals and metal-organic frameworks (MOFs). A more detailed study has also revealed how these motions are influenced by the adsorbed gas. Specifically, the activation energy of the rotation increases as a function of the quantity of gas in the pores. To better understand this interaction, the knowledge of the behavior of gases in porous materials is fundamental. I turned my attention to the study of xenon and CO2 motion in different materials. The combined use of NMR and ab initio calculations proved to be fundamental for understanding these phenomena and it was possible to reveal particular characteristics both of the gases and of the materials. The complexity of the diffusion within the channels has also been presented in unusual ways as the helicoidal motion of carbon dioxide imposed by the electrostatic potential. To continue the study of pore gases, I characterized several porous aromatic frameworks (PAFs) with the hyperpolarized xenon technique. This not only allowed me to accurately measure the pore size but also to calculate the interaction energy between the xenon and the channel walls. To expand my knowledge on hyperpolarization as an NMR technique, I spent six months at the group of Prof. L. Emsley in Lausanne learning dynamic nuclear polarization (DNP) as well as its application to different materials.
Jiang, Tong. "Porous tin(IV) sulfide materials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0007/NQ41557.pdf.
Full textTchang, Cervin Nicholas. "Porous Materials from Cellulose Nanofibrils." Doctoral thesis, KTH, Fiberteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155065.
Full textQC 20141103
Chow, Hon-nin. "Computer aided modelling of porous structures." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B39848929.
Full textHarter, Thomas. "Unconditional and conditional simulation of flow and transport in heterogeneous, variably saturated porous media." Diss., The University of Arizona, 1994. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1994_36_sip1_w.pdf&type=application/pdf.
Full textJacobs, Tia. "Self-assembly of new porous materials." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/3970.
Full textENGLISH ABSTRACT: The primary objective of the work was to prepare and investigate new porous materials using the principles of crystal engineering. Both organic and metal-organic systems were studied and the work can best be divided into two separate sections: 1. The crystal engineering of Dianin’s Compound, a well-known organic host. 2. The design and synthesis of a series of related porous coordination compounds consisting of discrete, dinuclear metallocycles. The first section discusses the synthetic modification of Dianin’s compound in order to engineer a new clathrate host with an altered aperture size. Although this study ultimately failed to isolate the host material in its porous guest-free form, the work led to the discovery of a chiral host framework that aligns guest molecules in a polar fashion, and consequently displays non-linear optical properties. These findings are unprecedented in the long history of crystal engineering of Dianin’s compound and its analogues. This section also describes desorption studies of the new inclusion compound, as well as the known thiol analogue of Dianin’s compound. Systematic characterisation of these desorbed phases has raised interesting fundamental questions about desolvation processes in general. The second section constitutes the major portion of the work. A series of related isostructural coordination metallocycles were synthesised and their structure-property relationships were investigated using a variety of complementary techniques. These metallocyclic compounds all crystallise as solvates in their as-synthesised forms, and different results are obtained upon desolvation of the materials. In each case, desolvation occurs as a single-crystal to single-crystal transformation and three new “seemingly nonporous” porous materials were obtained. A single-crystal diffraction study under various pressures of acetylene and carbon dioxide was conducted for one of the porous metallocycles. This enabled the systematic study of the host deformation with increasing equilibrium pressure (i.e. with increasing guest occupancy). The observed differences in the sorption behaviour for acetylene and carbon dioxide are discussed and rationalised. Gravimetric gas sorption isotherms were also recorded for the three different porous materials and the diffusion of bulkier molecules through the host was also investigated structurally. Finally, a possible gas transport mechanism is postulated for this type of porous material (i.e. seemingly nonporous), and this is supported by thermodynamic and kinetic studies, as well as molecular mechanics and statistical mechanics simulations.
AFRIKAANSE OPSOMMING: Die primêre doel van die werk was om nuwe poreuse materiale te berei en deur die toepassing van beginsels van kristalmanipulasie (E. crystal engineering) te ondersoek. Beide organiese- en metaal-organiese sisteme is bestudeer en die werk kan in twee kategorieë verdeel word: 1. Die kristalmanipulasie van Dianin se verbinding, ’n bekende organiese gasheer. 2. Die ontwerp en sintese van ’n reeks verwante poreuse koördinasieverbindings wat uit diskrete, binukleêre metallosiklieseverbindings bestaan. Die eerste deel handel oor die sintetiese verandering van Dianin se verbinding om ’n nuwe klatraatgasheer met ’n veranderde spleetgrootte te vorm. Alhoewel hierdie studie nie daarin geslaag het om die gasheer in sy poreuse “gas(E. guest)-vrye” vorm te isoleer nie, het die werk ’n nuwe chirale gasheerraamwerk aan die lig gebring. Die chirale gasheerraamwerk rig gas(E. guest)molekules in eendimensionele kolomme op ’n polêre wyse en gevolglik vertoon die materiaal nie-linieêre optiese eienskappe. Hierdie resultaat is ongekend in die lang geskiedenis van kristalmanipulasie van Dianin se verbindings en sy analoë. Hierdie afdeling beskryf ook die desorpsiestudies van die nuwe gasheer, en die tiol-afgeleide van Dianin se verbinding. Die sistematiese karakterisering van hierdie fases na desorpsie het fundamentale vrae na vore gebring oor desorpsieprosesse oor die algmeen. Die tweede afdeling maak die grootste gedeelte van die werk uit. ’n Reeks verwante isostrukturele ringvormige koördinasieverbindings is gesintetiseer en hul struktuureienskap verhoudings is deur ’n verskeidenheid komplementêre tegnieke ondersoek. Hierdie metallosiklieseverbindings kristalliseer almal in gesolveerde toestand vanaf sintese en verskillende resultate word verkry wanneer die verbinding desorpsie ondergaan. In alle gevalle vind gas(E. guest)desorpsie as enkel-kristal na enkel-kristal omsettings plaas en drie nuwe ‘oënskynlik nie-poreuse’ poreuse materiale is bekom. ’n Enkelkristal diffraksiestudie onder verskeie gasdrukke is met asetileen en koolstofdioksied uitgevoer vir een van die poreuse metallosiklieseverbindings. Dit het die geleentheid geskep om die mate waartoe die gasheer as gevolg van verhoogde ewewigsdruk vervorm (en dus toename in gasheerbesetting), sistematies te bestudeer. Die waargenome verskille in sorpsie-optrede vir asetileen en koolstofdioksied word bespreek en verklaar. Gravimetriese gassorpsie isoterme is ook vir die drie poreuse materiale verkry en die diffusie van groter molekules deur die gasheer is struktureel ondersoek. Laastens word ’n moontlike gasoordragmeganisme vir hierdie tipe poreuse (i.e. oënskynlik nie-poreuse) materiale gepostuleer. Hierdie bespreking word deur termodinamiese en kinetiese studies aangevul, sowel as molekulêre-meganika en statisties-meganiese studies.
Alsayednoor, Jafar. "Modelling and characterisation of porous materials." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4808/.
Full textThompson, Benjamin Robert. "Hierarchically structured composites and porous materials." Thesis, University of Hull, 2017. http://hydra.hull.ac.uk/resources/hull:16570.
Full textBooks on the topic "Porous materials"
Moreno-Piraján, Juan Carlos, Liliana Giraldo-Gutierrez, and Fernando Gómez-Granados, eds. Porous Materials. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65991-2.
Full textIshizaki, K., S. Komarneni, and M. Nanko. Porous Materials. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5811-8.
Full textBruce, Duncan W., Dermot O'Hare, and Richard I. Walton, eds. Porous Materials. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470711385.
Full textBettotti, Paolo, ed. Submicron Porous Materials. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53035-2.
Full textUthaman, Arya, Sabu Thomas, Tianduo Li, and Hanna Maria, eds. Advanced Functional Porous Materials. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85397-6.
Full textLiu, Zhen. Multiphysics in Porous Materials. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93028-2.
Full textSu, Bao-Lian, Clément Sanchez, and Xiao-Yu Yang, eds. Hierarchically Structured Porous Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527639588.
Full textKowalski, Stefan Jan, ed. Drying of Porous Materials. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5480-8.
Full text1945-, Kowalski Stefan J., ed. Drying of porous materials. Dordrecht: Springer, 2007.
Find full textJelfs, Kim, ed. Computer Simulation of Porous Materials. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839163319.
Full textBook chapters on the topic "Porous materials"
Kärger, Jörg, Frank Stallmach, Rustem Valiullin, and Sergey Vasenkov. "Porous Materials." In NMR Imaging in Chemical Engineering, 231–50. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607560.ch3a.
Full textReimert, R., E. H. Hardy, and A. von Garnier. "Porous Materials." In NMR Imaging in Chemical Engineering, 250–62. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607560.ch3b.
Full textRen, Xiaohong, Siegfried Stapf, and Bernhard Blümich. "Porous Materials." In NMR Imaging in Chemical Engineering, 263–84. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607560.ch3c.
Full textYoung, J. J., T. W. Bremner, M. D. A. Thomas, and B. J. Balcom. "Porous Materials." In NMR Imaging in Chemical Engineering, 285–303. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607560.ch3d.
Full textBeyea, S. D., D. O. Kuethe, A. McDowell, A. Caprihan, and S. J. Glass. "Porous Materials." In NMR Imaging in Chemical Engineering, 304–21. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607560.ch3e.
Full textHirasaki, George J. "Porous Materials." In NMR Imaging in Chemical Engineering, 321–40. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607560.ch3f.
Full textSong, Yi-Qiao, Eric E. Sigmund, and Natalia V. Lisitza. "Porous Materials." In NMR Imaging in Chemical Engineering, 340–58. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607560.ch3g.
Full textKlinowski, Jacek. "Porous Materials." In Solid-State NMR Spectroscopy Principles and Applications, 437–82. Oxford, UK: Blackwell Science Ltd, 2007. http://dx.doi.org/10.1002/9780470999394.ch9.
Full textHall, Christopher, and William D. Hoff. "Porous materials." In Water Transport in Brick, Stone and Concrete, 1–34. 3rd ed. London: CRC Press, 2021. http://dx.doi.org/10.1201/9780429352744-1.
Full textMorro, Angelo, and Claudio Giorgi. "Porous Materials." In Mathematical Modelling of Continuum Physics, 659–80. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20814-0_11.
Full textConference papers on the topic "Porous materials"
Alexey, Sinitsyn, and Spivak Yulia. "Alumina-based porous materials." In 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). IEEE, 2016. http://dx.doi.org/10.1109/eiconrusnw.2016.7448124.
Full textHarun, Z., and T. C. Ong. "Material parameters sensitivity in modeling drying of porous materials." In 2013 International Conference on Advanced Materials and Information Technology Processing. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/amitp130111.
Full textBoukpeti, N., and J. F. Thimus. "Freezing of Fractured Porous Materials." In 13th International Conference on Cold Regions Engineering. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40836(210)35.
Full textRenero, C., and F. E. Prieto. "Shock Hugoniot for porous materials." In Proceedings of the conference of the American Physical Society topical group on shock compression of condensed matter. AIP, 1996. http://dx.doi.org/10.1063/1.50859.
Full textSaini, Rakesh, Matthew Kenny, and Dominik P. J. Barz. "Electroosmotic Flow Through Porous Materials." In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21173.
Full textLeventis, Nicholas. "Mechanically Strong Lightweight Porous Materials f..." In 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-c2.7.09.
Full textHuang, Yun, Sofia G. Mogilevskaya, Steven L. Crouch, Glaucio H. Paulino, Marek-Jerzy Pindera, Robert H. Dodds, Fernando A. Rochinha, Eshan Dave, and Linfeng Chen. "Computational Modeling of Viscoelastic Porous Materials." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896860.
Full textTelengator, Alexander, Forman Williams, and Stephen Margolis. "Ignition analyses of porous energetic materials." In 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-861.
Full textCiobanu, Petru, Muhammed Hasan Aslan, Ahmet Yayuz Oral, Mehmet Özer, and Süleyman Hikmet Çaglar. "ABOUT MECHANICAL STRENGTH OF POROUS MATERIALS." In INTERNATIONAL CONGRESS ON ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE. AIP, 2011. http://dx.doi.org/10.1063/1.3663162.
Full textMiryuk, Olga, and Tatiana Grabovetsv. "Magnesia composite materials with porous aggregate." In VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0121029.
Full textReports on the topic "Porous materials"
Johra, Hicham. Air permeameter for porous building materials: Aalborg University prototype 2023. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau545266824.
Full textBayu Aji, L., I. Winter, T. Fears, and S. Kucheyev. Sculpting Non-Machinable Porous Materials. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1668504.
Full textCummings, Laura. Porous Polymeric Materials FY24 PDRD Final Report. Office of Scientific and Technical Information (OSTI), October 2023. http://dx.doi.org/10.2172/2007151.
Full textHo, Hoi Chun, Ngoc A. Nguyen, Kelly M. Meek, Amit K. Naskar, David M. Alonso, Sikander H. Hakim, and Jeffrey J. Fornero. γ-Valerolactone-Extracted Lignin to Porous Carbon Materials. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1470859.
Full textHerbold, E., M. Homel, and R. Managan. On Artificial Viscosity for Shocks in Porous Materials. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1404851.
Full textMoon, Chul, Jason E. Heath, and Scott A. Mitchell. Statistical Inference for Porous Materials using Persistent Homology. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1414662.
Full textLee, Matthew Nicholson, Kyle James Cluff, and Matthew Douglass Crall. Advanced Manufacturing of Porous and Composite Silicone Materials. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1635503.
Full textFuller, E. L. Jr. Characterization of porous carbon fibers and related materials. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/273794.
Full textFuller, Jr, E. L. Characterization of Porous Carbon Fibers and Related Materials. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/814269.
Full textKanouff, Michael P., Daniel E. Dedrick, and Tyler Voskuilen. System level permeability modeling of porous hydrogen storage materials. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/984141.
Full text