Academic literature on the topic 'Polysulfide shuttle effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polysulfide shuttle effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Polysulfide shuttle effect"

1

Wang, Maoxu, Lishuang Fan, Xian Wu, Yue Qiu, Bin Guan, Yan Wang, Naiqing Zhang, and Kening Sun. "Metallic NiSe2nanoarrays towards ultralong life and fast Li2S oxidation kinetics of Li–S batteries." Journal of Materials Chemistry A 7, no. 25 (2019): 15302–8. http://dx.doi.org/10.1039/c9ta03361k.

Full text
Abstract:
The complex solid–liquid–solid phase transition in Li–S batteries, the serious shuttle effect of soluble polysulfides, sluggish polysulfide conversion kinetics and the low conductive nature of Li2S cause a high decomposition barrier, inevitably limiting the development of advanced Li–S batteries.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Feng, Yuan Gao, Feichao Wu, Lin Li, Jingde Li, and Guirong Wang. "Constructing MIL-101(Cr) membranes on carbon nanotube films as ion-selective interlayers for lithium–sulfur batteries." Nanotechnology 33, no. 21 (February 28, 2022): 215401. http://dx.doi.org/10.1088/1361-6528/ac5443.

Full text
Abstract:
Abstract It is of significant importance to suppress the polysulfide shuttle effect for the commercial application of lithium–sulfur batteries. Herein, continuous MIL-101(Cr) membranes were successfully fabricated on carbon nanotube films utilizing a simple in situ growth method, aiming at constructing interlayer materials for inhibiting the shuttle effect. Owing to the suitable pore aperture and super electrolyte wettability, the as-developed MIL-101(Cr) membrane can effectively inhibit the shuttle behaviour of polysulfides while allowing the fast transport of Li-ions simultaneously, working as an ionic sieve. Additionally, this MOFs membrane is also helpful in accelerating the polysulfide catalytic conversion. Therefore, the proposed interlayer delivers an extraordinary rate capability, showing a remarkable capacity of 661.9 mAh g−1 under 5 C. Meanwhile, it also exhibits a high initial capacity of 816.1 mAh g−1 at 1 C and an exceptional durability with an extremely low capacity fading of 0.046% per cycle over 500 cycles.
APA, Harvard, Vancouver, ISO, and other styles
3

Tripathi, Balram, Rajesh K. Katiyar, Gerardo Morell, Ambesh Dixit, and Ram S. Katiyar. "BiFeO3 Coupled Polysulfide Trapping in C/S Composite Cathode Material for Li-S Batteries as Large Efficiency and High Rate Performance." Energies 14, no. 24 (December 11, 2021): 8362. http://dx.doi.org/10.3390/en14248362.

Full text
Abstract:
We demonstrated the efficient coupling of BiFeO3 (BFO) ferroelectric material within the carbon–sulfur (C-S) composite cathode, where polysulfides are trapped in BFO mesh, reducing the polysulfide shuttle impact, and thus resulting in an improved cyclic performance and an increase in capacity in Li-S batteries. Here, the built-in internal field due to BFO enhances polysulfide trapping. The observation of a difference in the diffusion behavior of polysulfides in BFO-coupled composites suggests more efficient trapping in BFO-modified C-S electrodes compared to pristine C-S composite cathodes. The X-ray diffraction results of BFO–C-S composite cathodes show an orthorhombic structure, while Raman spectra substantiate efficient coupling of BFO in C-S composites, in agreement with SEM images, showing the interconnected network of submicron-size sulfur composites. Two plateaus were observed at 1.75 V and 2.1 V in the charge/discharge characteristics of BFO–C-S composite cathodes. The observed capacity of ~1600 mAh g−1 in a 1.5–2.5 V operating window for BFO30-C10-S60 composite cathodes, and the high cyclic stability substantiate the superior performance of the designed cathode materials due to the efficient reduction in the polysulfide shuttle effect in these composite cathodes.
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Yunling, Jun Deng, Yuan Zhou, Yang Huang, and Yanguang Li. "Molybdenum carbide nanostructures for electrocatalytic polysulfide conversion in lithium–polysulfide batteries." Nanoscale Horizons 5, no. 3 (2020): 501–6. http://dx.doi.org/10.1039/c9nh00618d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guo, Xiaotong, Xu Bi, Junfeng Zhao, Xinxiang Yu, and Han Dai. "Tunnel Structure Enhanced Polysulfide Conversion for Inhibiting “Shuttle Effect” in Lithium-Sulfur Battery." Nanomaterials 12, no. 16 (August 11, 2022): 2752. http://dx.doi.org/10.3390/nano12162752.

Full text
Abstract:
The Lithium sulfur (Li-S) battery has a great potential to replace lithium-ion batteries due to its high-energy density. However, the “shuttle effect” of polysulfide intermediates (Li2S8, Li2S6, Li2S4, etc.) from the cathode can lead to rapid capacity decay and low coulombic efficiency, thus limiting its further development. Anchoring polysulfide and inhibiting polysulfide migration in electrolytes is one of the focuses in Li-S battery. It is well known that polar metal oxides-manganese oxides (MnO2) are normally used as an effective inhibitor for its polysulfide inhibiting properties. Considering the natural 1D tunnel structure, MnO2 with three kinds of typical tunnel-type were screened to study the effects of the tunnel size on the adsorption capacity of polysulfide. We found that MnO2 with larger tunnel sizes has stronger chemisorption capacity of polysulfide. It promotes the conversion of polysulfide, and corresponding cathode exhibits better cycle reliability and rate performance in the cell comparison tests. This work should point out a new strategy for the cathode design of advanced Li-S battery by controlling the tunnel size.
APA, Harvard, Vancouver, ISO, and other styles
6

Weret, Misganaw Adigo, Wei-Nien Su, and Bing-Joe Hwang. "Organosulfur Cathodes with High Compatibility in Carbonate Ester Electrolytes for Long Cycle Lithium–Sulfur Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 536. http://dx.doi.org/10.1149/ma2022-024536mtgabs.

Full text
Abstract:
Lithium-sulfur batteries (LSBs) are potential candidates for high energy storage technologies due to their theoretical gravimetric energy density of ∼2600 Wh kg-1 and lightweight electrodes. In LSBs, ether electrolytes are frequently utilized because sulfur cathodes and the polysulfide redox intermediate species are chemically stable. However, LSBs in ether electrolytes suffer from the dissolution of higher-order polysulfides, and migration of the soluble polysulfides into electrolytes causes the polysulfide shuttle effect. The shuttle polysulfides react with the lithium anode and give rise to the irreversible deposition of lithium sulfides, deteriorate the morphology of the anode, and cause rapid capacity fading. Moreover, ether electrolytes are highly flammable and trigger safety issues. As an alternative, carbonate ester electrolytes are promising choices to substitute ether electrolytes in LSBs. Organic carbonate electrolytes used in LSBs result in irreversible reactions with long-chain polysulfide anions that cause the cell to shut down. Therefore, carbonate ester electrolytes compatible sulfur cathodes design needs special attention. Sulfurized polyacrylonitrile (SPAN) and short-chain sulfur cathodes are compatible with organic carbonate electrolytes. However, the sulfur contents in these cathodes are mostly below 50 wt% which hamper the practical application of the LSBs. Here, we designed an organosulfur cathode with a high chemical bonded sulfur content of ~58 wt% in the cathode composite. The prepared organosulfur cathode showed excellent compatibility with carbonate ester electrolytes. The organosulfur cathode exhibits a high initial discharge capacity of 1301 mAh g-1 and long cycle stability for 400 cycles with nearly 99.99% coulombic efficiency.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Baoe, Zhenghao Sun, Yan Zhao, and Zhumabay Bakenov. "A Novel Hierarchically Porous Polypyrrole Sphere Modified Separator for Lithium-Sulfur Batteries." Polymers 11, no. 8 (August 13, 2019): 1344. http://dx.doi.org/10.3390/polym11081344.

Full text
Abstract:
The commercialization of Lithium-sulfur batteries was limited by the polysulfide shuttle effect, and modifying the routine separator was an effective method to solve this problem. In this work, a novel hierarchically porous polypyrrole sphere (PPS) was successfully prepared by using silica as hard-templates. As-prepared PPS was slurry-coated on the separator, which could reduce the polarization phenomenon of the sulfur cathode, and efficiently immobilize polysulfides. As expected, high sulfur utilization was achieved by suppressing the shuttle effect. When tested in the lithium-sulfur battery, it exhibited a high capacity of 855 mAh·g−1 after 100 cycles at 0.2 C, and delivered a reversible capacity of 507 mAh·g−1 at 3 C, showing excellent electrochemical performance.
APA, Harvard, Vancouver, ISO, and other styles
8

Ma, Bingyi, Xin Zhang, Xiaoqian Deng, Sheng Huang, Min Xiao, Shuanjin Wang, Dongmei Han, and Yuezhong Meng. "Construction of KB@ZIF-8/PP Composite Separator for Lithium–Sulfur Batteries with Enhanced Electrochemical Performance." Polymers 13, no. 23 (December 1, 2021): 4210. http://dx.doi.org/10.3390/polym13234210.

Full text
Abstract:
Lithium–sulfur batteries (LSBs) have attracted wide attention, but the shuttle effect of polysulfide hinders their further practical application. Herein, we develop a new strategy to construct a Ketjen black@zeolite imidazole framework-8/polypropylene composite separator. Such a separator consists of Ketjen black (KB), zeolite imidazole framework-8 (ZIF-8) and polypropylene (PP) with a low coating load of 0.06 mg cm−2 and is denoted as KB@ZIF-8/PP. KB@ZIF-8/PP can absorb polysulfides because of the Lewis acid-base interaction between ZIF-8 and polysulfides. This interaction can reduce the dissolution of polysulfides and suppress the shuttle effect, thereby enhancing the electrochemical performance of the battery. When tested at a current density of 0.1 C, an LSB with a KB@ZIF-8/PP separator exhibits low polarization and achieves a high initial capacity of 1235.6 mAh/g and a high capacity retention rate of 59.27% after 100 cycles.
APA, Harvard, Vancouver, ISO, and other styles
9

Kweon, Hyukmin, and William Kim-Shoemaker. "Mitigating Lithium Dissolution and Polysulfide Shuttle Effect Phenomena Using a Polymer Composite Layer Coating on the Anode in Lithium–Sulfur Batteries." Polymers 14, no. 20 (October 16, 2022): 4359. http://dx.doi.org/10.3390/polym14204359.

Full text
Abstract:
To mitigate lithium dissolution and polysulfide shuttle effect phenomena in high-energy lithium sulfur batteries (LISBs), a conductive, flexible, and easily modified polymer composite layer was applied on the anode. The polymer composite layer included polyaniline and functionalized graphite. The electrochemical behavior of LISBs was studied by galvanostatic charge/discharge tests from 1.7 to 2.8 V up to 90 cycles and via COMSOL Multiphysics simulation software. No apparent overcharge occurred during the charge state, which suggests that the shuttle effect of polysulfides was effectively prevented. The COMSOL Multiphysics simulation provided a venue for optimal prediction of the ideal concentration and properties of the polymer composite layer to be used in the LISBs. The testing and simulation results determined that the polymer composite layer diminished the amount of lithium polysulfide species and decreased the amount of dissolved lithium ions in the LISBs. In addition, the charge/discharge rate of up to 2.0 C with a cycle life of 90 cycles was achieved. The knowledge acquired in this study was important not only for the design of efficient new electrode materials, but also for understanding the effect of the polymer composite layer on the electrochemical cycle stability.
APA, Harvard, Vancouver, ISO, and other styles
10

Luque Di Salvo, Javier, Guillermina L. Luque, and Giorgio De Luca. "Lithium polysulfide conformer analysis in ether-based solvents for Li–S batteries." Molecular Systems Design & Engineering 7, no. 4 (2022): 364–73. http://dx.doi.org/10.1039/d1me00185j.

Full text
Abstract:
Polysulfide shuttling is a major challenge impeding practical application of lithium–sulfur batteries. In this work, lithium polysulfide conformers were unravelled, providing useful insights for the design of strategies to suppress the shuttle effect.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Polysulfide shuttle effect"

1

Wan, Yi. "Coordination Polymer Modified Separator for Mitigating Polysulfide Shuttle Effect in Lithium-Sulfur Batteries." Thesis, 2017. http://hdl.handle.net/10754/626342.

Full text
Abstract:
The development of the new cathode and anode materials of Lithium-Ion Batteries (LIBs) with high energy density and outstanding electrochemical performance is of substantial technological importance due to the ever-increasing demand for economic and efficient energy storage system. Because of the abundance of element sulfur and high theoretical energy density, Lithium-Sulfur (Li-S) batteries have become one of the most promising candidates for the next-generation energy storage system. However, the shuttling effect of electrolyte-soluble polysulfides severely impedes the cell performance and commercialization of Li-S batteries, and significant progress have been made to mitigate this shuttle effect in the past two decades. Coordination polymers (CPs) or Metal-organic Frameworks (MOFs) have been attracted much attention by virtue of their controllable porosity, nanometer cavity sizes and high surface areas, which supposed to be an available material in suppressing polysulfide migration. In this thesis, we investigate different mechanisms of mitigating polysulfide diffusion by applying a layer of MOFs (including Y-FTZB, ZIF-7, ZIF-8, and HKUST-1) on a separator. We also fabricate a new free-standing 2D coordination polymer Zn2(Benzimidazolate)2(OH)2 with rich hydroxyl (OH-) groups by using a simple, scalable and low cost method at air/water surface. Our results suggest that the chemical stability, the cluster morphology and the surface function groups of MOFs shows a greater impact on minimizing the shuttling effect in Li-S batteries, other than the internal cavity size in MOFs. Meanwhile, the new design of 2D coordination polymer efficiently mitigate the shuttling effect in Li-S battery resulting in a largely promotion of the battery capacity to 1407 mAh g-1 at 0.1 C and excellent cycling performance (capacity retention of 98% after 200 cycles at 0.25C). Such excellent cell performance is mainly owing to the fancying physical and chemical structure controllability of MOFs or CPs, which has substantial potential for future commercial utilizations.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Polysulfide shuttle effect"

1

Madhu Mohan, Varishetty, Madhavi Jonnalagadda, and VishnuBhotla Prasad. "Advanced Chalcogen Cathode Materials for Lithium-Ion Batteries." In Chalcogenides – Preparation and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103042.

Full text
Abstract:
As on today the main power sources of lithium-ion batteries (LIBs) research developments gradually approach their theoretical limits in terms of energy density. Therefore, an alternative next-generation of power sources is required with high-energy densities, low cost, and environmental safety. Alternatively, the chalcogen materials such as sulfur, selenium, and tellurium (SSTs) are used due to their excellent theoretical capacities, low cost, and no toxicity. However, there will be some challenges to overcome such as sluggish reaction of kinetics, inferior cycling stability, poor conductivity of S, and “shuttle effect” of lithium polysulfides in the Li-S batteries. Hence, several strategies have been discussed in this chapter. First, the Al-SSTs systems with more advanced techniques are systematically investigated. An advanced separators or electrolytes are prepared with the nano-metal sulfide materials to reduce the resistance in interfaces. Layered structured cathodes made with chalcogen ligand (sulfur), polysulfide species, selenium- and tellurium-substituted polysulfides, Se1-xSx uniformly dispersed in 3D porous carbon matrix were discussed. The construction of nanoreactors for high-energy density batteries are discussed. Finally, the detailed classification of flexible sulfur, selenium, and tellurium cathodes based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and their composite (polymers and inorganics) materials are explained.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Tong, Biao Jin, Zhenzhen Li, and Chaoda Chen. "LaB6 as a Functional Separator Modifier for Improved Lithium Sulfur Batteries." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220442.

Full text
Abstract:
Metal borides have excellent chemical and electrochemical stability, high electrochemical sensitivity, and abundant active sites. According to experiments, metal borides can greatly reduce the shuttle effect in lithium-sulfur batteries and boost their electrochemical performance when used as sulfur host materials. In this thesis, we use polar lanthanum boride materials as materials for lithium-sulfur batteries that modify separators, and take advantage of its strong chemical bonding with polar polysulfides to reduce the shuttle effect. The experimental data demonstrate that the polar lanthanum boride can significantly improve the overall reaction kinetic performance as well as cyclic stability of the cell, resulting in excellent electrochemical performance.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography