Journal articles on the topic 'Polystannes'

To see the other types of publications on this topic, follow the link: Polystannes.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 journal articles for your research on the topic 'Polystannes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hoffmann, Jonas, Isabel-Maria Ramirez y Medina, Muriel Hissler, and Anne Staubitz. "The influence of the formal replacement of thiophenes by stannoles in terthiophene and sexithiophene on the optoelectronic properties and electrochemical behavior." Dalton Transactions 50, no. 18 (2021): 6213–21. http://dx.doi.org/10.1039/d1dt00565k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dhindsa, J. S., B. F. Jacobs, A. J. Lough, and D. A. Foucher. "“Push–push and push–pull” polystannanes." Dalton Transactions 47, no. 39 (2018): 14094–100. http://dx.doi.org/10.1039/c8dt03043j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harrypersad, Shane, and Daniel Foucher. "Alternating polystannanes: syntheses and properties." Chemical Communications 51, no. 33 (2015): 7120–23. http://dx.doi.org/10.1039/c5cc00568j.

Full text
Abstract:
The catalyst free stoichiometric polycondensation reaction of alkyl or aryl tin dihydrides and tin diamides in non-polar solvents and mild reaction conditions yields the first examples of alternating polystannanes.
APA, Harvard, Vancouver, ISO, and other styles
4

Caseri, Walter. "Polystannanes: processible molecular metals with defined chemical structures." Chemical Society Reviews 45, no. 19 (2016): 5187–99. http://dx.doi.org/10.1039/c6cs00168h.

Full text
Abstract:
Polystannanes are a unique class of materials as those inorganic polymers (more precisely organometallic polymers) appear to be hitherto the only characterized polymers with a backbone of covalently bound metal atoms.
APA, Harvard, Vancouver, ISO, and other styles
5

Trummer, Markus, Fabien Choffat, Mario Rämi, Paul Smith, and Walter Caseri. "Polystannanes—Synthesis and Properties." Phosphorus, Sulfur, and Silicon and the Related Elements 186, no. 6 (June 1, 2011): 1330–32. http://dx.doi.org/10.1080/10426507.2010.543100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

OKANO, Mitsutoshi, Koji WATANABE, and Shin TOTSUKA. "Electrochemical Synthesis of Network Polystannanes." Electrochemistry 71, no. 4 (April 5, 2003): 257–59. http://dx.doi.org/10.5796/electrochemistry.71.257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trummer, Markus, Thomas Nauser, Marie-Luise Lechner, Frank Uhlig, and Walter Caseri. "Stability of polystannanes towards light." Polymer Degradation and Stability 96, no. 10 (October 2011): 1841–46. http://dx.doi.org/10.1016/j.polymdegradstab.2011.07.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Trummer, Markus, Fabien Choffat, Paul Smith, and Walter Caseri. "Polystannanes: Synthesis, Properties, and Outlook." Macromolecular Rapid Communications 33, no. 6-7 (March 22, 2012): 448–60. http://dx.doi.org/10.1002/marc.201100794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Trummer, Markus, Debora Solenthaler, Paul Smith, and Walter Caseri. "Synthesis of Polystannanes in Liquid Ammonia." CHIMIA International Journal for Chemistry 65, no. 11 (November 23, 2011): 876. http://dx.doi.org/10.2533/chimia.2011.876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mochida, Kunio, Masamichi Hayakawa, Takuya Tsuchikawa, Yasuo Yokoyama, Masanobu Wakasa, and Hisaharu Hayashi. "Synthesis and Photochemical Reactions of Polystannanes." Chemistry Letters 27, no. 1 (January 1998): 91–92. http://dx.doi.org/10.1246/cl.1998.91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

SITA, L. R. "ChemInform Abstract: Structure/Property Relationships of Polystannanes." ChemInform 27, no. 7 (August 12, 2010): no. http://dx.doi.org/10.1002/chin.199607302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Okano, Mitsutoshi, Naoki Matsumoto, Makoto Arakawa, Toshiyuki Tsuruta, and Hiroshi Hamano. "Electrochemical synthesis of dialkylsubstituted polystannanes and their properties." Chemical Communications, no. 17 (1998): 1799–800. http://dx.doi.org/10.1039/a804299c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Khan, Aman, Robert A. Gossage, and Daniel A. Foucher. "A convenient route to distannanes, oligostannanes, and polystannanes." Canadian Journal of Chemistry 88, no. 10 (October 2010): 1046–52. http://dx.doi.org/10.1139/v10-130.

Full text
Abstract:
The quantitative conversion of the tertiary stannane (n-Bu)3SnH (2) into (n-Bu)6Sn2 (4) was achieved by heating the neat hydride material under low pressure or under closed inert atmosphere conditions. A 31% conversion of Ph3SnH (3) to Ph6Sn2 (5) was also observed under low pressure; however, under closed inert atmosphere conditions afforded Ph4Sn (6) as the major product. A mixed distannane, (n-Bu)3SnSnPh3 (7), can also be prepared in good yield utilizing an equal molar ratio of 2 and 3 and the same reaction conditions used to prepare 4. This solvent-free, catalyst-free route to distannanes was extended to a secondary stannane, (n-Bu)2SnH2 (8), which yielded evidence (NMR) for hydride terminated distannane H(n-Bu)2SnSn(n-Bu)2H (9), the polystannane [(n-Bu)2Sn]n (10), and various cyclic stannanes [(n-Bu)2Sn]n=5,6 (11, 12). Further evidence for 10 was afforded by gel permeation chromatography (GPC) where a broad, moderate molecular weight, but highly dispersed polymer, was obtained (Mw = 1.8 × 104 Da, polydispersity index (PDI) = 6.9) and a characteristic UV–vis absorbance (λmax) of ≈370 nm observed.
APA, Harvard, Vancouver, ISO, and other styles
14

Choffat, Fabien, Paul Smith, and Walter Caseri. "Polystannanes: Polymers of a Molecular, Jacketed Metal–Wire Structure." Advanced Materials 20, no. 11 (June 4, 2008): 2225–29. http://dx.doi.org/10.1002/adma.200702268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Imori, Toru, Victor Lu, Hui Cai, and T. Don Tilley. "Metal-Catalyzed Dehydropolymerization of Secondary Stannanes to High Molecular Weight Polystannanes." Journal of the American Chemical Society 117, no. 40 (October 1995): 9931–40. http://dx.doi.org/10.1021/ja00145a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Imori, Toru, and T. D. Tilley. "High molecular mass polystannanes via dehydropolymerization of di(n-butyl)stannane." Journal of the Chemical Society, Chemical Communications, no. 21 (1993): 1607. http://dx.doi.org/10.1039/c39930001607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Adams, Stefan, and Martin Dräger. "Polystannanes Ph3Sn-SnPh3(n= 1–4): A Route to Molecular Metals?" Angewandte Chemie International Edition in English 26, no. 12 (December 1987): 1255–56. http://dx.doi.org/10.1002/anie.198712551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Eggens, J. L., and C. P. M. Wright. "Nitrogen Effects on Monostands and Polystands of Annual Bluegrass and Creeping Bentgrass." HortScience 20, no. 1 (February 1985): 109–10. http://dx.doi.org/10.21273/hortsci.20.1.109.

Full text
Abstract:
Abstract Annual bluegrass (Poa annua L.) and ‘Penncross’ creeping bentgrass (Agrostis palustris Huds.) were grown in monostand and polystand in silica sand and supplied with solutions in which 0%, 25%, 50%, 75% or 100% of the N was NH4+ and the remainder was NO3.– In polystand, annual bluegrass was more competitive than ‘Penncross’, producing more shoot and root dry weight and more tillers. Competitive ability of annual bluegrass was decreased as the percentage of NH4+ increased in nutrient solution. The decrease in competitive ability was reflected by a decline in tiller number and root and shoot dry weight. ‘Penncross’ was less affected by N form than was annual bluegrass.
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Yao, Jun-Song Wang, Xiao-Bing Wang, Yu-Cheng Gu, and Ling-Yi Kong. "Polystanins A^|^#8211;D, Four New Protolimonoids from the Fruits of Aphanamixis polystachya." Chemical and Pharmaceutical Bulletin 61, no. 1 (2013): 75–81. http://dx.doi.org/10.1248/cpb.c12-00332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Beckmann, Jens, Andrew Duthie, Marian Grassmann, and Annetta Semisch. "Optically Active Organotin Compounds Derived from β-Pinene. The Quest for Chiral Polystannanes†." Organometallics 27, no. 7 (April 2008): 1495–500. http://dx.doi.org/10.1021/om8000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

IMORI, T., V. LU, H. CAI, and T. D. TILLEY. "ChemInform Abstract: Metal-Catalyzed Dehydropolymerization of Secondary Stannanes to High Molecular Weight Polystannanes." ChemInform 27, no. 7 (August 12, 2010): no. http://dx.doi.org/10.1002/chin.199607212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Park, Jaeyoung, Seongsim Kim, Beomgi Lee, Hyeonsook Cheong, Ji Eun Noh, and Hee-Gweon Woo. "Redistribution/Dehydrocoupling of Endocrine n-$Bu_3SnH$ to Polystannanes Catalyzed by Group 4 Metallocene Complexes." Journal of the Chosun Natural Science 5, no. 2 (June 30, 2012): 79–83. http://dx.doi.org/10.13160/ricns.2012.5.2.079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sita, Lawrence R., Karl W. Terry, and Kazusato Shibata. "Sandorfy Hueckel Molecular Orbital Approximation for Modeling the Electronic Structures of Long-Chain Polystannanes." Journal of the American Chemical Society 117, no. 30 (August 1995): 8049–50. http://dx.doi.org/10.1021/ja00135a037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Khan, Aman, Sarah Komejan, Aagam Patel, Christopher Lombardi, Alan J. Lough, and Daniel A. Foucher. "Reduction of C,O-chelated organotin(IV) dichlorides and dihydrides leading to protected polystannanes." Journal of Organometallic Chemistry 776 (January 2015): 180–91. http://dx.doi.org/10.1016/j.jorganchem.2014.11.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Thompson, Susan M., and Ulrich Schubert. "Formation of cyclo- and polystannanes by dehydrogenative stannane coupling catalyzed by platinum(II) complexes." Inorganica Chimica Acta 357, no. 6 (April 2004): 1959–64. http://dx.doi.org/10.1016/j.ica.2004.01.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Yao, Jun-Song Wang, Xiao-Bing Wang, Yu-Cheng Gu, and Ling-Yi Kong. "ChemInform Abstract: Polystanins A-D, Four New Protolimonoids from the Fruits of Aphanamixis polystachya." ChemInform 44, no. 26 (June 6, 2013): no. http://dx.doi.org/10.1002/chin.201326181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bender, Desiree N., Alan J. Lough, R. Stephen Wylie, Robert A. Gossage, and Daniel A. Foucher. "Preparation and DFT Studies of κ2C,N-Hypercoordinated Oxazoline Organotins: Monomer Constructs for Stable Polystannanes." Inorganics 8, no. 5 (May 13, 2020): 35. http://dx.doi.org/10.3390/inorganics8050035.

Full text
Abstract:
Tetraorganotin tin(IV) compounds containing a flexible or rigid (4: Ph3Sn-CH2-C6H4-R; 7: Ph3SnC6H4-R, R = 2-oxazolinyl) chelating oxazoline functionality were prepared in good yields by the reaction of lithiated oxazolines and Ph3SnCl. Reaction of 7 with excess HCl resulted in the isolation of the tin monochlorido compound, 9 (ClSn[Ph2]C6H4-R). Conversion of the triphenylstannanes 7 and 4 into their corresponding dibromido species was successfully achieved from the reaction with Br2 to yield 10 (Br2Sn[Ph]C6H4-R) and 11 (Br2Sn[Ph]-CH2-C6H4-R), respectively. X-ray crystallography of 4, 7, 9, 10, and 11 reveal that all structures adopt a distorted trigonal bipyramidal geometry around Sn in the solid state. Compound 4, with an additional methylene spacer group, displays a comparatively long Sn–N bond distance compared to the dibromido tin species, 11. Several DFT methods were compared for accuracy in predicting the solid-state geometries of compounds 4, 7, 9–11. Compounds 10 and 11 were further converted into the corresponding dihydrides (12: H2Sn[Ph]C6H4-R, 13: H2Sn[Ph]-CH2-C6H4-R), via Br–H exchange, in high yield by reaction with NaBH4. Polymerization of 12 or 13 with a late transition metal catalyst produced a low molecular weight polystannane (14: –[Sn[Ph]C6H4-R]n–, Mw = 10,100 Da) and oligostannane (15: –[Sn[Ph]-CH2-C6H4-R]n–, Mw = 3200 Da), respectively.
APA, Harvard, Vancouver, ISO, and other styles
28

Pau, Jeffrey, Alan J. Lough, R. Stephen Wylie, Robert A. Gossage, and Daniel A. Foucher. "Proof of Concept Studies Directed Towards Designed Molecular Wires: Property-Driven Synthesis of Air and Moisture-Stable Polystannanes." Chemistry - A European Journal 23, no. 57 (September 14, 2017): 14367–74. http://dx.doi.org/10.1002/chem.201703453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yokoyama, Yasuo, Masamichi Hayakawa, Takushi Azemi, and Kunio Mochida. "The first application of samarium(II) diiodide for the formation of Group 14 element catenates: synthesis of tri- or poly-germanes and polystannanes." Journal of the Chemical Society, Chemical Communications, no. 22 (1995): 2275. http://dx.doi.org/10.1039/c39950002275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Park, Jaeyoung, Seongsim Kim, Beomgi Lee, Hyeonsook Cheong, Ki Bok Lee, and Hee-Gweon Woo. "Disproportionation/Dehydrocoupling of Endocrine Disruptor, Tributyltin Hydride to Polystannanes Using Cp′2TiCl2/N-Selectride (Cp' = Cp' = C5H5, Cp; Me-C5H4, Me-Cp; Me5C5, Cp*) Catalyst." Journal of the Chosun Natural Science 6, no. 1 (March 30, 2013): 34–38. http://dx.doi.org/10.13160/ricns.2013.6.1.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

YOKOYAMA, Y., M. HAYAKAWA, T. AZEMI, and K. MOCHIDA. "ChemInform Abstract: The First Application of Samarium(II) Diiodide for the Formation of Group 14 Element Catenates: Synthesis of Tri- or Poly-Germanes and Polystannanes." ChemInform 27, no. 13 (August 12, 2010): no. http://dx.doi.org/10.1002/chin.199613280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

ADAMS, S., and M. DRAEGER. "ChemInform Abstract: Polystannanes. Part 5. Polystannanes Ph3Sn-(tBu2Sn)n-SnPh3 (n: 1-4) A Route to Molecular Metals?" ChemInform 19, no. 10 (March 8, 1988). http://dx.doi.org/10.1002/chin.198810304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Caseri, Walter. "ChemInform Abstract: Polystannanes: Processible Molecular Metals with Defined Chemical Structures." ChemInform 47, no. 47 (November 2016). http://dx.doi.org/10.1002/chin.201647275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Choffat, Fabien, Sara Fornera, Paul Smith, and Walter Caseri. "Synthesis and Orientation of Poly(Dialkylstannane)s." MRS Proceedings 1007 (2007). http://dx.doi.org/10.1557/proc-1007-s10-03.

Full text
Abstract:
ABSTRACTPolystannanes, i.e. organometallic polymers of the chemical formula (SnR2)n, are relatively little explored, although they belong to the rare examples of polymers which are characterized by a backbone of metal atoms which are linked by covalent bonds. We developed a new synthetic route which yields pure linear poly(dibutylstannane) [Sn(Bu)2]n by polymerization of dibutylstannane (dibutyltin dihydride) with the catalyst [RhCl(PPh3)3]. Here, we report that the conversion and the reaction rate of dibutylstannane depends crucially on the temperature and [RhCl(PPh3)3] is also suited for the polymerization of dioctylstannane and didodecylstannane. The polymers thus obtained were characterized by 1H, 13C and 119Sn NMR spectroscopy: Orientation of all polystannanes was achieved by tensile drawing. The orientation was examined by UV-vis spectroscopy with polarized light and X-ray diffraction. Remarkably, the orientation of the backbone depended on the length of the alkyl groups.
APA, Harvard, Vancouver, ISO, and other styles
35

ADAMS, S., and M. DRAEGER. "ChemInform Abstract: POLYSTANNANES. II. I(TERT-BU2SN)4I, A 1,4-DIFUNCTIONAL TETRASTANNANE." Chemischer Informationsdienst 16, no. 50 (December 17, 1985). http://dx.doi.org/10.1002/chin.198550253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Wei-Xing, Nikolay V. Tkachenko, Alvaro Muñoz-Castro, Alexander I. Boldyrev, and Zhong-Ming Sun. "Ruthenium-mediated assembly and enhanced stability of heterometallic polystannides [Ru2Sn19]4− and [Ru2Sn20]6−." Nano Research, March 24, 2022. http://dx.doi.org/10.1007/s12274-022-4178-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pau, Jeffrey, Jung‐Won Choi, Kaitlyn Silverthorne, Mokhamed Ranne, R. Stephen Wylie, Robert A. Gossage, Alan J. Lough, and Daniel A. Foucher. "New Hypercoordinating Organostannanes for the Modular Functionalization of Mono‐ and Polystannanes: Synthetic and Computational Studies**." European Journal of Inorganic Chemistry 2022, no. 7 (February 9, 2022). http://dx.doi.org/10.1002/ejic.202100937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

ADAMS, S., M. DRAEGER, and B. MATHIASCH. "ChemInform Abstract: Polystannanes. Part 3. 1,2-Dichloro-tetramethyl-distannane. Forming a Sn-Sn-connected Helical Double Chain Structure [(... SnMe2Cl ... SnMe2-Cl ...)∞]2." Chemischer Informationsdienst 17, no. 22 (June 3, 1986). http://dx.doi.org/10.1002/chin.198622051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography