Academic literature on the topic 'Porosity Characterization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Porosity Characterization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Porosity Characterization"
Jalal, Sadiq, Hamza Rehman, Shams Ul Alam, and Abdul Wahid. "Estimation of Reservoir Porosity Using Seismic Post-Stack Inversion in Lower Indus Basin, Pakistan." International Journal of Economic and Environmental Geology 12, no. 2 (July 19, 2021): 60–64. http://dx.doi.org/10.46660/ijeeg.vol12.iss2.2021.588.
Full textChen, Yen-Chun, Felix N. Buechi, Chrysoula Karageorgiou, Jens Eller, and Thomas J. Schmidt. "Porosity, Porosity Heterogeneity and Morphology Characterization of Microporous Layers of Commercial Gdls." ECS Meeting Abstracts MA2022-02, no. 39 (October 9, 2022): 1375. http://dx.doi.org/10.1149/ma2022-02391375mtgabs.
Full textIshutov, Sergey, Franciszek J. Hasiuk, Chris Harding, and Joseph N. Gray. "3D printing sandstone porosity models." Interpretation 3, no. 3 (August 1, 2015): SX49—SX61. http://dx.doi.org/10.1190/int-2014-0266.1.
Full textRashapov, Rinat R., Jonathan Unno, and Jeff T. Gostick. "Characterization of PEMFC Gas Diffusion Layer Porosity." Journal of The Electrochemical Society 162, no. 6 (2015): F603—F612. http://dx.doi.org/10.1149/2.0921506jes.
Full textTaylor, D. J., P. F. Fleig, and S. L. Hietala. "Technique for characterization of thin film porosity." Thin Solid Films 332, no. 1-2 (November 1998): 257–61. http://dx.doi.org/10.1016/s0040-6090(98)01264-4.
Full textSantos, Teresa P., M. Fátima Vaz, Moisés L. Pinto, and Ana P. Carvalho. "Porosity characterization of old Portuguese ceramic tiles." Construction and Building Materials 28, no. 1 (March 2012): 104–10. http://dx.doi.org/10.1016/j.conbuildmat.2011.08.004.
Full textZhang, Shuxiao, Gaolong Lv, Shifeng Guo, Yanhui Zhang, and Wei Feng. "Porosity Characterization of Thermal Barrier Coatings by Ultrasound with Genetic Algorithm Backpropagation Neural Network." Complexity 2021 (April 29, 2021): 1–9. http://dx.doi.org/10.1155/2021/8869928.
Full textNugroho, Ferry Anggoro Ardy. "Fabrication and Characterization of Supported Porous Au Nanoparticles." Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika 9, no. 1 (December 9, 2024): 1–12. https://doi.org/10.36312/e-saintika.v9i1.2427.
Full textAbubakar, M., A. B. Aliyu, and Norhayati Ahmad. "Characterization of Nigerian Clay as Porous Ceramic Material." Advanced Materials Research 845 (December 2013): 256–60. http://dx.doi.org/10.4028/www.scientific.net/amr.845.256.
Full textMartins, Luiz M. R., and Thomas L. Davis. "From ocean-bottom cable seismic to porosity volume: A prestack PP and PS analysis of a turbidite reservoir, deepwater Campos Basin, Brazil." Interpretation 2, no. 2 (May 1, 2014): SE91—SE103. http://dx.doi.org/10.1190/int-2013-0150.1.
Full textDissertations / Theses on the topic "Porosity Characterization"
Vazehrad, Sadaf. "Shrinkage Porosity Characterization in Compacted Cast Iron Components." Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127261.
Full textVAKIFAHMETOGLU, CEKDAR. "FABRICATION AND CHARACTERIZATION OF POROUS CERAMICS WITH HIERARCHICAL POROSITY." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3422377.
Full textIl lavoro di ricerca esposto nella presente tesi riguarda la produzione di componenti porosi mediante l’uso di polimeri preceramici quali precursori iniziali. Durante una fase preliminare del lavoro di ricerca, sulla quale si è basata la produzione di ceramici cellulari derivati da polimeri, sono state studiate varie composizioni. Ceramici cellulari di SiOC aventi una morfologia complessa sono stati realizzati usando tre diversi tipi di precursori polisilossanici. La formazione di pori è stata attribuita alle differenti strutture dei polimeri, che hanno comportato differenti comportamenti durante la pirolisi (maggiore perdita in peso, diminuzione del volume e sviluppo di gas). In tale contesto, precursori polisilossanici sono stati reticolati, ridotti in polvere, setacciati e pressati al fine di ottenere campioni risultanti in monoliti di SiOC poroso, mediante pirolisi. I campioni ceramici cosí ottenuti esibivano valori di resistenza a compressione fino a 37,4 MPa (con una porosità pari a circa il 53% in volume). La pressatura isostatica a caldo ha consentito la formazione di campioni di SiOC(N) aventi piezoresistivitá estremamente elevata, compresa tra 100 e 1700 ad alte temperature (700-1000°C). Utilizzando un precursore polisilazanico, sono state prodotte schiume microcellulari di SiOCN e macrocellulari di SiCN, mediante l’impiego di fillers sacrificali o di un agente schiumante fisico. Le schiume presentavano una porosità prevalentemente interconnessa compresa tra ~60 e 80 vol% ed una resistenza a compressione compresa tra ~1 e 11 MPa. Utilizzando procedimenti simili, sono stati inoltre prodotti campioni monolitici porosi (70 vol%) di PDC contenenti boro. Al fine di produrre componenti ceramici derivati da polimeri, dotati di porosità gerarchica e di elevata area superficiale specifica (SSA), particelle di PMO (Periodic Mesoporous Organosilica) sono state immerse in un polimero polisilossanico schiumato e, mediante pirolisi, sono stati ottenuti campioni monolitici di SiOC permeabili dotati di una elevata SSA, pari a 137 m2/g. Mediante tale metodo, pirolisi catalizzata assistita (CAP), nanofili di nitruro di silicio, di ossinitruro di silicio o di carburo di silicio sono stati formati direttamente durante la pirolisi di campioni monolitici altamente porosi. L’aumento della temperatura di pirolisi ha provocato un aumento nella lunghezza e nella quantità di nanostrutture prodotte. Il meccanismo di crescita dei nanofili dipende dalle condizioni di pirolisi e dal tipo di catalizzatore. La presenza dei nanofili ha permesso di raggiugere elevati valori di SSA nei ceramici macroporosi, compresa tra 10 e 110 m2/g. Le diversità in tali valori sono state spiegate in termini di morfologia e quantità dei nanofili prodotti impiegando due diversi catalizzatori (Co e Fe). L’ablazione superficiale (etching) ad elevate temperature di ceramici di SiCN ha condotto a materiali contenenti carbonio amorfo o grafitico dotati di una struttura gerarchica bimodale dei pori (micro-mesopori con dimensione media dei pori di 3-11 nm) ed elevata SSA, fino a 2400 m2/g. La porosità risultante (dimensione dei pori, PSD e SSA) dipendeva fortemente dall’evoluzione della fase nanostrutturale del materiale PDC, nonché dalle condizioni di etching. La dimensione media dei pori aumentava all’aumentare della temperatura di pirolisi.
Layman, John Morgan II. "Porosity Characterization Utilizing Petrographic Image Analysis: Implications for Identifying and Ranking Reservoir Flow Units, Happy Spraberry Field, Garza County, Texas." Texas A&M University, 2004. http://hdl.handle.net/1969.1/399.
Full textAUGUSTO, KAREN SOARES. "POROSITY CHARACTERIZATION OF IRON ORE PELLETS BY X-RAY MICROTOMOGRAPHY." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29701@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
As pelotas de minério de ferro são uma das principais matérias-primas, juntamente com o minério granulado e o sínter, do processo de fabricação do aço. São produzidas pelo processo de pelotização, aproveitando a parcela ultrafina do minério, que antes era considerada rejeito do processo de beneficiamento. A porosidade gerada no processo de fabricação das pelotas é uma importante característica do material, pois permite o fluxo interno de gases, aumentando a sua redutibilidade e consequentemente a eficiência do processo. Por outro lado, a porosidade afeta a resistência física das pelotas, que precisam suportar todos os esforços sofridos durante as operações de manuseio, transporte e dos processos metalúrgicos. Dessa forma, a quantidade, tamanho, forma e a distribuição espacial dos poros são características importantes no controle de qualidade das pelotas, que são produzidas em grande escala e vem ganhando cada vez mais importância nas usinas siderúrgicas. Tradicionalmente, as técnicas analíticas mais utilizadas na caracterização da porosidade desses materiais são porosimetria por intrusão de mercúrio (PIM) e microscopia ótica (MO). A PIM só permite avaliar poros que estão conectados à superfície, além de utilizar o mercúrio que é um material volátil e tóxico, que oferece riscos ao meio ambiente e à saúde humana. A MO é limitada ao espaço bidimensional, podendo trazer informações pouco representativas. Ambas as técnicas são destrutivas, podendo degradar o material no processo de preparação e também impossibilitando análises posteriores numa mesma amostra. O presente trabalho propõe desenvolver uma metodologia de caracterização tridimensional de porosidade em pelotas de minério de ferro, envolvendo a técnica de microtomografia de raios X (MicroCT) e análise de imagens, a fim de estudar separadamente os diferentes tipos de poros (abertos e fechados), e comparar com as técnicas clássicas citadas anteriormente. Foram utilizadas 25 amostras cedidas pela Vale, analisadas Augusto, Karen Soares; Paciornik, Sidnei. Microtomografia Computadorizada de Raios X Aplicada à Caracterização de Porosidade em Pelotas de Minério de Ferro. Rio de Janeiro, 2016. 156p. Tese de Doutorado – Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro. primeiramente por MicroCT e posteriormente por PIM ou MO. Para tentativas de otimização, foram testados alguns parâmetros de análise em MicroCT, tais como o uso de lentes, diferentes configurações geométricas dos dispositivos que compõem o equipamento e número de projeções, que afetam diretamente a resolução e o tempo de análise. Comparou-se os resultados obtidos em MicroCT com os obtidos por PIM e MO, em amostras equivalentes, observando-se valores menores de porosidade para a técnica de MicroCT, devido à pior resolução do sistema. Porém, a metodologia apresentada foi capaz de quantificar a porosidade aberta e fechada separadamente, descrever a distribuição espacial, além de medir tamanho e forma, dos poros.
Iron ore pellets are one of the major iron-bearing raw materials, along with lump ore and sinter, for the steelmaking processes. Pellets are produced from ultrafine fractions of iron ores, which were previously considered as tailings of mineral beneficiation. The porosity generated during the pelletizing process is an important characteristic of the material because it allows internal gas flow, increasing its reducibility and consequently the process efficiency. On the other hand, the porosity affects the physical strength of the pellets, which must withstand all loads during handling operations, transportation and metallurgical processes. Thus, the amount, size, shape and spatial distribution of pores are important features for the pellet quality control. Traditionally, most analytical techniques used to characterize the porosity of pellets are mercury intrusion porosimetry (MIP) and optical microscopy (OM). Nevertheless, MIP allows evaluating only pores connected to the surface, in addition mercury is volatile and toxic, offering risks to the environment and human health. OM, in turn, is limited to two-dimensional space and can reveal unrepresentative information. Both techniques are destructive and consequently prevent further analysis of the same sample. The present work proposes the development of a methodology for the tridimensional characterization of the porosity in iron ore pellets through X-ray microtomography (MicroCT) and image analysis in order to separately determine the different types of pores (open and closed). 25 samples provided by the Vale mining company were first analyzed by MicroCT and then by MIP or OM. For optimization purposes, some operating parameters of MicroCT were tested, such as the use of lenses, different geometric configurations, and the number of projections, which directly affect the obtained image resolution and the analysis time. Comparing the results obtained in MicroCT with the results obtained by MIP and OM in equivalent samples, smaller porosity measurements were observed for MicroCT, due to the poorer resolution of the system. However, this methodology has been able to separately quantify the open and closed porosity, to describe the spatial distribution of pores, and to measure their size and shape.
Mueller, Jennifer Elizabeth. "Determining the Role of Porosity on the Thermal Properties of Graphite Foam." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/34110.
Full textMaster of Science
Kim, Tae Hyung. "Fracture characterization and estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2570.
Full textAdelhelm, Philipp. "Novel carbon materials with hierarchical porosity : templating strategies and advanced characterization." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2007/1505/.
Full textKohlenstoffmaterialien finden aufgrund ihrer Vielseitigkeit heute in den unterschiedlichsten Bereichen des täglichen Lebens ihren Einsatz. Bekannte Beispiele sind Kohlenstofffasern in Verbundwerkstoffen, Graphit als trockenes Schmiermittel, oder Aktivkohlen in Filtersystemen. Ferner wird Graphit als Elektrodenmaterial auch in Lithium-Ionen-Batterien verwendet. Wegen knapper werdender Ressourcen von Öl und Gas wurde in den letzten Jahren verstärkt an der Entwicklung neuer Materialien für die Speicherung von Wasserstoff und elektrischer Energie gearbeitet. Die Nanotechnologie ist dabei auch für neue Kohlenstoffmaterialien zukunftsweisend, denn sie stellt weitere Anwendungsmöglichkeiten in Aussicht. In dieser Arbeit wurden hierzu mittels des sogenannten Nanocastings neue Kohlenstoffmaterialien für Energieanwendungen, insbesondere zur Speicherung von elektrischer Energie entwickelt. Die Eigenschaften eines Kohlenstoffmaterials beruhen im Wesentlichen auf der Struktur des Kohlenstoffs im molekularen Bereich. Die in dieser Arbeit hergestellten Materialen bestehen aus nichtgraphitischem Kohlenstoff und wurden im ersten Teil der Arbeit mit den Methoden der Röntgenstreuung genau untersucht. Eine speziell für diese Art von Kohlenstoffen kürzlich entwickelte Modellfunktion wurde dazu an die experimentellen Streubilder angepasst. Das verwendete Modell basiert dabei auf den wesentlichen Strukturmerkmalen von nichtgraphitischem Kohlenstoff und ermöglichte von daher eine detaillierte Beschreibung der Materialien. Im Gegensatz zu den meisten nichtgraphitischen Kohlenstoffen konnte gezeigt werden, dass die Verwendung von Mesophasen-Pech als Vorläufersubstanz (Precursor) ein Material mit vergleichsweise geringem Grad an Unordnung ermöglicht. Solch ein Material erlaubt eine ähnlich reversible Einlagerung von Lithium-Ionen wie Graphit, weist aber gleichzeitig wegen des nichtgraphitischen Charakters eine deutlich höhere Speicherfähigkeit auf. Zur Beschreibung der Porosität eines Materials verwendet man die Begriffe der Makro-, Meso-, und Mikroporen. Die Aktivität eines Materials kann durch die Erhöhung der Oberfläche noch erheblich gesteigert werden. Hohe Oberflächen können insbesondere durch die Schaffung von Poren im Nanometerbereich erzielt werden. Um die Zugänglichkeit zu diesen Poren zu steigern, weist ein Material idealerweise zusätzlich ein kontinuierliches makroporöses Transportsystem (Porendurchmesser d > 50 nm) auf. Solch eine Art von Porosität über mehrere Größenordnungen wird allgemein als „hierarchische Porosität“ bezeichnet. Für elektrochemische Anwendungen sind sogenannte Mesoporen (d = 2 – 50 nm) relevant, da noch kleinere Poren (Mikroporen, d < 2 nm) z.B. zu einer irreversiblen Bindung von Lithium- Ionen führen können. Wird Mesophasen-Pech als Kohlenstoffprekursor verwendet, kann die Entstehung dieser Mikroporen verhindert werden. Im zweiten und dritten Teil der Arbeit konnte mit den Methoden des „Nanocastings“ zum ersten Mal die spezielle Struktur des Mesophasen-Pech basierenden Kohlenstoffmaterials mit den Vorteilen einer hierarchischen (makro- / meso-) Porosität kombiniert werden. Im ersten Syntheseverfahren wurde dazu ein sogenanntes „hartes Templat“ mit entsprechender Porosität aus Siliziumdioxid repliziert. Aufgrund der hohen Viskosität des Pechs und der geringen Löslichkeit wurde dazu ein Verfahren entwickelt, das die Infiltration des Templates auch auf der Nanometerebene ermöglicht. Das Material konnte in Form größerer Körper (Monolithen) hergestellt werden, die im Vergleich zu Pulvern eine bessere technische Verwendung ermöglichen. Im zweiten Syntheseverfahren konnte die Herstellung eines hierarchisch makro- / mesoporösen Kohlenstoffmaterials erstmals mittels eines weichen Templates (organisches Polymer) erreicht werden. Die einfache Entfernung von weichen Templaten durch eine geeignete Temperaturbehandlung, macht dieses Verfahren im Vergleich zu hart templatierten Materialien kostengünstiger und stellt eine technische Umsetzung in Aussicht. Desweiteren erlaubt das Syntheseverfahren die Herstellung von monolithischen Körpern und die Einbindung funktionaler Nanopartikel. Die hergestellten Materialien zeigen exzellente Eigenschaften als Elektrodenmaterial in Lithium-Ionen-Batterien und als Trägermaterial für Superkondensatoren.
Bueno, Alejandra. "Catalyst supports with hierarchical and radial porosity : preparation, characterization and catalytic evaluation." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1249.
Full textThe vast majority of chemical processes are catalytic. Within the heterogeneous catalysis, industrial catalysts are bodies whose size ranges between 1 mm to 1 cm. For most catalysts, the active phase (i.e. metal nanoparticles) is dispersed in a mesoporous support having a high specific surface area. To overcome the problem of internal diffusional limitation, a secondary network of macropores is introduced within the catalyst support. This improves the diffusion of substrates. However, in the case where the catalytic reaction is particularly fast, the diffusion inside the porous support can remain limiting (Thiele modulus), resulting in a loss of catalytic effectiveness. The objective of this thesis is to study the catalytic effectiveness of a new alumina-based support shaped into spherical pellets, owing a radial macroporosity. In order to quantify the impact of this new porous structure, two model catalytic reactions were chosen to test the catalysts: CO oxidation and isooctane cracking. The catalytic activity was compared to reference commercial supports owing hierarchical porosity. For both reactions, the new support with radial porosity increases the activity from 25 to 95% approximately. On the basis of a fine characterization of the porosity of the beads (adsorption N2-77k, porosimetry Hg, X-ray microtomography), the catalytic activities were modeled. We conclude that the impact on the catalytic activity is essentially due to the radial porous design
Dickerson, Bryan Douglas Jr. "Characterization of Ferroelectric Films by Spectroscopic Ellipsometry." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/10148.
Full textMaster of Science
Zhang, Yinning. "Characterization of High Porosity Drainage Layer Materials for M-E Pavement Design." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51389.
Full textPh. D.
Books on the topic "Porosity Characterization"
W, Patrick John, ed. Porosity in carbons: Characterization and applications. London: Edward Arnold, 1995.
Find full textW, Patrick John, ed. Porosity in carbons: characterization and applications. New York: Halsted Press, 1995.
Find full textSmått, Jan-Henrik. Hierarchically porous silica, carbon, and metal oxide monoliths: Synthesis and characterization. Turku: Åbo Akademi University, 2005.
Find full textGreen, R. T. Hydraulic characterization of hydrothermally altered nopal tuff. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1995.
Find full textGreen, R. T. Hydraulic characterization of hydrothermally altered nopal tuff. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1995.
Find full textR, Nimmo John, Geological Survey (U.S.), and United States. Dept. of Energy., eds. Laboratory and field hydrologic characterization of the shallow subsurface at an Idaho National Engineering and Environmental Laboratory waste-disposal site. Idaho Falls, Idaho: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Find full textNaonobu, Katada, Okumura Kazu, and SpringerLink (Online service), eds. Characterization and Design of Zeolite Catalysts: Solid Acidity, Shape Selectivity and Loading Properties. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Find full textPatrick, John W. Porosity in Carbons: Characterization and Applications. John Wiley & Sons Inc, 1994.
Find full textFriction factor characterization for high-porosity random fiber regenerators. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textRandall, Michael S. Processing, characterization and modelling of borosilicate glass matrix-particulate silicon nitride composites, containing controlled additions of porosity, for use in high speed electronic packaging. 1993.
Find full textBook chapters on the topic "Porosity Characterization"
Ma, Y. Z. "Porosity Modeling." In Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling, 471–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17860-4_19.
Full textLlewellyn, Philip L., Emily Bloch, and Sandrine Bourrelly. "Surface Area/Porosity, Adsorption, Diffusion." In Characterization of Solid Materials and Heterogeneous Catalysts, 853–79. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645329.ch19.
Full textSmith, B. T. "Ultrasonic Characterization of Porosity in Composites." In Review of Progress in Quantitative Nondestructive Evaluation, 1535–40. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5772-8_197.
Full textTerán, G., S. Capula-Colindres, R. Cuamatzi-Meléndez, D. Angeles-Herrera, and A. Albiter. "3-D Porosity in T-Welded Connections Repaired by Grinding and Wet Welding." In Materials Characterization, 25–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15204-2_3.
Full textde Belleval, J. F., Y. Boyer, and D. Lecuru. "Porosity Characterization in Thin Composite Plates by Ultrasonic Measurements." In Nondestructive Characterization of Materials, 131–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-84003-6_16.
Full textNagy, Peter B., David V. Rypien, and Laszlo Adler. "Spatial Averaging in Porosity Assessment by Ultrasonic Attenuation Spectroscopy." In Nondestructive Characterization of Materials II, 683–88. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5338-6_70.
Full textFraissard, Jacques. "Nuclear Magnetic Resonance (NMR): Physisorbed Xenon for Porosity." In Springer Handbook of Advanced Catalyst Characterization, 813–48. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-07125-6_36.
Full textRoque-Malherbe, Rolando M. A. "Surface Area and Porosity Characterization of Porous Polymers." In Porous Polymers, 173–203. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470929445.ch5.
Full textNair, Satish M., David K. Hsu, and James H. Rose. "Ultrasonic Characterization of Cylindrical Porosity — A Model Study." In Review of Progress in Quantitative Nondestructive Evaluation, 1165–74. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1893-4_133.
Full textDaniel, I. M., S. C. Wooh, and I. Komsky. "Characterization of Porosity in Thick Graphite/Epoxy Composites." In Review of Progress in Quantitative Nondestructive Evaluation, 1607–14. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3742-7_61.
Full textConference papers on the topic "Porosity Characterization"
Mohler, C. E. "Porosity Characterization of porous SiLK™ Dielectric Films." In CHARACTERIZATION AND METROLOGY FOR ULSI TECHNOLOGY: 2003 International Conference on Characterization and Metrology for ULSI Technology. AIP, 2003. http://dx.doi.org/10.1063/1.1622528.
Full textZhang*, Jiajia, Hongbing Li, Guangzhi Zhang, and Feng He. "Pore structure characterization based on multiple-porosity variable critical porosity model." In SPG/SEG 2016 International Geophysical Conference, Beijing, China, 20-22 April 2016. Society of Exploration Geophysicists and Society of Petroleum Geophysicists, 2016. http://dx.doi.org/10.1190/igcbeijing2016-129.
Full textOhno, Kazushige, Noriyuki Taoka, Takahiro Furuta, Atsushi Kudo, and Teruo Komori. "Characterization of High Porosity SiC-DPF." In SAE 2002 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-0325.
Full textLenormand, Roland, and Olivier Fonta. "Advances In Measuring Porosity And Permeability From Drill Cuttings." In SPE/EAGE Reservoir Characterization and Simulation Conference. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/111286-ms.
Full textMogilnikov, Konstantin P., Dongchen Che, Mikhail R. Baklanov, Kangning Xu, and Kaidong Xu. "Review of thin film porosity characterization approaches." In 2017 China Semiconductor Technology International Conference (CSTIC). IEEE, 2017. http://dx.doi.org/10.1109/cstic.2017.7919811.
Full textArslan, Izzet, Serhat Akin, Yildiz Karakece, and Ozlem Korucu. "Is Bati Raman Heavy Oil Field a Triple Porosity System?" In SPE/EAGE Reservoir Characterization and Simulation Conference. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/111146-ms.
Full textCelio, Hugo. "Optical and X-ray Metrology of Low-k Materials: Porosity." In CHARACTERIZATION AND METROLOGY FOR ULSI TECHNOLOGY 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2063014.
Full textShinta, A. A., and Hossein Kazemi. "Tracer Transport in Characterization of Dual-Porosity Reservoirs." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1993. http://dx.doi.org/10.2118/26636-ms.
Full textHoffrén, H. "Plastic Foam Porosity Characterization by Air-Borne Ultrasound." In QUANTITATIVE NONDESTRUCTIVE EVALUATION. AIP, 2006. http://dx.doi.org/10.1063/1.2184664.
Full textGaiani, Ilaria, Andrew Aplin, Ruarri Day-Stirrat, H. C. Greenwell, and P. Cubillas. "Porosity Characterization of the Cretaceous Eagle Ford Formation." In 2019 AAPG Annual Convention and Exhibition. Tulsa, OK, USA: American Association of Petroleum Geologists, 2019. http://dx.doi.org/10.1306/11249gaiani2019.
Full textReports on the topic "Porosity Characterization"
Calo, J. M., L. Zhang, and W. D. Lilly. Characterization of porosity via secondary reactions. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6746133.
Full textCalo, J. M. Characterization of porosity via secondary reactions. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7033640.
Full textCalo, J. M., and W. D. Lilly. Characterization of porosity via secondary reactions. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5601567.
Full textCalo, J. M., L. Zhang, and W. D. Lilly. Characterization of porosity via secondary reactions. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6938624.
Full textCalo, J. M. Characterization of porosity via secondary reactor. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6541712.
Full textAagesen, Larry K., and Jonathan D. Madison. Porosity in millimeter-scale welds of stainless steel : three-dimensional characterization. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1044948.
Full textContescu, Cristian I., and Timothy D. Burchell. Characterization of Porosity Development in Oxidized Graphite using Automated Image Analysis Techniques. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/970899.
Full textNingthoujam, J., J. K. Clark, T. R. Carter, and H. A. J. Russell. Investigating borehole-density, sonic, and neutron logs for mapping regional porosity variation in the Silurian Lockport Group and Salina Group A-1 Carbonate Unit, Ontario. Natural Resources Canada/CMSS/Information Management, 2024. http://dx.doi.org/10.4095/332336.
Full textCalo, J. M., L. Zhang, P. J. Hall, and M. Antxustegi. Characterization of porosity via secondary reactions. Final technical report, 1 September 1991--30 November 1995. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/591306.
Full textCalo, J. M., and W. D. Lilly. Characterization of porosity via secondary reactions. Quarterly technical progress report, 15 September 1991--15 December 1991. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10139572.
Full text