Journal articles on the topic 'Porosity'

To see the other types of publications on this topic, follow the link: Porosity.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Porosity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Huang, Long-Ming, H. C. Chan, and Jung-Tai Lee. "A Numerical Study on Flow around Nonuniform Porous Fences." Journal of Applied Mathematics 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/268371.

Full text
Abstract:
The effects of a porous fence with a nonuniform porosity on flow fields are investigated numerically. First, an experiment with a non-uniform porous fence located in a wind tunnel is performed to obtain a reference data set. Then, a numerical model that utilizes the finite volume scheme with a weakly compressible-flow method to solve the continuity and momentum equations is developed. The numerical simulation is compared to experimental measurements for validation purposes. As a result, the numerical predictions show good agreements with the experimental data. Finally, the numerical investigations of the flow fields around porous fences with various combinations of upper and lower fence porosity are also presented. When the upper porosity is greater than the lower porosity, the Protection Index PI0.1, PI0.3and PI0.5, representing the adverse sheltering effect, decreases compared to that of the uniform porous fence. When the upper porosity is less than the lower porosity, the PI0.5increases and the variations of the PI0.1and PI0.3, depend on the upper porosity, compared to that of the uniform porous fence. The results show that the porous fence with the upper fence porosityεU=0%and the lower fence porosityεL=30%gives the best sheltering effect among the porous fences in this study.
APA, Harvard, Vancouver, ISO, and other styles
2

Karongi, Herlina Bunga', Muhamad Arsyad, Usman Usman, Pariabti Palloan, and Sulistiawaty Sulistiawaty. "ANALISIS POROSITAS MATERIAL KAWASAN KARST MAROS PANGKEP TAMAN NASIONAL BANTIMURUNG BULUSARAUNG BERBASIS VARIASI UKURAN BUTIR." Jurnal Sains dan Pendidikan Fisika 19, no. 1 (April 22, 2023): 97. http://dx.doi.org/10.35580/jspf.v19i1.39250.

Full text
Abstract:
Abstrak-Telah dilakukan penelitian tentang porositas berdasarkan variasi ukuran butir batuan kawasan Karst Maros-Pangkep. Tujuan dari penelitian ini adalah untuk mengetahui gambaran nilai porositas batuan di Kawasan Karst Maros-Pangkep berdasarkan variasi ukuran butir dan menentukan pengaruh ukuran butir terhadap porositas batuan di Kawasan Karst Maros-Pangkep. Proses dimulai dari penentuan ukuran butir menggunakan lima macam saringan/ayakan, yaitu dengan nomor 50 mesh, 30 mesh, 16mesh, 10 mesh dan 4 mesh. Porositas ditentukan dengan menggunakan metode penimbangan. Setelah perhitungan ukuran rata-rata butir didapat selanjutnya dihubungkan dengan porositas dengan metode analisis regresi. Berdasarkan perhitungan statistik diperoleh persamaan regresi linear batuan Karst Maros-Pangkep, yaitu Y=15,00-2,82X dengan R2.=0,78. Diperoleh pengaruh ukuran butir terhadap porositas batuan kawasan karst Maros-Pangkep bernilai negatif artinya ukuran butir berbanding terbalik dengan porositas batuan di kawasan karst Maros-Pangkep. Semakin kecil ukuran butir maka porositas semakin besar dan semakin besar ukuran butir porositas semakin kecil. Kata kunci : Porositas, ukuran butir, batuan karst Pangkep, batuan karst Maros Abstrak-Research on porosity has been carried out based on variations in grain size of the Maros-Pangkep Karst area. The purpose of this study was to describe the value of rock porosity in the Maros-Pangkep Karst Region based on grain size variations and to determine the effect of grain size on rock porosity in the Maros-Pangkep Karst Region. The process starts from determining the grain size using five kinds of sieves, namely with numbers 50 mesh, 30 mesh, 16mesh, 10 mesh and 4 mesh. Porosity is determined using the weighing method. After calculating the average grain size obtained, it is then connected to the porosity by using the regression analysis method. Based on statistical calculations obtained linear regression equation Maros-Pangkep karst rock, namely Y=15.00-2.82X with R2.=0.78. The effect of grain size on the rock porosity of the Maros-Pangkep karst area is negative, meaning that the grain size is inversely proportional to the porosity of the rocks in the Maros-Pangkep karst area. The smaller the grain size, the larger the porosity and the smaller the porosity. Keywords: porosity, grain size, Pangkep karst rock, Maros karst rock
APA, Harvard, Vancouver, ISO, and other styles
3

Zajìček. "POROSITY AND σ-POROSITY." Real Analysis Exchange 13, no. 2 (1987): 314. http://dx.doi.org/10.2307/44151885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mera, M. E., M. Mor n, D. Preiss, and L. Zaj cek. "Porosity, -porosity and measures." Nonlinearity 16, no. 1 (November 22, 2002): 247–55. http://dx.doi.org/10.1088/0951-7715/16/1/315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Halauddin, Halauddin, Suhendra Suhendra, and Muhammad Isa. "Lattice Gas Automata Applications to Estimate Effective Porosity and Permeability Barrier Model of the Triangle with a Height Variation." Journal of Aceh Physics Society 9, no. 2 (May 1, 2020): 48–54. http://dx.doi.org/10.24815/jacps.v9i2.16056.

Full text
Abstract:
Penelitian ini bertujuan untuk menghitung porositas efektif (фeff) dan permeabilitas (k) menggunakan model segitiga dengan variasi tinggi yaitu 3, 4, 5, 6 dan 7 cm. Perhitungan porositas dan permeabilitas yang efektif dilakukan dengan menggunakan model Lattice Gas Automata (LGA), yang diimplementasikan dengan bahasa pemrograman Delphi 7.0. Untuk model segitiga penghalang dengan tinggi 3, 4, 5, 6 dan 7 cm, nilai porositas efektif dan permeabilitas, masing-masing: фeff (T1) = 0,1690, k (T1) = 0 , 001339 pixel2; фeff (T2) = 0,1841, k (T2) = 0,001904 pixel2; фeff (T3) = 0,1885, k (T3) = 0,001904 pixel2; фeff (T4) = 0,1938, k (T4) = 0001925 pixel2; dan фeff (T5) = 0,2053, k (T5) = 0,002400 pixel2. Dari hasil simulasi, diperoleh tinggi segitiga akan berpengaruh signifikan terhadap nilai porositas efektif dan permeabilitas. Pada segitiga lebih tinggi, menyebabkan tabrakan model aliran fluida LGA mengalami lebih banyak hambatan untuk penghalang, sehingga porositas efektif dan permeabilitas menurun. Sebaliknya, jika segitiga lebih rendah, menyebabkan tabrakan model aliran fluida LGA mengalami lebih sedikit hambatan untuk penghalang, sehingga porositas efektif dan permeabilitas meningkat.This research purposed to calculate the effective porosity (feff) and permeability (k) using the barrier model of the triangle with a high varying are 3, 4, 5, 6 and 7 cm. Effective porosity and permeability calculations performed using the model Lattice Gas Automata (LGA), which is implemented with Delphi 7.0 programming language. For model the barrier triangle with a high of 3, 4, 5, 6 and 7 cm, the value of effective porosity and permeability, respectively: feff(T1)=0,1690, k(T1)=0,001339 pixel2; feff(T2)=0,1841, k(T2)=0,001904 pixel2; feff(T3)=0,1885, k(T3)=0,001904 pixel2; feff(T4)=0,1938, k(T4)= 0001925 pixel2; and feff(T5)=0,2053, k(T5)=0,002400 pixel2. From the simulation results, obtained by the high of the triangle will be a significant effect on the value of effective porosity and permeability. If the triangle highest, causing the collision of fluid flow models LGA experience more obstacles to the barrier, so that the effective porosity and permeability decrease. Conversely, if the triangle lower, causing the collision of fluid flow models LGA experience less obstacles to the barrier, so that the effective porosity and permeability increases.Keywords: Effective porosity, permeability, model triangle, model LGA
APA, Harvard, Vancouver, ISO, and other styles
6

Kelar. "Topologies generated by porosity and strong porosity." Real Analysis Exchange 16, no. 1 (1990): 255. http://dx.doi.org/10.2307/44153694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rice, Roy W. "Evaluating Porosity Parameters for Porosity-Property Relations." Journal of the American Ceramic Society 76, no. 7 (July 1993): 1801–8. http://dx.doi.org/10.1111/j.1151-2916.1993.tb06650.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Yan En, Qin Han, Shen Ming Wei, Peng Lin Li, Ming Ming Yang, Yan Lei Qin, Yue Bo Wang, and Jin Hua Zhou. "Analysis to Effective Elastic Modulus and Porosity for Artificial Bone Scaffold with Hydroxyapatite Microspheres." Advanced Materials Research 424-425 (January 2012): 241–45. http://dx.doi.org/10.4028/www.scientific.net/amr.424-425.241.

Full text
Abstract:
The effective elastic modulus of hydroxyaptite (HA) microspheres composite scaffold is determined by the HA microspheres’ elastic modulus, accumulation topology model and the porosity. Experiments showed that different accumulation pattern and porosity has different modulus for bone scaffold. Furthermore, porosity and accumulation pattern are affected directly by the adhesive thickness. Here, we elucidate the effect of the scaffold parameters on bone sitffness and porostiy by means of a mathmatically based approach. Based on ANSYS simulation platform, the effective elastic modulus of HA microspheres scaffold was demonstrated. And the effective elastic modulus of artificial bone scaffold with different adhesive thickness was calculated by using APDL. Use the void fraction to illustrate the porosity of HA microspheres scaffold, which is an important consideration when attempting to evaluate the potential volume of water and hydrocarbons it may contain. By analysis of the optimization results, the effective elastic modulus reaches the maximum when the adhesive layer thickness is 0.05 mm, while the corresponding porosity is 0.5231
APA, Harvard, Vancouver, ISO, and other styles
9

Chan, JJ. "Performing Porosity." Performance Research 25, no. 5 (July 3, 2020): 129–34. http://dx.doi.org/10.1080/13528165.2020.1868854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gorman, Jessica. "Perfecting Porosity." Science News 159, no. 25 (June 23, 2001): 398. http://dx.doi.org/10.2307/3981922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Michalatos, Panagiotis, and Andrew Payne. "Digital porosity." International Journal of Rapid Manufacturing 7, no. 2/3 (2018): 219. http://dx.doi.org/10.1504/ijrapidm.2018.092907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Michalatos, Panagiotis, and Andrew Payne. "Digital porosity." International Journal of Rapid Manufacturing 7, no. 2/3 (2018): 219. http://dx.doi.org/10.1504/ijrapidm.2018.10013926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Pichon, Anne. "Persistent porosity." Nature Chemistry 6, no. 12 (November 20, 2014): 1028. http://dx.doi.org/10.1038/nchem.2124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

McKeown, Neil B. "Predictable porosity." Nature Materials 10, no. 8 (July 22, 2011): 563–64. http://dx.doi.org/10.1038/nmat3073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Repický. "AN EXAMPLE WHICH DISCERNS POROSITY AND SYMMETRIC POROSITY." Real Analysis Exchange 17, no. 1 (1991): 416. http://dx.doi.org/10.2307/44152222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

El Husseiny, Ammar, and Tiziana Vanorio. "Porosity-permeability relationship in dual-porosity carbonate analogs." GEOPHYSICS 82, no. 1 (January 1, 2017): MR65—MR74. http://dx.doi.org/10.1190/geo2015-0649.1.

Full text
Abstract:
We have investigated the effect of micrite content and macroporosity on the porosity-permeability relationship of dual-porosity carbonates using analog samples created in the laboratory. Specifically, we control the micrite-to-coarse-grains ratio to produce samples in which the micrite content is the only parameter changing. We also introduce into the microstructures controlled volumes of an acetone-soluble solid material (camphor) at the expense of the micrite aggregates, which functions as macropores after being dissolved. With regard to the effect of micrite on the porosity-permeability relationship, our results indicated that adding micrite to samples exhibiting a grain-supported microstructure reduces porosity and permeability drastically. By increasing the micrite content up to approximately 30%, the sample becomes micrite supported, at which point adding more micrite increases the porosity but no longer affects the permeability significantly. Samples characterized by a high micrite content were found to have lower permeability at any given porosity. When macropores are introduced at the expense of micrite aggregates, permeability increases drastically with porosity. The rate of increase in permeability decreases, however, as the micrite content of the original microstructure increases. Additionally, at any given micrite content, the permeability increases as the percentage of macropores increases because such pores do contribute more significantly to fluid flow as compared with the micropores characterizing micrite aggregates. We used the varying micrite-to-coarse-grains ratio and its effect on the porosity-permeability relationship to inform the Kozeny-Carman relation for a pack of spheres. Our analysis determined that micrite affects the porosity-permeability relationship of carbonates by reducing the effective particle size and increasing the percolation porosity. Additionally, incorporating the content of micrite and macropores into the analysis of the porosity-permeability relationship increased the coefficient of determination ([Formula: see text]) from 0.24 to 0.78. We concluded that knowledge of micrite content and macroporosity is of paramount importance to interpret and model porosity-permeability relationships in carbonates.
APA, Harvard, Vancouver, ISO, and other styles
17

Jalal, Sadiq, Hamza Rehman, Shams Ul Alam, and Abdul Wahid. "Estimation of Reservoir Porosity Using Seismic Post-Stack Inversion in Lower Indus Basin, Pakistan." International Journal of Economic and Environmental Geology 12, no. 2 (July 19, 2021): 60–64. http://dx.doi.org/10.46660/ijeeg.vol12.iss2.2021.588.

Full text
Abstract:
Seismic post-stack inversion is one of the best techniques for effective reservoir characterization. This studyintends to articulate the application of Model-Based Inversion (MBI) and Probabilistic Neural Networks (PNN) for theidentification of reservoir properties i.e. porosity estimation. MBI technique is applied to observe the low impedancezone at the porous reservoir formation. PNN is a geostatistical technique that transforms the impedance volume intoporosity volume. Inverted porosity is estimated to observe the spatial distribution of porosity in the Lower Goru sandreservoir beyond the well data control. The result of inverted porosity is compared with that of well-computed porosity.The estimated inverted porosity ranges from 13-13.5% which shows a correlation of 99.63% with the computed porosityof the Rehmat-02 well. The observed low impedance and high porosity cube at the targeted horizon suggest that it couldbe a probable potential sand channel. Furthermore, the results of seismic post-stack inversion and geostatistical analysisindicate a very good agreement with each other. Hence, the seismic post-stack inversion technique can effectively beapplied to estimate the reservoir properties for further prospective zones identification, volumetric estimation and futureexploration.
APA, Harvard, Vancouver, ISO, and other styles
18

Evans, Michael J., Paul D. Humke, and Karen Saxe. "Symmetric porosity of symmetric Cantor sets." Czechoslovak Mathematical Journal 44, no. 2 (1994): 251–64. http://dx.doi.org/10.21136/cmj.1994.128468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tabatabaie, Seyyed Mohammad, Ali Reza Bagheri Salec, and Haneen Ridha Jameel Allami. "POROSITY IN THE CONTEXT OF HYPERGROUPS." Eurasian Mathematical Journal 15, no. 1 (2024): 75–90. http://dx.doi.org/10.32523/2077-9879-2024-15-1-75-90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Masdari, Fadhlan Fadhlan. "Studi Pengaruh Ukuran Butir Terhadap Porositas dan Konduktivitas Hidrolik Batupasir dan Batulempung (Study of The Effect of Grain Size on Porosity and Hydraulic Conductivity of Sandstone and Claystone)." JURNAL TEKNOLOGI MINERAL FT UNMUL 10, no. 2 (December 31, 2022): 18. http://dx.doi.org/10.30872/jtm.v10i2.9021.

Full text
Abstract:
AbstrakPorositas dan konduktivitas hidrolik berhubungan langsung dengan aktivitas penambangan, di antaranya pembuatan jalan tambang (ramp) pada front area penambangan. Proses penambangan yang menyebabkan pori-pori tanah semakin kecil (ruang pori berkurang) sehingga porositas mengecil disebabkan pengaruh ukuran butir. Untuk mengetahui pengaruh ukuran butir terhadap porositas batupasir dan batulempung serta pengaruhnya juga klasifikasi nilai porositas dan konduktivitas hidrolik batupasir dan batulempung ini, metode yang digunakan ialah analisis ukuran butir untuk mengetahui besarnya ukuran butir dan jenis batuan menggunakan skala Wentworth (1992) kemudian pada analisis porositas menggunakan pengujian sifat fisik, dilakukan untuk mencari nilai yang berpengaruh terhadap kekuatan batuan seperti natural density, dry density, saturated density, apperent specific gravity, true specific gravity, specific gravity, natural water content, saturated water content, derajat kejenuhan, porositas dan void ratio (Arif, 2016). Pada ada analisis konduktivitas hidrolik digunakan alat permeameter untuk mengetahui kecepatan air dalam satuan (meter/detik) dari sampel batupasir dan batulempung dengan jumlah 10 sampel berbentuk coring.Hasil penelitian menunjukkan bahwa nilai ukuran butir batupasir adalah 1/8 atau 0,125 mm sedangkan batulempung adalah 1/256 atau 0,003 mm. Analisis porositas yang dilakukan pada sampel daerah penelitian menunjukkan persentase rata-rata 87,44 % untuk sampel batupasir dan 77,95 % untuk batulempung. Sedangkan dari hasil uji konduktivitas hidrolik batupasir didapatkan hasil 5,71 × 10-9 meter/detik dan 5,74 × 10-9 meter/detik.Kata Kunci: Ukuran Butir, Porositas, Konduktivitas Hidrolik, Batupasir, Batulempung AbstractPorosity and hydraulic conductivity are directly related to mining activities, including the construction of a minerampon the front of the mining area. The mining process causes the soil pores to get smaller (reduced pore space) so that the porosity decreases due to the influence of grain size. To determine the effect of grain size on the porosity of sandstones and claystones as well as its influence on the classification of porosity and hydraulic conductivity values of sandstones and claystones, the method used is grain size analysis to determine the size of grains and rock types using the Wentworth scale (1992) then porosity analysis using the Wentworth (1992) scale. Physical property testing is carried out to find values that affect rock strength such as natural density, dry density, saturated density, apperent specific gravity, true specific gravity, specific gravity, natural water content, saturated water content, degree of saturation, porosity and void ratio ( Arif, 2016). In the hydraulic conductivity analysis, a permeameter was used to determine the water velocity in units (meters/second) of sandstone and claystone samples with a total of 10 coring.The results showed that the value of the grain size of the sandstone was 1/8 or 0.125 mm while the claystone was 1/256 or 0.003 mm. Porosity analysis performed on the sample of the study area showed an average percentage of 87.44% for the sandstone sample and 77.95% for the claystone. Meanwhile, from the results of the hydraulic conductivity of sandstone, the results were 5.71 × 10-9 meters/second and 5.74 × 10-9 meters/second.Keywords: Grain Size, Porosity, Hydraulic Conductivity, Sandstone, Claystone
APA, Harvard, Vancouver, ISO, and other styles
21

Zimmermann, Karen, and J. Mark Hipfner. "Egg Size, Eggshell Porosity, and Incubation Period in the Marine Bird Family Alcidae." Auk 124, no. 1 (January 1, 2007): 307–15. http://dx.doi.org/10.1093/auk/124.1.307.

Full text
Abstract:
Abstract Although the ultimate factors that influence the duration of avian incubation periods are well known, we know much less about the proximate mechanisms by which birds adjust incubation period in response to selection. We tested the hypothesis that an adjustment in eggshell porosity is one such proximate mechanism (i.e., that avian species with higher ratios of incubation period to egg size lay eggs with less porous shells). Eggshell porosity affects the rate of gaseous exchange between the developing embryo and the external environment; thus, to the extent that embryonic metabolism is diffusion-limited, eggshell porosity could directly determine incubation period. To test that hypothesis, we collected eggs from seven species of Alcidae, a family of marine birds that exhibits an unusual degree of interspecific variation in incubation period, and measured egg mass and eggshell porosity (determined by the number and size of pores and the thickness of the shell). Incubation periods were obtained from the literature. Egg mass and eggshell porosity combined explained 87% of the variation in incubation period among the seven species, which included at least one member of each of the six main alcid lineages. As predicted, eggshell porosity and incubation period were negatively related, after controlling for egg mass. Our results are consistent with the hypothesis that evolutionary changes in avian incubation period may be attributed, at least in part, to adjustments in eggshell porosity. Taille de l’Œuf, Porosité de la Coquille et Période d’Incubation chez les Oiseaux Marins de la Famille des Alcidés
APA, Harvard, Vancouver, ISO, and other styles
22

Frot, Theo, Willi Volksen, Sampath Purushothaman, Robert L. Bruce, Teddie Magbitang, Dolores C. Miller, Vaughn R. Deline, and Geraud Dubois. "Post Porosity Plasma Protection: Scaling of Efficiency with Porosity." Advanced Functional Materials 22, no. 14 (April 17, 2012): 3043–50. http://dx.doi.org/10.1002/adfm.201200152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Safira, Hana, Slamet Sutjipto, and Dr Haruman Wiranegara, ST., MT. "Karakteristik Pengaruh Suhu Sintering terhadap Kekerasan, Porositas dan Penyusutan Roda Gigi Lurus berbahan Serbuk Besi." Metal Indonesia 42, no. 1 (June 30, 2020): 1. http://dx.doi.org/10.32423/jmi.2020.v42.1-10.

Full text
Abstract:
Roda gigi lurus merupakan jenis roda gigi yang paling umum digunakan sebagai komponen mesin. Serbuk yang digunakan pada penelitian ini merupakan serbuk besi (Fe) 100 mesh yang kemudian dikompaksi dengan gaya 8 ton dan di sintering pada beberapa variasi suhu yaitu 800, 900, 1000, 1100 dan 1200 oC yang diambil dari 0,5-0,8 titik cair (Tm) serbuk utama. Penelitian ini bertujuan untuk melihat karakteristik pengaruh suhu sintering pada kekerasan, porositas dan penyusutan roda gigi lurus berbahan serbuk besi (Fe). Waktu sintering dibuat konstan yaitu 60 menit. Beberapa pengujian dilakukan untuk dapat mencapai tujuan dari penelitian ini seperti perhitungan presentase penyusutan dan porositas, pengujian porositas pada struktur mikro dengan pengamatan metalografi, dan pengujian kekerasan mikro Vickers. Hasil penelitian menunjukkan bahwa seiring dengan naiknya suhu sintering maka penyusutan bertambah, porositas menurun dan nilai kekerasannya naik. Terdapat beberapa hasil penelitian yang tidak sesuai pada nilai porositas dan kekerasan produk. Hal tersebut dikarenakan beberapa faktor diantaranya sulit mencapai keseragaman densitas, preparasi material yang tidak sempurna dan pengaturan nilai kompaksi yang berbeda-beda pada setiap sampel karena mesin press mekanik yang digunakan.Spur gears are the most common type of gears used as engine components. The powder used in this study was 100 mesh iron (Fe) powder then compacted with a force of 8 tons and sintered at several temperature variations are 800, 900, 1000, 1100, and 1200 oC taken from 0.5-0.8 melting points (Tm) main powder. This study aims to look at the characteristics of the effect of sintering temperature on hardness, porosity, and shrinkage of spur gears made from iron powder (Fe). The sintering time is made constant at 60 minutes. Several tests were conducted to achieve the objectives of this study such as the calculation of the percentage of shrinkage and porosity, porosity testing on microstructure with metallographic observations, and micro hardness testing of Vickers. The results show that as the sintering temperature increases, shrinkage increases, porosity decreases, and the hardness value increases. There are some results of research that are not suitable for the porosity and hardness value of the product. This is due to several factors including difficult to achieve uniformity of density, imperfect material preparation, and different compacting value settings in each sample due to the mechanical press machine used.
APA, Harvard, Vancouver, ISO, and other styles
24

Liang Bao-Jun. "double-porosity medium." Acta Physica Sinica 63, no. 11 (2014): 119101. http://dx.doi.org/10.7498/aps.63.119101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Salje, Ekhard K. H. "Porosity in minerals." AIMS Materials Science 9, no. 1 (2021): 1–8. http://dx.doi.org/10.3934/matersci.2022001.

Full text
Abstract:
<abstract> <p>Minerals typically form porous assemblies with porosity extending from a few percent to ca. 35% in porous sandstones, and over 50% in tuff, clays, and tuff. While transport of gases and liquids are widely researched in these materials, much less is known about their mechanical behaviour under stress. With the development of artificial porous materials such questions become more pertinent, e.g., for applications as fillers in car bumpers and airplane wings, and nanoscale applications in memistors and neuromorphic computers. This article argues that elasticity and related dielectric and magnetic properties can be described‑to some extend-as universal in porous materials. The collapse of porous materials under stress triggers in many cases avalanches of collapsed regions which are scale invariant and follow irreversible power law energy emission. Emphasis is given to a recent simple collapse model by Casals and Salje which covers many of the observed phenomena.</p> </abstract>
APA, Harvard, Vancouver, ISO, and other styles
26

Zamfirescu. "Porosity in Convexity." Real Analysis Exchange 15, no. 2 (1989): 424. http://dx.doi.org/10.2307/44152028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

O'Dwyer, Colm. "(Invited) Material Porosity." ECS Transactions 109, no. 3 (September 30, 2022): 37–59. http://dx.doi.org/10.1149/10903.0037ecst.

Full text
Abstract:
Big pores, small pores, ordered pores, random pores – they all have a function and as is often found, show behaviour in new materials that is not always predicted or obvious at the outset. I started my research journey trying to put extremely thin films onto near-perfect III-V crystals to control (opto)electronic properties and when the first TEM on our campus showed remarkable pore growth and structure in InP almost 21 years ago, the electrochemical modification of the InP made more sense. In this paper, I will summarise a few aspects of research into porous materials and semiconductors, from porous InP that led to studies of other porous semiconductors such as silicon, GaN, ZnO and Indium Tin oxide (ITO), to periodically ordered photonic crystal porous structures and some optical, thermal and electrochemical properties, photocatalysis, studies in batteries and related that were enabled or modified by the porous structure.
APA, Harvard, Vancouver, ISO, and other styles
28

Książczak, A., A. Radomski, and T. Zielenkiewicz. "Nitrocellulose porosity - thermoporometry." Journal of Thermal Analysis and Calorimetry 74, no. 2 (2003): 559–68. http://dx.doi.org/10.1023/b:jtan.0000005194.70360.c1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gareth Speight. "Directional Lower Porosity." Real Analysis Exchange 39, no. 1 (2014): 45. http://dx.doi.org/10.14321/realanalexch.39.1.0045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

O'Dwyer, Colm. "(Invited) Material Porosity." ECS Meeting Abstracts MA2022-02, no. 30 (October 9, 2022): 1092. http://dx.doi.org/10.1149/ma2022-02301092mtgabs.

Full text
Abstract:
We really like pores in our research group. Big pores, small pores, ordered pores, random pores – they all have a function and as is often found, show behaviour that is not always predicted. I started my research journey trying to put extremely thin films onto near-perfect III-V crystals to control (opto)electronic properties and when the first TEM on our campus showed the image in Fig. 1 almost 21 years ago (1,2), the electrochemical modification of the InP made more sense. In this talk, I will summarise the journey from porous InP that led to studies of other porous semiconductors such as silicon (3-10) and GaN (11-15), periodically ordered photonic crystal porous structures (16-26) and some optical, thermal and electrochemical properties photocatalysis, batteries and related that were modified by the porous structure, leading up to the most recent porous materials (27). References C. O’Dwyer, D. N. Buckley, D. Sutton, M. Serantoni and S. B. Newcomb, J. Electrochem. Soc., 154, H78 (2007). C. O’Dwyer, D. N. Buckley, D. Sutton and S. B. Newcomb, J. Electrochem. Soc., 153, G1039 (2006). C. O'Dwyer, W. McSweeney and G. Collins, ECS J. Solid State Sci. Technol., 5, R3059 (2016). W. McSweeney, C. Glynn, H. Geaney, G. Collins, J. D. Holmes and C. O'Dwyer, Semicond. Sci. Technol., 31, 014003 (2016). W. McSweeney, H. Geaney and C. O'Dwyer, Nano Res., 8, 1395 (2015). W. McSweeney, H. Geaney, C. Glynn, D. McNulty and C. O'Dwyer, ECS Trans., 66, 39 (2015). W. McSweeney, O. Lotty, C. Glynn, H. Geaney, J. D. Holmes and C. O'Dwyer, Electrochim. Acta, 135, 356 (2014). W. McSweeney, O. Lotty, N. V. V. Mogili, C. Glynn, H. Geaney, D. Tanner, J. D. Holmes and C. O'Dwyer, J. Appl. Phys., 114, 034309 (2013). E. Quiroga-González, J. Carstensen, C. Glynn, C. O’Dwyer and H. Föll, Phys. Chem. Chem. Phys., 16, 255 (2014). C. Glynn, K.-M. Jones, V. Mogili, W. McSweeney and C. O'Dwyer, ECS J. Solid State Sci. Technol., 6, N3029 (2017). O. V. Bilousov, J. J. Carvajal, A. Vilalta-Clemente, P. Ruterana, F. Díaz, M. Aguiló and C. O’Dwyer, Chem. Mater., 26, 1243−1249 (2014). O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló and C. O’Dwyer, ACS Appl. Mater. Interface, 6, 17954 (2014). O. V. Bilousov, J. J. Carvajal, H. Geaney, F. Díaz, M. Aguiló and C. O’Dwyer, CrystEngComm, 16, 10255 (2014). O. V. Bilousov, H. Geaney, J. J. Carvajal, V. Z. Zubialevich, P. J. Parbrook, A. Giguère, D. Drouin, F. Díaz, M. Aguiló and C. O’Dwyer, Appl. Phys. Lett., 103, 112103 (2013). O. V. Bilousov, J. J. Carvajal, D. Drouin, X. Mateos, F. Díaz, M. Aguiló and C. O'Dwyer, ACS Appl. Mater. Interfaces, 4, 6927 (2012). S. O'Hanon, D. McNulty, R. Tian, J. Coleman and C. O'Dwyer, J. Electrochem. Soc., 167, 140532 (2020). D. McNulty, H. Geaney, Q. Ramasse and C. O'Dwyer, Adv. Funct. Mater., 30, 2005073 (2020). A. Lonergan, C. Hu and C. O'Dwyer, Phys. Rev. Materials, 4, 065201 (2020). G. Collins, A. Lonergan, D. McNulty, C. Glynn, D. Buckley, C. Hu and C. O’Dwyer, Adv. Mater. Interfaces, 7, 1901805 (2020). D. McNulty, A. Lonergan, S. O'Hanlon and C. O'Dwyer, Solid State Ionics, 314, 195 (2018). D. McNulty, H. Geaney, D. Buckley and C. O'Dwyer, Nano Energy, 43, 11 (2018). A. Lonergan, D. McNulty and C. O'Dwyer, J. Appl. Phys., 124, 095106 (2018). S. O'Hanlon, D. McNulty and C. O'Dwyer, J. Electrochem. Soc., 164, D111 (2017). D. McNulty, E. Carroll and C. O'Dwyer, Adv. Energy Mater., 7, 1602291 (2017). E. Armstrong and C. O'Dwyer, J. Mater. Chem. C, 3, 6109 (2015). E. Armstrong, D. McNulty, H. Geaney and C. O’Dwyer, ACS Appl. Mater. Interfaces, 7, 27006 (2015). A. Lonergan, B. Murphy and C. O'Dwyer, ECS J. Solid State Sci. Technol., 10, 085001 (2021). Figure 1. Bright field TEM of a cross section of an InP electrode after a potential sweep from 0.0 to 0.44 V (SCE) in 5 mol dm-3 KOH at 2.5 mV s-1. The plane of the micrograph is (011). Figure 1
APA, Harvard, Vancouver, ISO, and other styles
31

Erickson, Stephanie N., and Richard D. Jarrard. "Porosity-formation factor and porosity-velocity relationships in Barbados prism." Journal of Geophysical Research: Solid Earth 104, B7 (July 10, 1999): 15391–407. http://dx.doi.org/10.1029/1999jb900070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Peisheng, Chao Fu, Tiefan Li, and Changxu Shi. "Relationship between tensile strength and porosity for high porosity metals." Science in China Series E: Technological Sciences 42, no. 1 (February 1999): 100–107. http://dx.doi.org/10.1007/bf02917065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kalatur, Ekaterina S., Svetlana P. Buyakova, Sergey N. Kulkov, Irene Gotman, and István Kocserha. "Porosity and Mechanical Properties of Zirconium Ceramics." Epitoanyag - Journal of Silicate Based and Composite Materials 66, no. 2 (2014): 31–34. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2014.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yan, Weichao, Jianmeng Sun, Yang Sun, and Naser Golsanami. "A robust NMR method to measure porosity of low porosity rocks." Microporous and Mesoporous Materials 269 (October 2018): 113–17. http://dx.doi.org/10.1016/j.micromeso.2018.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dvorkin, Jack, and Ivar Brevik. "Diagnosing high‐porosity sandstones: Strength and permeability from porosity and velocity." GEOPHYSICS 64, no. 3 (May 1999): 795–99. http://dx.doi.org/10.1190/1.1444589.

Full text
Abstract:
Nonuniqueness in relating velocity to porosity in core and well‐log data complicates interpretation of sonic and seismic measurements. One reason for this nonuniqueness in sandstones is clay (e.g., Han, 1986). Another reason is textural variability among samples. Dvorkin and Nur (1996) examine two relatively clay‐free sandstone groups in the same porosity range, but whose velocities significantly differed (Figure 1a). By comparing the data with effective‐medium theories, they interpret this velocity difference as resulting from the difference in the position of diagenetic cement. The explanation is that in the “fast” (Oseberg) rocks (contact) cement is located predominantly at the grain contacts, whereas in the “slow” (Troll) rocks (noncontact) cement is located predominantly away from these contacts.
APA, Harvard, Vancouver, ISO, and other styles
36

Biliński, Bogdan, and Andrzej L. Dawidowicz. "Correlation between surface free energy and porosity of controlled-porosity glasses." Colloids and Surfaces A: Physicochemical and Engineering Aspects 70, no. 1 (January 1993): 61–67. http://dx.doi.org/10.1016/0927-7757(93)80496-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kawa, Ernawati, Minsyahril Bukit, and Albert Zicko Johannes. "PENENTUAN SIFAT MEKANIS DAN FISIS BATU BATA DENGAN PENAMBAHAN ARANG TEMPURUNG KELAPA ASAL ALOR." Jurnal Fisika : Fisika Sains dan Aplikasinya 3, no. 1 (December 17, 2018): 80–85. http://dx.doi.org/10.35508/fisa.v3i3.605.

Full text
Abstract:
Abstrak Telah dilakukan penelitian tentang penentuan sifat mekanis dan fisis batu bata dengan penambahan tempurung kelapa asal alor. Penenlitian ini bertujuan mengetahui kualitas batu bata yang memenuhi standar kelayakan sebagai bahan konstruksi dengan penambahan arang tempurung kelapa aal alor dengan presentasi 0%, 5%, 10%, 15% terhadap tanah liat (lempung). Batu bata dicetak dengan prosedur pemadatan, pengringn dan pembakaran. Setelah prosedur pencetakkan selesai kemudian di lanjutkan dengan pengujian sefat mekanis dan sifat fisis, yaitu uji kuat tekan (compression strength), densitas (density), porositas (porosity) hasil kuat tekan batu bata didapatkan berdasarkan pengujian: a) uji kuat tekan, batu bata tanpa penambahan (0%) : 4,94 meemenuhi standar kuat tekan kelas 50 (SNI 15-2094-2000), b) uji porositas, batu bata 0% dan 5% : 3,82% dan 17,93% memenuhi standar porositas dengan batas maksimum 20% (SNI 15-2094-2000) dan uji densitas, batu bata tidak ada yang memenuhi standar (SII 0021-1978) Kata kunci: sifat mekanis, sifat fisis, tempurung kelapa, densitas, porositas, kuat tekan Abstract A research had been conducted to determine physical and mechanical properties of the bricks with the addition coconut shell charcoal from alor. This research aims at the quality of the bricks to meet the standars of eligibility as a contruction material. The addition of coconut shell charcoal is variate with the presentage 0%, 5%, 10%, 15% to the clay mass. The brick being printed with procedure compaction, drying, and baking. After the printing procedure is done then next is testing the mechanical and physical properties, that is compression strength test, density test, and porosity test. The brick quality result is obtained based on the test: a) compression strength test, the brick without addition (0%) : 4,94 (SNI 15-2094-2000) is comply with the standard compression strength the class 50 , b) porosity test, the brick 0% and 5% (3,82% and 17,93%) meet the standard with the maximum limit 20% ( SNI 15-2094-2000) , and c) density test, every bricks does not meet the standard (SII 0021- 1978). Keywords: mechanical properties, physical properties, coconut shell, density, porosity, compression strength
APA, Harvard, Vancouver, ISO, and other styles
38

Khoiriyah, Yustin Nur. "Porositas Lempeng Resin Akrilik Pasca Perendaman Rebusan Daun Sirih dan Kayu Siwak." Jurnal Vokasi Kesehatan 4, no. 1 (April 15, 2018): 39. http://dx.doi.org/10.30602/jvk.v4i1.122.

Full text
Abstract:
Abstract: Porosity Of Acrylic Resin After Immersion In The Boiled Water Of Betel Leaves And Siwak Wood. Denture acrylic resin can be a collection point for stain, tar, and plaque and this will adversely affect the oral health of the denture wearer. One way to clean the oral cavity of denture users is to use mouthwash and soak the teeth with a cleaning solution/denture cleanser. Mouthwash solutions and chemical-based cleaning solutions at relatively high prices, and affect the porosity of dentures. Therefore, the need for alternative materials that are safe, cheap, natural as well as having antimicrobial function without affecting the level of porosity of denture. This study was to determine the effect of the combination of boiled water of betel leaves and siwak wood to the porosity of the acrylic resin plate. This study was an experimental study, posttest only design with the control group has been done at the integrated laboratory of Poltekkes Tanjungkarang, July – December 2015. Data were analyzed by One Way ANOVA and continued with Least Significant Difference test. The results showed that the combination of betel leaves and siwak wood does not affect the porosity of the acrylic resin plate. The highest concentration of the combination of betel leaf water and siwak wood that did not differ significantly with negative control (aquades) was 75% with longest immersion period was 59 days. Abstrak: Porositas Lempeng Resin Akrilik Pasca Perendaman Rebusan Daun Sirih Dan Kayu Siwak. Gigi tiruan resin akrilik dapat menjadi tempat pengumpulan stain, tar, dan plak dan hal ini akan berpengaruh jelek terhadap kesehatan mulut pemakai gigi tiruan. Salah satu cara menjaga kebersihan rongga mulut pengguna gigi tiruan adalah dengan menggunakan obat kumur dan merendam gigi-tiruan tersebut dengan larutan pembersih/denture cleanser. Larutan obat kumur dan larutan pembersih berbahan dasar dari bahan kimia dengan harga yang relatif mahal, serta mempengaruhi porositas gigi tiruan. Oleh karena itu, perlu adanya bahan alternatif yang aman, murah, alami sekaligus memiliki fungsi antimikroba dengan tanpa mempengaruhi tingkat porositas gigi tiruan. Tujuan penelitian ini adalah untuk mengetahui pengaruh kombinasi air rebusan daun sirih dan kayu siwak terhadap porositas lempeng resin akrilik. Penelitian ini adalah penelitian eksperimental, rancangan post test only with control group design, dilaksanakan di Laboratorium Terpadu Poltekkes Tanjungkarang, Juli-Desember 2015. Analisis data dengan uji One Way ANOVA dan dilanjutkan uji Least Significant Difference. Hasil penelitian menunjukkan bahwa kombinasi air rebusan daun sirih dan kayu siwak tidak mempengaruhi porositas lempeng resin akrilik. Konsentrasi tertinggi dari kombinasi air rebusan daun sirih dan kayu siwak yang tidak berbeda signifikan dengan kontrol negatif (aquades) adalah 75% dengan lama perendaman terpanjang yaitu 59 hari.
APA, Harvard, Vancouver, ISO, and other styles
39

Tangyuan, N., H. Bin, J. Nianyuan, T. Shenzhong, and L. Zengjia. "Effects of conservation tillage on soil porosity in maize-wheat cropping system." Plant, Soil and Environment 55, No. 8 (September 9, 2009): 327–33. http://dx.doi.org/10.17221/25/2009-pse.

Full text
Abstract:
A study was conducted on the effect of two single practices, including soil tillage and returning straw to soil, and their interaction on soil porosity of maize-wheat cropping system. Field experiments involved four tillage practices, including conventional tillage (C), zero-tillage (Z), harrow-tillage (H) and subsoil-tillage (S), with straw absent (A) or straw present (P). Total porosity, capillary porosity and non-capillary porosity of soil were investigated. The results showed that the soil total porosity of 0–10 soil layer was mostly affected; conventional tillage can increase the capillary porosity of soil, but the non-capillary porosity of S was the highest. Returning of straw can increase the porosity of soil. Through the analysis of affecting force, it can be concluded that interaction of soil tillage and straw is the most important factor to soil porosity, while the controlling factor to non-capillary porosity was soil tillage treatment.
APA, Harvard, Vancouver, ISO, and other styles
40

Plácido, Reginaldo, Shyrlei Benkendorf, and Denise Todorov. "Porosidade e permeabilidade." Metodologias e Aprendizado 4 (June 7, 2021): 183–96. http://dx.doi.org/10.21166/metapre.v4i.2221.

Full text
Abstract:
O uso da cultura escolar ganhou impulso nas investigações da história das instituições escolares. Neste artigo, a partir dos estudos de cultura escolar, a problematização gravitou em torno de possíveis categorias a serem utilizadas numa abordagem meso-analítica da história das instituições escolares. Busca-se com isso, sugerir categorias que possam contribuir para determinar os espaços de diálogo e influência da instituição escolar. Para isso, o texto apresenta uma contextualização teórica sobre história cultural e mesoanálise, aborda o conceito de cultura escolar e suas possibilidades, bem como o conceito e a possível relação das categorias permeabilidade na pesquisa em história das instituições escolares. Esta aproximação dos conceitos, bem como sua problematização, ocorre em diálogo com autores que ampliaram os estudos sob o olhar das culturas escolares e, neste sentido, este texto busca se inserir no debate teórico, consciente do não esgotamento da discussão dos conceitos a serem trabalhados.
APA, Harvard, Vancouver, ISO, and other styles
41

Rouge,, N., C. Dubois,, and C. Vermillet,. "Characterization of the Open Porosity of Brake Pads. II. Correlations Between Volume Porosity and Surface Area Porosity. Structural Modeling." Science and Engineering of Composite Materials 4, no. 4 (December 1995): 215–22. http://dx.doi.org/10.1515/secm.1995.4.4.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jiang, Gui-pu, Yan Fu, Zhong-shan Shen, Wen Yu, Teng-fei Cao, Ying Du, Min Liu, Yu-ming Lei, Ming-duo Dai, and Yi-xiao Li. "Exploration of the comparison method between nuclear magnetic logging porosity and core detection porosity." Journal of Physics: Conference Series 2594, no. 1 (October 1, 2023): 012005. http://dx.doi.org/10.1088/1742-6596/2594/1/012005.

Full text
Abstract:
Abstract Porosity is the basis of reservoir parameter interpretation, permeability and saturation parameters are closely related to porosity, and the interpretation model of porosity has been established with the correlation between core porosity and electrical properties, and core porosity is the effective porosity measured by applying liquid saturation method. With the application of nuclear magnetic logging technology, the interpretation of porosity is more refined and can be subdivided into total porosity, effective porosity, capillary-bound water porosity, and clay-bound water porosity. In order to apply the nuclear magnetic logging technology more accurately, it is necessary to find a method to compare the two porosity detection methods. In this paper, we discuss the meaning of core porosity through the operation procedure of core detection porosity, combined with core piezometric curve and core density calculation method, get the conclusion that core detection porosity approximates total porosity, explore the comparison method between total porosity and core porosity of nuclear magnetic logging, and lay the geological foundation for the next step of applying nuclear magnetic logging data to improve porosity interpretation.
APA, Harvard, Vancouver, ISO, and other styles
43

Reschke, Verena, Alexandra Laskowsky, Mathias Kappa, Kaishi Wang, Rajendra K. Bordia, and Michael Scheffler. "Polymer derived ceramic foams with additional strut porosity." Epitoanyag - Journal of Silicate Based and Composite Materials 63, no. 3-4. (2011): 57–61. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2011.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Moreno, José Pedro. "Porosity and diametrical completeness." Israel Journal of Mathematics 242, no. 2 (April 2021): 875–90. http://dx.doi.org/10.1007/s11856-021-2151-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mulsow, Sandor, Bernard P. Boudreau, and John A. Smith. "Bioturbation and porosity gradients." Limnology and Oceanography 43, no. 1 (January 1998): 1–9. http://dx.doi.org/10.4319/lo.1998.43.1.000i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mulsow, Sandor, Bernard P. Boudreau, and John N. Smith. "Bioturbation and porosity gradients." Limnology and Oceanography 43, no. 1 (1998): l—9. http://dx.doi.org/10.4319/lo.1998.43.1.000l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kowalczyk, Stanislaw, and Malgorzata Turowska. "Lower Porosity on R2." Symmetry 13, no. 9 (August 30, 2021): 1594. http://dx.doi.org/10.3390/sym13091594.

Full text
Abstract:
In this paper, we study the properties of a lower porosity of a set in R2. It turns out that the properties of the lower and upper porosity are symmetrical, except that the main tools for testing the lower porosity are not balls but cones. New families of topologies on R2 generated by the lower porosity are defined. Furthermore, by applying the notion of the lower porosity, we introduce the definition of generalized continuity. Using defined topologies, we study properties of this continuity. We show that the properties of topologies generated by the lower and (upper) porosity are symmetrical.
APA, Harvard, Vancouver, ISO, and other styles
48

Foran. "BOUNDED VARIATION AND POROSITY." Real Analysis Exchange 12, no. 2 (1986): 468. http://dx.doi.org/10.2307/44153590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Benjamin, Andrew. "Porosity At The Edge:." Architectural Theory Review 10, no. 1 (April 2005): 33–43. http://dx.doi.org/10.1080/13264820509478527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Barbour, L. J., L. Dobrzanska, and G. O. Lloyd. "Porosity in molecular crystals." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c60. http://dx.doi.org/10.1107/s010876730509745x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography