Academic literature on the topic 'Pool hopping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pool hopping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pool hopping"
Singh, Sushil Kumar, Mikail Mohammed Salim, Minjeong Cho, Jeonghun Cha, Yi Pan, and Jong Hyuk Park. "Smart Contract-Based Pool Hopping Attack Prevention for Blockchain Networks." Symmetry 11, no. 7 (July 19, 2019): 941. http://dx.doi.org/10.3390/sym11070941.
Full textCortesi, Eugenio, Francesco Bruschi, Stefano Secci, and Sami Taktak. "A new approach for Bitcoin pool-hopping detection." Computer Networks 205 (March 2022): 108758. http://dx.doi.org/10.1016/j.comnet.2021.108758.
Full textShubham Dadhich, Garima Mathur, and A.D.D. Dwivedi. "Numerical Simulation, Electrostatic and Physical Compact Modeling of C8-BTBT-C8 Organic Thin Film Transistor." International Journal of Nanoelectronics and Materials (IJNeaM) 17, no. 2 (April 23, 2024): 222–36. http://dx.doi.org/10.58915/ijneam.v17i2.693.
Full textMahapatra, Rajat, Alton B. Horsfall, and Nicolas G. Wright. "Interface and Carrier Transport Behaviour in Al/HfO2/SiO2/SiC Structure." Materials Science Forum 600-603 (September 2008): 759–62. http://dx.doi.org/10.4028/www.scientific.net/msf.600-603.759.
Full textMuralidharan, Pradyumna, Dragica Vasileska, and Stephen M. Goodnick. "A Kinetic Monte Carlo Approach to Study Transport in Amorphous Silicon." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, DPC (January 1, 2015): 000743–58. http://dx.doi.org/10.4071/2015dpc-tp33.
Full textChávez, Juan José García, and Carlo Kleber da Silva Rodrigues. "A Simple Algorithm for Automatic Hopping among Pools in the Bitcoin Mining Network." SIJ Transactions on Computer Networks & Communication Engineering 03, no. 01 (February 5, 2015): 07–12. http://dx.doi.org/10.9756/sijcnce/v3i1/03020040101.
Full textFaw, Leah, and Huriya Jabbar. "Poor Choices: The Sociopolitical Context of “Grand Theft Education”." Urban Education 55, no. 1 (June 9, 2016): 3–37. http://dx.doi.org/10.1177/0042085916651322.
Full textVedeneev, A. S., V. V. Rylkov, V. A. Luzanov, S. N. Nikolaev, A. M. Kozlov, and A. S. Bugaev. "Field Effects in the Electrical Conductivity of Platinum/Diamond-Like Carbon/Platinum Capacitor Structures." Радиотехника и электроника 68, no. 8 (August 1, 2023): 827–30. http://dx.doi.org/10.31857/s0033849423080132.
Full textNITHYAPRAKASH, D., B. PUNITHAVENI, and J. CHANDRASEKARAN. "TRANSPORT PROPERTIES OF THERMALLY EVAPORATED In2Se3 THIN FILMS." Surface Review and Letters 16, no. 05 (October 2009): 723–29. http://dx.doi.org/10.1142/s0218625x09013293.
Full textCHOHAN, M. H., H. MAHMOOD, and FARHANA SHAH. "ELECTRICAL CONDUCTION PHENOMENA IN POLYIMIDE FILMS." Modern Physics Letters B 08, no. 25 (October 30, 1994): 1591–95. http://dx.doi.org/10.1142/s0217984994001552.
Full textDissertations / Theses on the topic "Pool hopping"
Tovanich, Natkamon. "Visual Analytics for Monitoring and Exploration of Bitcoin Blockchain Data." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG010.
Full textBitcoin is a pioneer cryptocurrency that records transactions in a public distributed ledger called the blockchain. It has been used as a medium for payments, investments, and digital wallets that are not controlled by any government or financial institution. Over the past ten years, transaction activities in Bitcoin have increased rapidly. The volume and evolving nature of its data pose analysis challenges to explore diverse groups of users and different activities on the network. The field of Visual Analytics (VA) has been working on the development of analytical systems that allow humans to interact and gain insights from complex data. In this thesis, I make several contributions to the analysis of Bitcoin mining activity. First, I provide a characterization of the past work and research challenges related to VA for blockchains. From this assessment, I proposed a VA tool to understand mining activities that ensure data integrity and security on the Bitcoin blockchain. I propose a method to extract miners from the transaction data and trace pool hopping behavior. The empirical analysis of this data revealed that emerging mining pools provided a better incentive to attract miners. Simultaneously, miners strategically chose mining pools to maximize their profit. To explore the evolution and dynamics of this activity over the long term, I developed a VA tool called MiningVis that integrates mining behavior data with contextual information from Bitcoin statistics and news. The user study demonstrates that Bitcoin miner participants use the tool to analyze higher-level mining activity rather than mining pool details. The evaluation of the tool proves that it helped participants to relate multiple information and discover historical trends of Bitcoin mining
Widmer, Johannes. "Charge transport and energy levels in organic semiconductors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154918.
Full textOrganische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile
Gehrke, Hans-Gregor. "Electrical characterization of conductive ion tracks in tetrahedral amorphous carbon with copper impurities." Doctoral thesis, 2013. http://hdl.handle.net/11858/00-1735-0000-0022-5DF0-A.
Full textWidmer, Johannes. "Charge transport and energy levels in organic semiconductors." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A28350.
Full textOrganische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers
Books on the topic "Pool hopping"
Fleming, Anne. Pool-hopping: And other stories. Victoria, B.C: Polestar Book Publishers, 1998.
Find full textFleming, Anne. Pool-Hopping. Polestar Book Publishers, 2000.
Find full textChester, The water-loving, pool-hopping, salad-eating, St. Bernard dog. Dog Ear Publishing, LLC, 2006.
Find full textBook chapters on the topic "Pool hopping"
Maltsev, Alexander, Igor Serunin, Andrey Pudeev, Seunggye Hwang, and Hyunsoo Ko. "Method and Algorithms for Improving Positioning Accuracy for Users with Restricted Signal Bandwidth in 5G NR." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia231225.
Full textSelikowitz, Mark. "Coordination and clumsiness." In Dyslexia and Other Learning Difficulties. Oxford University Press, 1993. http://dx.doi.org/10.1093/oso/9780192622990.003.0017.
Full textConference papers on the topic "Pool hopping"
Belotti, Marianna, Sofiane Kirati, and Stefano Secci. "Bitcoin Pool-Hopping Detection." In 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI). IEEE, 2018. http://dx.doi.org/10.1109/rtsi.2018.8548376.
Full textPerello, David, Woojong Yu, Dong Jae Bae, Seung Jin Chae, Moon J. Kim, Young Hee Lee, and Minhee Yun. "Pool-Frenkel emission and hopping conduction in semiconducting carbon nanotube transistor." In SPIE NanoScience + Engineering, edited by Manijeh Razeghi, Didier Pribat, and Young-Hee Lee. SPIE, 2009. http://dx.doi.org/10.1117/12.828642.
Full textTovanich, Natkamon, Nicolas Soulie, Nicolas Heulot, and Petra Isenberg. "An Empirical Analysis of Pool Hopping Behavior in the Bitcoin Blockchain." In 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2021. http://dx.doi.org/10.1109/icbc51069.2021.9461118.
Full textChavez, Juan Jose Garcia, and Carlo Kleber da Silva Rodrigues. "Automatic hopping among pools and distributed applications in the Bitcoin network." In 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA). IEEE, 2016. http://dx.doi.org/10.1109/stsiva.2016.7743340.
Full text