Academic literature on the topic 'POLYSACCHARIDES PLANT'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'POLYSACCHARIDES PLANT.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "POLYSACCHARIDES PLANT"

1

Al-Wraikat, Majida, Yun Liu, Limei Wu, Zeshan Ali, and Jianke Li. "Structural Characterization of Degraded Lycium barbarum L. Leaves’ Polysaccharide Using Ascorbic Acid and Hydrogen Peroxide." Polymers 14, no. 7 (March 30, 2022): 1404. http://dx.doi.org/10.3390/polym14071404.

Full text
Abstract:
Plant-derived polysaccharide’s conformation and chain structure play a key role in their various biological activities. Lycium barbarum L. leaves’ polysaccharide is well renowned for its health functions. However, its functional bioactivities are greatly hindered by its compact globular structure and high molecular weight. To overcome such issue and to improve the functional bioactivities of the polysaccharides, degradation is usually used to modify the polysaccharides conformation. In this study, the ethanol extract containing crude Lycium barbarum L. leaves’ polysaccharide was first extracted, further characterized, and subsequently chemically modified with vitamin C (Ascorbic acid) and hydrogen peroxide (H2O2) to produce degraded Lycium barbarum L. leaves’ polysaccharide. To explore the degradation effect, both polysaccharides were further characterized using inductively coupled plasma mass spectrometry (ICP-MS), gas chromatography–mass spectrometry (GC–MS), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), high performance gel permeation chromatography (HPGPC), and scanning electron microscope (SEM). Results shown that both polysaccharides were rich in sugar and degradation had no significant major functional group transformation effect on the degraded product composition. However, the molecular weight (Mw) had decreased significantly from 223.5 kDa to 64.3 kDa after degradation, indicating significant changes in the polysaccharides molecular structure caused by degradation.
APA, Harvard, Vancouver, ISO, and other styles
2

Malikova, M. Kh, É. L. Kristallovich, and D. A. Rakhimov. "Plant polysaccharides." Chemistry of Natural Compounds 33, no. 5 (September 1997): 527–29. http://dx.doi.org/10.1007/bf02254794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bahú, Juliana O., Lucas R. Melo de Andrade, Raquel de Melo Barbosa, Sara Crivellin, Aline Pioli da Silva, Samuel D. A. Souza, Viktor O. Cárdenas Concha, Patrícia Severino, and Eliana B. Souto. "Plant Polysaccharides in Engineered Pharmaceutical Gels." Bioengineering 9, no. 8 (August 9, 2022): 376. http://dx.doi.org/10.3390/bioengineering9080376.

Full text
Abstract:
Hydrogels are a great ally in the pharmaceutical and biomedical areas. They have a three-dimensional polymeric structure that allows the swelling of aqueous fluids, acting as an absorbent, or encapsulating bioactive agents for controlled drug release. Interestingly, plants are a source of biogels, specifically polysaccharides, composed of sugar monomers. The crosslinking of these polymeric chains forms an architecture similar to the extracellular matrix, enhancing the biocompatibility of such materials. Moreover, the rich hydroxyl monomers promote a hydrophilic behavior for these plant-derived polysaccharide gels, enabling their biodegradability and antimicrobial effects. From an economic point of view, such biogels help the circular economy, as a green material can be obtained with a low cost of production. As regards the bio aspect, it is astonishingly attractive since the raw materials (polysaccharides from plants-cellulose, hemicelluloses, lignin, inulin, pectin, starch, guar, and cashew gums, etc.) might be produced sustainably. Such properties make viable the applications of these biogels in contact with the human body, especially incorporating drugs for controlled release. In this context, this review describes some sources of plant-derived polysaccharide gels, their biological function, main methods for extraction, remarkable applications, and properties in the health field.
APA, Harvard, Vancouver, ISO, and other styles
4

Khalilova, Gulnoza Abduvahobovna, Abbaskhan Sabirkhanovich Turaev, Bakhtiyor Ikromovich Muhitdinov, Al'bina Vasil'yevna Filatova, Saida Bokizhonovna Haytmetova, and Nodirali Sokhobatalievich Normakhamatov. "ISOLATION, PHYSICO-CHEMICAL CHARACTERISTICS OF POLYSACCHARIDE ISOLATED FROM THE FRUIT BODY OF INONOTUS HISPIDUS." chemistry of plant raw material, no. 3 (September 27, 2021): 99–106. http://dx.doi.org/10.14258/jcprm.2021039028.

Full text
Abstract:
The article is devoted to the study of polysaccharides isolated from the basidiomycete raw material I. hispidus and studying their physical and chemical properties. Water-soluble polysaccharides were isolated from mushroom raw materials by the method of sequential water extraction and the yield was 9.44%. Polysaccharides were separated into neutral fractions by ion exchange chromatography and purified from proteins and peptides. During the separation process, it was determined that the polysaccharide sample consisted of homogeneous polysaccharides, while the carbohydrate content of the purified polysaccharide sample was 99.4%. The carbohydrate composition of polysaccharides was determined, it was found that the polysaccharide consists mainly of glucose residues and contains minor amounts of fructose and rhamnose residues. Molecular weight and molecular weight distribution were determined by size exclusion chromatography. The Mw of the polysaccharide sample obtained was 18.7 kDa, the polydispersity index was 1.3. The results of IR-, 1H- and 13C NMR spectroscopic studies have shown that the polysaccharide, according to its structural characteristics, belongs to the β-glucan type polysaccharide having β-(1,3) and β-(1,6)-glycosidic bounds.
APA, Harvard, Vancouver, ISO, and other styles
5

Taoerdahong, Hailiqian, Gulimila Kadeer, Junmin Chang, Jinsen Kang, Xiaoli Ma, and Fei Yang. "A Review Concerning the Polysaccharides Found in Edible and Medicinal Plants in Xinjiang." Molecules 28, no. 5 (February 22, 2023): 2054. http://dx.doi.org/10.3390/molecules28052054.

Full text
Abstract:
Approximately 110 types of medicinal materials are listed in the Chinese Pharmacopoeia, both for medicinal purposes and for use as food. There are several domestic scholars who have carried out research on edible plant medicine in China and the results are satisfactory. Though these related articles have appeared in domestic magazines and journals, many of them are yet to be translated into English. Most of the research stays in the extraction and quantitative testing stage, and there are a few medicinal and edible plants that are still under in-depth study. A majority of these edible and herbal plants are also highly enriched in polysaccharides, and this has an effect on immune systems for the prevention of cancer, inflammation, and infection. Comparing the polysaccharide composition of medicinal and edible plants, the monosaccharide and polysaccharide species were identified. It is found that different polysaccharides of different sizes have different pharmacological properties, with some polysaccharides containing special monosaccharides. The pharmacological properties of polysaccharides can be summarized as immunomodulatory, antitumor, anti-inflammatory, antihypertensive and anti-hyperlipemic, antioxidant, and antimicrobial properties. There have been no poisonous effects found in studies of plant polysaccharides, probably because the substances have a long history of use and are safe. In this paper, the application potential of polysaccharides in medicinal and edible plants in Xinjiang was reviewed, and the research progress in the extraction, separation, identification, and pharmacology of these plant polysaccharides was reviewed. At present, the research progress of plant polysaccharides in medicines and food in Xinjiang has not been reported. This paper will provide a data summary for the development and utilization of medical and food plant resources in Xinjiang.
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Qingbin, Xingyue Xiao, Laifeng Lu, Lianzhong Ai, Meigui Xu, Yan Liu, and H. Douglas Goff. "Polyphenol–Polysaccharide Complex: Preparation, Characterization, and Potential Utilization in Food and Health." Annual Review of Food Science and Technology 13, no. 1 (March 25, 2022): 59–87. http://dx.doi.org/10.1146/annurev-food-052720-010354.

Full text
Abstract:
Polysaccharides and polyphenols coexist in many plant-based food products. Polyphenol–polysaccharide interactions may affect the physicochemical, functional, and physiological properties, such as digestibility, bioavailability, and stability, of plant-based foods. In this review, the interactions (physically or covalently linked) between the selected polysaccharides and polyphenols are summarized. The preparation and structural characterization of the polyphenol–polysaccharide conjugates, their structural–interaction relationships, and the effects of the interactions on functional and physiological properties of the polyphenol and polysaccharide molecules are reviewed. Moreover, potential applications of polyphenol–polysaccharide conjugates are discussed. This review aids in a comprehensive understanding of the synthetic strategy, beneficial bioactivity, and potential application of polyphenol–polysaccharide complexes.
APA, Harvard, Vancouver, ISO, and other styles
7

de Vries, Ronald P., and Jaap Visser. "Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides." Microbiology and Molecular Biology Reviews 65, no. 4 (December 1, 2001): 497–522. http://dx.doi.org/10.1128/mmbr.65.4.497-522.2001.

Full text
Abstract:
SUMMARY Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a more and more attractive alternative to chemical and mechanical processes. Over the past 15 years, much progress has been made in elucidating the structural characteristics of these polysaccharides and in characterizing the enzymes involved in their degradation and the genes of biotechnologically relevant microorganisms encoding these enzymes. The members of the fungal genus Aspergillus are commonly used for the production of polysaccharide-degrading enzymes. This genus produces a wide spectrum of cell wall-degrading enzymes, allowing not only complete degradation of the polysaccharides but also tailored modifications by using specific enzymes purified from these fungi. This review summarizes our current knowledge of the cell wall polysaccharide-degrading enzymes from aspergilli and the genes by which they are encoded.
APA, Harvard, Vancouver, ISO, and other styles
8

Malikova, M. Kh, and D. A. Rakhimov. "Plant polysaccharides VIII. Polysaccharides ofLagochilus zeravschanicus." Chemistry of Natural Compounds 33, no. 4 (July 1997): 438–40. http://dx.doi.org/10.1007/bf02282360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ebringerová, Anna, and Zdenka Hromádková. "An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides." Open Chemistry 8, no. 2 (April 1, 2010): 243–57. http://dx.doi.org/10.2478/s11532-010-0006-2.

Full text
Abstract:
AbstractIn view of the recent emphasis on non-conventional chemistry, application of ultrasound in isolation of plant polysaccharides represents a viable alternative to traditional extraction processes. This review presents an extensive literature survey of ultrasound-assisted extraction of polysaccharides from different plant materials, particularly herbal plants and secondary agricultural plant sources. Targeted, multistep methods were applied with respect to differences in the types of polysaccharides and their location in plant cell walls. The effectiveness of the methods was evaluated according to yield and properties of the isolated polysaccharides in comparison to classical extraction methods. Substantial shortening of extraction time, reduction of reagent consumption and/or extraction temperature are the most important advantages of the ultrasonic treatment. In combination with sequential extraction steps using different solvents, sonication was shown to be effective in separation and/or purification of polysaccharides. The disadvantages of the sonication treatment, such as degradation and compositional changes of the polysaccharide preparations are discussed as well.
APA, Harvard, Vancouver, ISO, and other styles
10

Pauly, Markus, Niklas Gawenda, Christine Wagner, Patrick Fischbach, Vicente Ramírez, Ilka M. Axmann, and Cătălin Voiniciuc. "The Suitability of Orthogonal Hosts to Study Plant Cell Wall Biosynthesis." Plants 8, no. 11 (November 17, 2019): 516. http://dx.doi.org/10.3390/plants8110516.

Full text
Abstract:
Plant cells are surrounded by an extracellular matrix that consists mainly of polysaccharides. Many molecular components involved in plant cell wall polymer synthesis have been identified, but it remains largely unknown how these molecular players function together to define the length and decoration pattern of a polysaccharide. Synthetic biology can be applied to answer questions beyond individual glycosyltransferases by reconstructing entire biosynthetic machineries required to produce a complete wall polysaccharide. Recently, this approach was successful in establishing the production of heteromannan from several plant species in an orthogonal host—a yeast—illuminating the role of an auxiliary protein in the biosynthetic process. In this review we evaluate to what extent a selection of organisms from three kingdoms of life (Bacteria, Fungi and Animalia) might be suitable for the synthesis of plant cell wall polysaccharides. By identifying their key attributes for glycoengineering as well as analyzing the glycosidic linkages of their native polymers, we present a valuable comparison of their key advantages and limitations for the production of different classes of plant polysaccharides.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "POLYSACCHARIDES PLANT"

1

Galloway, Andrew Craig. "Analysis of polysaccharides released by plant roots." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/19133/.

Full text
Abstract:
Plant roots have a dynamic relationship with the surrounding soil, which forms a vital interface for the terrestrial biosphere. Without a strong interface with soil, plants could not extract the necessary resources needed for growth. As a part of a multifaceted strategy, plant roots release a variety of high and low molecular weight compounds into the soil. This exudate is believed to increase water and nutrient uptake, form the first barrier of defence, and aid in the symbiosis with fungi and bacteria. This investigation reports on the identity and biochemistry of the polysaccharides released from the roots of several crops and one basal land plant, and explores their possible functions. Crops were grown hydroponically in order to isolate the polysaccharides released by their roots. After growth, the hydroponic media were screened with a library of monoclonal antibodies (MAb). The MAbs revealed the presence of arabinogalactan-protein (AGP), extensin, xylan and xyloglucan. Signatures of these polysaccharides were also determined by monosaccharide linkage analysis. By using anion-exchange Epitope Detection Chromatography, polysaccharides released into the hydroponic medium of the crops were separated for further immunochemical analysis. This analysis demonstrated that the polysaccharides released by wheat were part of a multi-polysaccharide complex, Root Exudate Complex 1 (REC1). A similar polysaccharide complex, formed of AGP-xyloglucan (REC2) was also found to be released by liverworts, which were not previously known to secrete polysaccharides. Novel soil analytics were developed in this study to decipher the effects of polysaccharides released by roots on soil aggregate status. Tamarind seed xyloglucan, xylan from birchwood, and isolated REC1 from wheat were each demonstrated to increase the abundance of soil aggregates, with REC1 shown to be most effective. This increase in the abundance aggregates may help plants to bioengineer the rhizosphere resulting in increased uptake of resources required for growth.
APA, Harvard, Vancouver, ISO, and other styles
2

Silcock, Derek. "The interaction of plant polysaccharides with collagen." Thesis, University of Stirling, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Round, Andrew Neal. "Atomic force microscopy of plant cell wall polysaccharides." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taylor, Larry Edmund II. "Degradation of plant cell wall polysaccharides by saccharophagus degradans." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/3242.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2005.
Thesis research directed by: Marine-Estuarine-Environmental Sciences. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
5

Yamazaki, Eiji. "Extraction and characterization of useful polysaccharides from plant resources." Kyoto University, 2008. http://hdl.handle.net/2433/136690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ren, Yilong. "Rheological and structural studies on novel microbial and plant polysaccharides." Thesis, King's College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mabusela, Wilfred Thozamile. "Some non-cellulosic b-D-Glycans from plant sources." Doctoral thesis, University of Cape Town, 1987. http://hdl.handle.net/11427/16407.

Full text
Abstract:
Includes bibliographical references.
The structures of some non-cellulosic β D-Glycans from three plant sources have been investigated and each was found to be characterised by linked D-pyranosyl a main chain consisting of β -(1-44)- sugars. The polysaccharides were, however, different in structural features in a manner apparently related to their respective locations within the organs of the plants concerned. The polysaccharides were isolated and purified using standard fractionation methods including chromatographic techniques and selective precipitation methods. Structural information was obtained by employing techniques such as methylation analysis (involving use of gas liquid chromatography mass spectrometry), optical rotation measurements, mass spectrometry and n.m.r. spectroscopy on the original polysaccharides and on degraded products obtained by methods such as acid- or enzyme-catalysed hydrolysis and Smith degradation.
APA, Harvard, Vancouver, ISO, and other styles
8

Holderness, Jeff Scott. "Induction of innate immune responses by plant-derived procyanidins and polysaccharides." Diss., Montana State University, 2012. http://etd.lib.montana.edu/etd/2012/holderness/HoldernessJ0512.pdf.

Full text
Abstract:
Plants contain most of the basic metabolic systems utilized by mammals, but also contain unique structures to interact with self and with non-self biomolecules. It is of little surprise, that many of these plant biomolecules impact mammalian systems. Numerous plant products are used for treating human disease and are critical for the most fundamental aspects of medicine including pain control and cancer therapy. In addition to these drugs, plant products have been used for millennia to improve disease resistance. Our understanding of how these plants activate the innate immune system to fight off infection is tenebrous, with very little understood about receptor-mediated responses. The following studies elaborate upon our current understanding of two common, plant-derived compounds with innate stimulatory activity: procyanidins and polysaccharides. Procyanidins are a class of polyphenols and flavonoids. The research described herein shows that procyanidins directly activated gamma delta T cells to enter a primed state and stabilized select gene transcripts via ERK- and syk-mediated processes. The second class of plant products discussed are polysaccharides from Acai. The innate immune response induced by Acai polysaccharides was mediated by TLR4 and the phagocytic response, possibly mediated by Dectin-1. These studies have improved our understanding of host responses to plant products, which have implications for consumption of both foods and nutritional supplements. 'Co-authored by Katie F. Daughenbaugh, Jill C. Graff, Jodi F. Hedges, Brett Freedman, Joel W. Graff, Mark A. Jutila, Igor A. Schepetkin, Liliya N. Kirpotina, Mark T. Quinn, Jerod Skyberg, and Sharon Kemoli.'
APA, Harvard, Vancouver, ISO, and other styles
9

Cuskin, Fiona Marie. "Mechanisms by which glycoside hydrolases recognize plant, bacterial and yeast polysaccharides." Thesis, University of Newcastle Upon Tyne, 2013. http://hdl.handle.net/10443/1811.

Full text
Abstract:
The deconstruction of complex carbohydrates by glycoside hydrolases requires extensive enzyme consortia in which specificity is often conferred by accessory modules and domains that are distinct from the active site. The diverse mechanisms of substrate recognition were explored in this thesis using selected yeast, bacterial and plant polysaccharides as example substrates. Carbohydrate binding modules (CBM) are non-catalytic modules that enhance the catalytic activity of their glycoside hydrolase counterparts through binding to polysaccharide. Normally CBMs are found attached to glycoside hydrolases that target insoluble recalcitrant substrates resulting in a moderate, 2-5 fold, potentiation in enzyme activity. A CBM, defined herein as CBMX40, is found at the C-terminal of a glycoside hydrolase family (GH) 32 enzyme, SacC, which displays exo-levanase activity. CBMX40 binds the non-reducing end of the levan chain targeting the disaccharide fructose--fructose unit. Removal of CBMX40 results in a >100-fold decrease in catalytic activity against levan, compared to the full length native enzyme. The truncated SacC catalytic domain acts as a non-specific exo-β-fructosidase displaying similar activity on β2,1- (inulin) and β2,6-linked fructose polymers, both polysaccharides and oligosaccharides. When CBMX40 was fused to a non-related exo-β-fructosidase, BT 3082, it conferred exo-levanase specificity on the enzyme. Thus CBMX40 is not only able to enhance catalytic activity but is also able to confer catalytic specificity. This led to the hypothesis that the CBM and the active site of the enzyme bind to different terminal residues of branched fructans such as levan. This results in enhanced affinity through avidity effects leading to the potentiation of catalytic activity. The gut bacterium Bacteroides thetaiotaomicron contributes to the maintenance of a healthy human gut. B. thetaiotaomicron is able to acquire and utilise complex carbohydrates that are not attacked by the intestinal enzymes of the host. B. thetaiotaomicron dedicates a large proportion of its genome to glycan degradation with a large expansion of α-mannan degrading enzymes. The B. thetaiotaomicron genome encodes 23 GH92 α-mannanosidases and 10 GH76 α-mannanases. While GH92 has recently been characterised the activities displayed by GH76 relies on the characterization of a single enzyme in this family. B. thetaiotaomicron organises the genes required to sense, degrade, transport and utilise specific complex glycans into genetic clusters defined as Polysaccharide Utilisation Loci (PULs). Transcriptomics revealed that two PULs are up regulated in response to yeast mannan, PUL 36 and PUL 68. These PULs contain both GH76 enzymes along with GH92 enzymes and other CAZy annotated enzymes. Biochemical analysis of the GH76 enzymes found in the two PULs show they are α1, 6 mannanases capable of hydrolysing the α1, 6 mannan backbone of yeast mannan, with the putative periplasmic enzymes generating small oligosaccharides, while the surface mannanases releasing larger products. The three GH92 enzymes encoded by the two PULs have been shown to remove α1, 2 and α1, 3 linked mannose branches from yeast mannan polysaccharide. In addition PUL 68 also encodes a phosphatase that removes the phosphate from mannose-6-phosphate and glucose-6-phosphate but not from intact mannan. Therefore, this study describes the ability of B. thetaiotaomicron to target and degrade yeast α-mannans. The GH5 enzyme CtXyl5A from Clostridium thermocellum is an arabinoxylan specific xylanase that contains a GH5 catalytic module appended to several CBMs. The apo structure of the GH5 catalytic module appended to a family 6 CBM reveals a large pocket abutted to the -1 subsite of the active site. This pocket was thought to bind the arabinose decoration appended to the O3 of the xylan backbone. Here mutational and structural studies showed that the fulfilment of arabinose is this pocket is the key specificity determinant for the novel arabinoxylanase activity. Significantly the bound arabinose displayed a pyranose conformation, rather than a furanose structure which is the typical conformation adopted by arabinose side chains in arabinoxylans. This structural information suggests that CtXyl5A may be able to exploit side chains other than arabinofuranose residues as substrate specificity determinants.
APA, Harvard, Vancouver, ISO, and other styles
10

Castro-Alves, Victor Costa. "Effects of fungal- and plant-derived non-starch polysaccharides in macrophages." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/9/9131/tde-06122017-095228/.

Full text
Abstract:
The consumption of fungal- and plant-derived non-starch polysaccharides (NSP) have been associated with reduced risk of cardiovascular diseases and cancer. In addition to promote physiochemical effects on the gastrointestinal tract and serve as substrate for the intestinal microbiota to produce short-chain fatty acids, NSP can interact with immune system cells including macrophages, which are crucial for tissue repair, lipid metabolism and host defense against foreign substances and pathogens. However, the effects of NSP in macrophages depends on their structure. Recently, it was showed that the chayote (Sechium edule) and the fungus Pleurotus albidus are promising sources of NSP with potential immunomodulatory effects in macrophages. In this study, it was explored the effects of cooking on the composition of NSP from chayote and evaluated their biological effects in macrophages. Furthermore, it was optimized a method for the extraction of mushroom NSP and characterized the structure and biological effects of NSP from P. albidus in macrophages. Results showed that the NSP from chayote pulp regulate cytokine secretion and phagocytosis by macrophages, and minor changes in composition during cooking influences their effects in macrophages. Furthermore, NSP from chayote induces cholesterol efflux and inhibits the expression of genes required for NLRP3 inflammasome activation in macrophages previously exposed to cholesterol crystals. Then, it was showed that the optimized method for the extraction of NSP from mushroom reduces by up to half the extraction time commonly required. Furthermore, results showed that P. albidus is source of easily extractable glucans with biological effects in macrophages. Results also suggest that glucans from P. albidus inhibit lipid-induced inflammation and foam-cell formation at distinct levels, with significant effects on NLRP3 inflammasome activation. Taken together, the results suggest that the benefits of chayote NSP is beyond their physical properties on the gastrointestinal tract, and that the P. albidus NSP offers potential health benefits that might be of relevance as a functional food ingredient.
O consumo de polissacarídeos não-amido (PNA) de fungos e plantas tem sido associado a redução do risco de doenças cardiovasculares. Além de promoverem efeitos físicos no trato gastrointestinal e serem utilizados como substratos pela microbiota intestinal, os PNA podem interagir com células do sistema imune, como macrófagos, cruciais no reparo tecidual, metabolismo lipídico, e na defesa do organismo contra patógenos. Entretanto, os efeitos em macrófagos dependem da estrutura do PNA. Recentemente, foi observado que o chuchu (Sechium edule) e o fungo Pleurotus albidus são fontes de PNA com potencial efeito sobre macrófagos. Assim, foram avaliados os efeitos dos PNA do chuchu fresco e cozido em macrófagos. Além disso, foi otimizado um método para extração de polissacarídeos de cogumelo, e avaliada a estrutura e os efeitos biológicos dos PNA do P. albidus em macrófagos. Foi observado que os PNA do chuchu regulam a secreção de citocinas e o processo de fagocitose por macrófagos, e alterações na composição de PNA durante o cozimento tem um impacto em seus efeitos biológicos. Além disso, os PNA do chuchu induzem o efluxo de colesterol e regulam a expressão de genes necessários para a ativação do inflamassoma NLRP3 em macrófagos previamente tratados com cristais de colesterol. Também foi demonstrado que o método otimizado de extração de PNA de cogumelos reduz em até pela metade o tempo de extração normalmente empregado. Além disso, foi verificado que o P. albidus é fonte para extração de glicanos com efeitos em macrófagos. Os resultados também sugerem que os glicanos obtidos do P. albidus inibem em diferentes níveis a inflamação induzida por lipídeos e a formação de células espumosas, com efeitos significativos sobre a ativação do inflamassoma NLRP3. Tais diferenças parecem estar associadas à estrutura dos glicanos. Por fim, os resultados sugerem que os benefícios dos PNA do chuchu estão além dos seus efeitos físicos sobre o trato gastrointestinal, e que os PNA do P. albidus promovem benefícios que podem ser relevantes para explorar sua utilização como um alimento ou fonte para extração de ingredientes funcionais.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "POLYSACCHARIDES PLANT"

1

Ulvskov, Peter. Plant polysaccharides. Chichester, West Sussex, UK: Wiley-Blackwell, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1957-, Gross Richard A., and Scholz Carmen 1963-, eds. Biopolymers from polysaccharides and agroproteins. Washington, DC: American Chemical Society, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nayak, Amit Kumar, and Md Saquib Hasnain. Plant Polysaccharides-Based Multiple-Unit Systems for Oral Drug Delivery. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-6784-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

F, Guillon, and European AIR concerted action, eds. Plant polysaccharides in human nutrition: Structure, function, digestive fate & metabolic effects. Nantes, France: Institut National de la Recherche Agronomique, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

S, Paulsen Berit, ed. Bioactive carbohydrate polymers. Dordrecht: Kluwer Academic Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nayak, Amit Kumar, Saquib Hasnain, and Dilipkumar Pal. Plant Polysaccharides As Pharmaceutical Excipients. Elsevier, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nayak, Amit Kumar, Saquib Hasnain, and Dilipkumar Pal. Plant Polysaccharides As Pharmaceutical Excipients. Elsevier, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ulvskov, Peter. Annual Plant Reviews, Plant Polysaccharides: Biosynthesis and Bioengineering. Wiley & Sons, Incorporated, John, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Loewus, Frank. Biogenesis of Plant Cell Wall Polysaccharides. Elsevier Science & Technology Books, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ulvskov, Peter. Annual Plant Reviews, Plant Polysaccharides Vol. 41: Biosynthesis and Bioengineering. Wiley & Sons, Limited, John, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "POLYSACCHARIDES PLANT"

1

Pengelly, Andrew. "Polysaccharides." In The constituents of medicinal plants, 147–67. 3rd ed. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789243079.0009.

Full text
Abstract:
Abstract Polysaccharides are universal in the plant and fungal kingdoms. Their functions include food storage, protection of membranes, and maintaining rigidity of cell walls in plants and fungi, whereas for seaweeds they help maintain the flexibility required for life in the ocean. Polysaccharides play significant roles in the activity of numerous herbs used in traditional Chinese medicine and Japanese (Kampo) medicine. Polysaccharides are insoluble in organic solvents; they precipitate in alcohol. Herbal tinctures, which are made using alcoholic solvents of 45% strength or higher, are therefore of little use for polysaccharide extraction. The degree of water solubility depends on the polysaccharide structure. Linear polymers (mucilages) are less water soluble and tend to precipitate at high temperatures and form viscous or slimy solutions. Branched polymers (gums) are more water soluble and form gels, often referred to as 'gummy' or 'sticky'. Examples of carbohydrate polymers and their sources and significance to plants and humans are shown in this chapter. Tabulated data are also given on selected medicinal mushrooms, their polysaccharides and therapeutic uses, as well as on inulin-containing species of herbs from the Asteraceae family.
APA, Harvard, Vancouver, ISO, and other styles
2

Mackie, W. "Plant cell walls: morphology, biosynthesis and growth." In Polysaccharides, 73–105. London: Palgrave Macmillan UK, 1985. http://dx.doi.org/10.1007/978-1-349-06369-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Held, Michael A., Nan Jiang, Debarati Basu, Allan M. Showalter, and Ahmed Faik. "Plant Cell Wall Polysaccharides: Structure and Biosynthesis." In Polysaccharides, 1–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03751-6_73-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Held, Michael A., Nan Jiang, Debarati Basu, Allan M. Showalter, and Ahmed Faik. "Plant Cell Wall Polysaccharides: Structure and Biosynthesis." In Polysaccharides, 3–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16298-0_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Xianxiang. "Plant polysaccharides and their effects on cell adhesion." In Polysaccharides, 1–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03751-6_67-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Xianxiang. "Plant Polysaccharides and Their Effects on Cell Adhesion." In Polysaccharides, 2117–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16298-0_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smith, Bronwen G., and Laurence D. Melton. "Plant Cell Wall Polysaccharides." In Food Carbohydrate Chemistry, 135–46. West Sussex, UK: John Wiley & Sons Inc., 2013. http://dx.doi.org/10.1002/9781118688496.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Franz, G. "Plant Polysaccharides and Cancer." In ACS Symposium Series, 74–82. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0691.ch007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wydra, K., and K. Rudolph. "Analysis of Toxic Extracellular Polysaccharides." In Plant Toxin Analysis, 113–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02783-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nayak, Amit Kumar, Md Saquib Hasnain, Amal Kumar Dhara, and Dilipkumar Pal. "Plant Polysaccharides in Pharmaceutical Applications." In Advanced Structured Materials, 93–125. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54027-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "POLYSACCHARIDES PLANT"

1

Cox, Guy C., and Jose Feijo. "Second harmonic imaging of plant polysaccharides." In Biomedical Optics 2004, edited by Ammasi Periasamy and Peter T. C. So. SPIE, 2004. http://dx.doi.org/10.1117/12.540014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murungi, Pearl Isabellah, Aliyu Adebayo Sulaimon, Oscar Ssembatya, and Princess Nwankwo. "A Review of Natural Polysaccharides as Corrosion Inhibitors: Recent Progress and Future Opportunities." In SPE Nigeria Annual International Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/211964-ms.

Full text
Abstract:
Abstract Preventing and mitigating corrosion problems can be very challenging due to technical considerations and prohibitive economic implications. It is thus imperative to arrest the escalating corrosion rates and impede the deterioration effects of corrosion with versatile remedies. In this review, previous research efforts on the application of plant-derived polysaccharides as potential inhibitors of metal corrosion in various aggressive media are studied. The deployment of corrosion inhibitors has proven to be an outstanding solution to prolonging the lifespan of metals. However, the most applied inhibitors such as the inorganic and some organic compounds are prohibitively expensive, hazardous, and toxic. These limiting factors have stimulated interest in more research into greener and less toxic natural alternatives. Considering the success of synthetic polymers for corrosion inhibition, a wide range of plants with high natural polysaccharide content have been evaluated to determine their effectiveness as biodegradable, renewable, and more economical corrosion inhibitors. Studies generally show that natural polysaccharides exhibit over 90% efficiency for corrosion inhibition with appreciable adsorption on the metal surface. Modification and grafting of the plant polysaccharides to enhance their inhibition efficiencies and to make them more desirable are currently being investigated. Such bio-inspired polymeric molecules thus have invaluable significance as potential alternatives for the problematic corrosion inhibitors.
APA, Harvard, Vancouver, ISO, and other styles
3

Bidhendi, Amir. "Live fluorescence labeling of the primary plant cell wall polysaccharides." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1374633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Xuye, Ping Zhao, and Songyi Lin. "Review on the Progress of Plant Immune Polysaccharides." In 2016 4th International Conference on Machinery, Materials and Computing Technology. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmmct-16.2016.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Xiaogen, Xiaojing Wang, Shuangli Fan, and Jiezhong Chen. "Study on extraction process and activity of plant polysaccharides." In 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5005324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Popov, Sergey V., Pavel A. Markov, Ida R. Nikitina, Raisa G. Ovodova, and Yury S. Ovodov. "EFFECTS OF PLANT POLYSACCHARIDES ON PHAGOCYTES AND ORAL TOLERANCE." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meng, Zong, and Timothy Anderson. "Fat crystal network reinforced plant-derived polysaccharide-based oleogels." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/brfu9822.

Full text
Abstract:
Most traditional fats for the food industry take hydrogenated oils and high saturated oils as the base material. However, hydrogenated oils and high saturated oils were widely questioned because of the threat to health caused by trans and saturated fatty acids. Oleogelation is a potential strategy to structure liquid oils to replace traditional fats in foods. The aerogel-templated method allowed plant-derived polymers (polysaccharides and proteins) to prepare oleogels. Methyl-cellulose and xanthan gum were dissolved in waters and aerated to prepare aqueous foams. The molecular network of polysaccharides in aqueous foams was rapidly fixed by the ultra-low temperature freezing method, and aerogels were obtained by freeze-drying. The ultra-low temperature freezing method made aerogels have an average pore size of 36.7 μm and improved the porosity. Because of the open network in aerogels, there was a gap between oleogels fabricated by aerogels and traditional fats. Hence, fat crystals were used to further enhance the network structure in oleogels. Vegetable fats (Palm oil, coconut oil, palm kernel oil, and palm kernel stearin) were used to replace 50% of the soybean oil to enhance oleogels made by the aerogel-templated method. Aerogels had stronger oil absorption ability for oils containing PKS and PKO, reaching 39.6 and 38.24 g/g, respectively. Enhancement effects of different vegetable fats on oleogels were analyzed by the oil binding ability, polarized light microscopy, and rheological test. The crystal network formed by coarse crystals could endow oleogels with higher oil binding ability and more robust solid properties but result in more sensitivity to temperature. Through FTIR analysis, the hydrogen bond between polysaccharides constituting the polymer network was detected. The addition of vegetable fats could make oleogels physical properties of traditional fats, thus making oleogels further in the traditional fat replacement.
APA, Harvard, Vancouver, ISO, and other styles
8

"Manganese-containing bionanocomposites on the basis of natural polysaccharides as novel universal micronutrients for Solanum tuberosum L." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zeng, Chaozhen, and Zhixiang Liu. "Microwave extraction of polysaccharides from the traditional chinese medicinal plant, sterculia lychnophora." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Orfila, Caroline, Florence Dal Degan, Peter Ulvskov, and Henrik V. Scheller. "BIOSYNTHESIS AND DEGRADATION OF O-ACETYLATED PECTIC POLYSACCHARIDES IN PLANT PRIMARY CELL WALLS." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.404.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "POLYSACCHARIDES PLANT"

1

Delmer, Deborah, Nicholas Carpita, and Abraham Marcus. Induced Plant Cell Wall Modifications: Use of Plant Cells with Altered Walls to Study Wall Structure, Growth and Potential for Genetic Modification. United States Department of Agriculture, May 1995. http://dx.doi.org/10.32747/1995.7613021.bard.

Full text
Abstract:
Our previous work indicated that suspension-cultured plant cells show remarkable flexibility in altering cell wall structure in response either to growth on saline medium or in the presence of the cellulose synthesis inhibitor 2,-6-dichlorobenzonitrile (DCB). We have continued to analyze the structure of these modified cell walls to understand how the changes modify wall strength, porosity, and ability to expand. The major load-bearing network in the walls of DCB-adapted dicot cells that lack a substantial cellulose-xyloglucan network is comprised of Ca2+-bridged pectates; these cells also have an unusual and abundant soluble pectic fraction. By contrast, DCB-adapted barley, a graminaceous monocot achieves extra wall strength by enhanced cross-linking of its non-cellulosic polysaccharide network via phenolic residues. Our results have also shed new light on normal wall stucture: 1) the cellulose-xyloglucan network may be independent of other wall networks in dicot primary walls and accounts for about 70% of the total wall strength; 2) the pectic network in dicot walls is the primary determinant of wall porosity; 3) both wall strength and porosity in graminaceous monocot primary walls is greatly influenced by the degree of phenolic cross-linking between non-cellulosic polysaccharides; and 4) the fact that the monocot cells do not secrete excess glucuronoarabinoxylan and mixed-linked glucan in response to growth on DCB, suggests that these two non-cellulosic polymers do not normally interact with cellulose in a manner similar to xyloglucan. We also attempted to understand the factors which limit cell expansion during growth of cells in saline medium. Analyses of hydrolytic enzyme activities suggest that xyloglucan metabolism is not repressed during growth on NaCl. Unlike non-adapted cells, salt-adapted cells were found to lack pectin methyl esterase, but it is not clear how this difference could relate to alterations in wall expansibility. Salt-adaped cell walls contain reduced hyp and secrete two unique PRPP-related proteins suggesting that high NaCl inhibits the cross-linking of these proteins into the walls, a finding that might relate to their altered expansibility.
APA, Harvard, Vancouver, ISO, and other styles
2

Gutnick, David, and David L. Coplin. Role of Exopolysaccharides in the Survival and Pathogenesis of the Fire Blight Bacterium, Erwinia amylovora. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7568788.bard.

Full text
Abstract:
Fireblight, a disease of apples and pears, is caused by Erwinia amylovora. Mutants of E. amylovora that do not produce the extreacellular polysaccharide (EPS), amylovoran, are avirulent. A similar EPS, stewartan, is produced by E. stewartii, which caused Stewart's wilt of corn, and which has also been implicated in the virulence of this strain. Both stewartan and amylovoran are type 1 capsular polysaccharides, typified by the colanic acid slime produced by Escherichia coli. Extracellular polysaccharide slime and capsules are important for the virulence of bacterial pathogens of plants and animals and to enhance their survival and dissemination outside of the host. The goals of this project were to examine the importance of polysaccharide structure on the pathogenicity and survival properties of three pathogenic bacteria: Erwinia amylovora, Erwinia stewartii and Escherichia coli. The project was a collaboration between the laboratories of Dr. Gutnick (PI, E. coli genetics and biochemistry), Dr. Coplin (co-PI, E. stewartii genetics) and Dr. Geider (unfunded collaborator, E. amylovora genetics and EPS analysis). Structural analysis of the EPSs, sequence analysis of the biosynthetic gene clusters and site-directed mutagenesis of individual cps and ams genes revealed that the three gene clusters shared common features for polysaccharide polymerization, translocation, and precursor synthesis as well as in the modes of transcriptional regulation. Early EPS production resulted in decreased virulence, indicating that EPS, although required for pathogenicity, is anot always advantageous and pathogens must regulate its production carefully.
APA, Harvard, Vancouver, ISO, and other styles
3

Fluhr, Robert, and Maor Bar-Peled. Novel Lectin Controls Wound-responses in Arabidopsis. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697123.bard.

Full text
Abstract:
Innate immune responses in animals and plants involve receptors that recognize microbe-associated molecules. In plants, one set of this defense system is characterized by large families of TIR–nucleotide binding site–leucine-rich repeat (TIR-NBS-LRR) resistance genes. The direct interaction between plant proteins harboring the TIR domain with proteins that transmit and facilitate a signaling pathway has yet to be shown. The Arabidopsis genome encodes TIR-domain containing genes that lack NBS and LRR whose functions are unknown. Here we investigated the functional role of such protein, TLW1 (TIR LECTIN WOUNDRESPONSIVE1). The TLW1 gene encodes a protein with two domains: a TIR domain linked to a lectin-containing domain. Our specific aim in this proposal was to examine the ramifications of the TL1-glycan interaction by; A) The functional characterization of TL1 activity in the context of plant wound response and B) Examine the hypothesis that wounding induced specific polysaccharides and examine them as candidates for TL-1 interactive glycan compounds. The Weizmann group showed TLW1 transcripts are rapidly induced by wounding in a JA-independent pathway and T-DNA-tagged tlw1 mutants that lack TLW1 transcripts, fail to initiate the full systemic wound response. Transcriptome methodology analysis was set up and transcriptome analyses indicates a two-fold reduced level of JA-responsive but not JA-independent transcripts. The TIR domain of TLW1 was found to interact directly with the KAT2/PED1 gene product responsible for the final b-oxidation steps in peroxisomal-basedJA biosynthesis. To identify potential binding target(s) of TL1 in plant wound response, the CCRC group first expressed recombinant TL1 in bacterial cells and optimized conditions for the protein expression. TL1 was most highly expressed in ArcticExpress cell line. Different types of extraction buffers and extraction methods were used to prepare plant extracts for TL1 binding assay. Optimized condition for glycan labeling was determined, and 2-aminobenzamide was used to label plant extracts. Sensitivity of MALDI and LC-MS using standard glycans. THAP (2,4,6- Trihydroxyacetophenone) showed minimal background peaks at positive mode of MALDI, however, it was insensitive with a minimum detection level of 100 ng. Using LC-MS, sensitivity was highly increased enough to detect 30 pmol concentration. However, patterns of total glycans displayed no significant difference between different extraction conditions when samples were separated with Dionex ICS-2000 ion chromatography system. Transgenic plants over-expressing lectin domains were generated to obtain active lectin domain in plant cells. Insertion of the overexpression construct into the plant genome was confirmed by antibiotic selection and genomic DNA PCR. However, RT-PCR analysis was not able to detect increased level of the transcripts. Binding ability of azelaic acid to recombinant TL1. Azelaic acid was detected in GST-TL1 elution fraction, however, DHB matrix has the same mass in background signals, which needs to be further tested on other matrices. The major findings showed the importance of TLW1 in regulating wound response. The findings demonstrate completely novel and unexpected TIR domain interactions and reveal a control nexus and mechanism that contributes to the propagation of wound responses in Arabidopsis. The implications are to our understanding of the function of TIR domains and to the notion that early molecular events occur systemically within minutes of a plant sustaining a wound. A WEB site (http://genome.weizmann.ac.il/hormonometer/) was set up that enables scientists to interact with a collated plant hormone database.
APA, Harvard, Vancouver, ISO, and other styles
4

Morrison, Mark, Joshuah Miron, Edward A. Bayer, and Raphael Lamed. Molecular Analysis of Cellulosome Organization in Ruminococcus Albus and Fibrobacter Intestinalis for Optimization of Fiber Digestibility in Ruminants. United States Department of Agriculture, March 2004. http://dx.doi.org/10.32747/2004.7586475.bard.

Full text
Abstract:
Improving plant cell wall (fiber) degradation remains one of the highest priority research goals for all ruminant enterprises dependent on forages, hay, silage, or other fibrous byproducts as energy sources, because it governs the provision of energy-yielding nutrients to the host animal. Although the predominant species of microbes responsible for ruminal fiber degradation are culturable, the enzymology and genetics underpinning the process are poorly defined. In that context, there were two broad objectives for this proposal. The first objective was to identify the key cellulosomal components in Ruminococcus albus and to characterize their structural features as well as regulation of their expression, in response to polysaccharides and (or) P AA/PPA. The second objective was to evaluate the similarities in the structure and architecture of cellulosomal components between R. albus and other ruminal and non-ruminal cellulolytic bacteria. The cooperation among the investigators resulted in the identification of two glycoside hydrolases rate-limiting to cellulose degradation by Ruminococcus albus (Cel48A and CeI9B) and our demonstration that these enzymes possess a novel modular architecture specific to this bacterium (Devillard et al. 2004). We have now shown that the novel X-domains in Cel48A and Cel9B represent a new type of carbohydrate binding module, and the enzymes are not part of a ceiluiosome-like complex (CBM37, Xu et al. 2004). Both Cel48A and Cel9B are conditionally expressed in response to P AA/PPA, explaining why cellulose degradation in this bacterium is affected by the availability of these compounds, but additional studies have shown for the first time that neither PAA nor PPA influence xylan degradation by R. albus (Reveneau et al. 2003). Additionally, the R. albus genome sequencing project, led by the PI. Morrison, has supported our identification of many dockerin containing proteins. However, the identification of gene(s) encoding a scaffoldin has been more elusive, and recombinant proteins encoding candidate cohesin modules are now being used in Israel to verify the existence of dockerin-cohesin interactions and cellulosome production by R. albus. The Israeli partners have also conducted virtually all of the studies specific to the second Objective of the proposal. Comparative blotting studies have been conducted using specific antibodies prepare against purified recombinant cohesins and X-domains, derived from cellulosomal scaffoldins of R. flavefaciens 17, a Clostridium thermocellum mutant-preabsorbed antibody preparation, or against CbpC (fimbrial protein) of R. albus 8. The data also suggest that additional cellulolytic bacteria including Fibrobacter succinogenes S85, F. intestinalis DR7 and Butyrivibrio fibrisolvens Dl may also employ cellulosomal modules similar to those of R. flavefaciens 17. Collectively, our work during the grant period has shown that R. albus and other ruminal bacteria employ several novel mechanisms for their adhesion to plant surfaces, and produce both cellulosomal and non-cellulosomal forms of glycoside hydrolases underpinning plant fiber degradation. These improvements in our mechanistic understanding of bacterial adhesion and enzyme regulation now offers the potential to: i) optimize ruminal and hindgut conditions by dietary additives to maximize fiber degradation (e.g. by the addition of select enzymes or PAA/PPA); ii) identify plant-borne influences on adhesion and fiber-degradation, which might be overcome (or improved) by conventional breeding or transgenic plant technologies and; iii) engineer or select microbes with improved adhesion capabilities, cellulosome assembly and fiber degradation. The potential benefits associated with this research proposal are likely to be realized in the medium term (5-10 years).
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Sang-Hyuk, Shishir Chundawat, Eric Lam, Matthew Lang, Wellington Muchero, and Sai Vankatesh Pingali. In planta single-molecule imaging and holographic force spectroscopy to study real-time, multimodal turnover dynamics of polysaccharides and associated carbohydrate metabolites. Office of Scientific and Technical Information (OSTI), March 2023. http://dx.doi.org/10.2172/1960742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crowley, David E., Dror Minz, and Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7594387.bard.

Full text
Abstract:
PGPR bacteria include taxonomically diverse bacterial species that function for improving plant mineral nutrition, stress tolerance, and disease suppression. A number of PGPR are being developed and commercialized as soil and seed inoculants, but to date, their interactions with resident bacterial populations are still poorly understood, and-almost nothing is known about the effects of soil management practices on their population size and activities. To this end, the original objectives of this research project were: 1) To examine microbial community interactions with plant-growth-promoting rhizobacteria (PGPR) and their plant hosts. 2) To explore the factors that affect PGPR population size and activity on plant root surfaces. In our original proposal, we initially prqposed the use oflow-resolution methods mainly involving the use of PCR-DGGE and PLFA profiles of community structure. However, early in the project we recognized that the methods for studying soil microbial communities were undergoing an exponential leap forward to much more high resolution methods using high-throughput sequencing. The application of these methods for studies on rhizosphere ecology thus became a central theme in these research project. Other related research by the US team focused on identifying PGPR bacterial strains and examining their effective population si~es that are required to enhance plant growth and on developing a simulation model that examines the process of root colonization. As summarized in the following report, we characterized the rhizosphere microbiome of four host plant species to determine the impact of the host (host signature effect) on resident versus active communities. Results of our studies showed a distinct plant host specific signature among wheat, maize, tomato and cucumber, based on the following three parameters: (I) each plant promoted the activity of a unique suite of soil bacterial populations; (2) significant variations were observed in the number and the degree of dominance of active populations; and (3)the level of contribution of active (rRNA-based) populations to the resident (DNA-based) community profiles. In the rhizoplane of all four plants a significant reduction of diversity was observed, relative to the bulk soil. Moreover, an increase in DNA-RNA correspondence indicated higher representation of active bacterial populations in the residing rhizoplane community. This research demonstrates that the host plant determines the bacterial community composition in its immediate vicinity, especially with respect to the active populations. Based on the studies from the US team, we suggest that the effective population size PGPR should be maintained at approximately 105 cells per gram of rhizosphere soil in the zone of elongation to obtain plant growth promotion effects, but emphasize that it is critical to also consider differences in the activity based on DNA-RNA correspondence. The results ofthis research provide fundamental new insight into the composition ofthe bacterial communities associated with plant roots, and the factors that affect their abundance and activity on root surfaces. Virtually all PGPR are multifunctional and may be expected to have diverse levels of activity with respect to production of plant growth hormones (regulation of root growth and architecture), suppression of stress ethylene (increased tolerance to drought and salinity), production of siderophores and antibiotics (disease suppression), and solubilization of phosphorus. The application of transcriptome methods pioneered in our research will ultimately lead to better understanding of how management practices such as use of compost and soil inoculants can be used to improve plant yields, stress tolerance, and disease resistance. As we look to the future, the use of metagenomic techniques combined with quantitative methods including microarrays, and quantitative peR methods that target specific genes should allow us to better classify, monitor, and manage the plant rhizosphere to improve crop yields in agricultural ecosystems. In addition, expression of several genes in rhizospheres of both cucumber and whet roots were identified, including mostly housekeeping genes. Denitrification, chemotaxis and motility genes were preferentially expressed in wheat while in cucumber roots bacterial genes involved in catalase, a large set of polysaccharide degradation and assimilatory sulfate reduction genes were preferentially expressed.
APA, Harvard, Vancouver, ISO, and other styles
7

Poverenov, Elena, Tara McHugh, and Victor Rodov. Waste to Worth: Active antimicrobial and health-beneficial food coating from byproducts of mushroom industry. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7600015.bard.

Full text
Abstract:
Background. In this proposal we suggest developing a common solution for three seemingly unrelated acute problems: (1) improving sustainability of fast-growing mushroom industry producing worldwide millions of tons of underutilized leftovers; (2) alleviating the epidemic of vitamin D deficiency adversely affecting the public health in both countries and in other regions; (3) reducing spoilage of perishable fruit and vegetable products leading to food wastage. Based on our previous experience we propose utilizing appropriately processed mushroom byproducts as a source of two valuable bioactive materials: antimicrobial and wholesome polysaccharide chitosan and health-strengthening nutrient ergocalciferol⁽ᵛⁱᵗᵃᵐⁱⁿ ᴰ2⁾. ᴬᵈᵈⁱᵗⁱᵒⁿᵃˡ ᵇᵉⁿᵉᶠⁱᵗ ᵒᶠ ᵗʰᵉˢᵉ ᵐᵃᵗᵉʳⁱᵃˡˢ ⁱˢ ᵗʰᵉⁱʳ ᵒʳⁱᵍⁱⁿ ᶠʳᵒᵐ ⁿᵒⁿ⁻ᵃⁿⁱᵐᵃˡ ᶠᵒᵒᵈ⁻ᵍʳᵃᵈᵉ source. We proposed using chitosan and vitamin D as ingredients in active edible coatings on two model foods: highly perishable fresh-cut melon and less perishable health bars. Objectives and work program. The general aim of the project is improving storability, safety and health value of foods by developing and applying a novel active edible coating based on utilization of mushroom industry leftovers. The work plan includes the following tasks: (a) optimizing the UV-B treatment of mushroom leftover stalks to enrich them with vitamin D without compromising chitosan quality - Done; (b) developing effective extraction procedures to yield chitosan and vitamin D from the stalks - Done; (c) utilizing LbL approach to prepare fungal chitosan-based edible coatings with optimal properties - Done; (d) enrichment of the coating matrix with fungal vitamin D utilizing molecular encapsulation and nano-encapsulation approaches - Done, it was found that no encapsulation methods are needed to enrich chitosan matrix with vitamin D; (e) testing the performance of the coating for controlling spoilage of fresh cut melons - Done; (f) testing the performance of the coating for nutritional enhancement and quality preservation of heath bars - Done. Achievements. In this study numerous results were achieved. Mushroom waste, leftover stalks, was treated ʷⁱᵗʰ ᵁⱽ⁻ᴮ ˡⁱᵍʰᵗ ᵃⁿᵈ ᵗʳᵉᵃᵗᵐᵉⁿᵗ ⁱⁿᵈᵘᶜᵉˢ ᵃ ᵛᵉʳʸ ʰⁱᵍʰ ᵃᶜᶜᵘᵐᵘˡᵃᵗⁱᵒⁿ ᵒᶠ ᵛⁱᵗᵃᵐⁱⁿ ᴰ2, ᶠᵃʳ ᵉˣᶜᵉᵉᵈⁱⁿᵍ any other dietary vitamin D source. The straightforward vitamin D extraction procedure and ᵃ ˢⁱᵐᵖˡⁱᶠⁱᵉᵈ ᵃⁿᵃˡʸᵗⁱᶜᵃˡ ᵖʳᵒᵗᵒᶜᵒˡ ᶠᵒʳ ᵗⁱᵐᵉ⁻ᵉᶠᶠⁱᶜⁱᵉⁿᵗ ᵈᵉᵗᵉʳᵐⁱⁿᵃᵗⁱᵒⁿ ᵒᶠ ᵗʰᵉ ᵛⁱᵗᵃᵐⁱⁿ ᴰ2 ᶜᵒⁿᵗᵉⁿᵗ suitable for routine product quality control were developed. Concerning the fungal chitosan extraction, new freeze-thawing protocol was developed, tested on three different mushroom sources and compared to the classic protocol. The new protocol resulted in up to 2-fold increase in the obtained chitosan yield, up to 3-fold increase in its deacetylation degree, high whitening index and good antimicrobial activity. The fungal chitosan films enriched with Vitamin D were prepared and compared to the films based on animal origin chitosan demonstrating similar density, porosity and water vapor permeability. Layer-by-layer chitosan-alginate electrostatic deposition was used to coat fruit bars. The coatings helped to preserve the quality and increase the shelf-life of fruit bars, delaying degradation of ascorbic acid and antioxidant capacity loss as well as reducing bar softening. Microbiological analyses also showed a delay in yeast and fungal growth when compared with single layer coatings of fungal or animal chitosan or alginate. Edible coatings were also applied on fresh-cut melons and provided significant improvement of physiological quality (firmness, weight ˡᵒˢˢ⁾, ᵐⁱᶜʳᵒᵇⁱᵃˡ ˢᵃᶠᵉᵗʸ ⁽ᵇᵃᶜᵗᵉʳⁱᵃ, ᵐᵒˡᵈ, ʸᵉᵃˢᵗ⁾, ⁿᵒʳᵐᵃˡ ʳᵉˢᵖⁱʳᵃᵗⁱᵒⁿ ᵖʳᵒᶜᵉˢˢ ⁽Cᴼ2, ᴼ²⁾ ᵃⁿᵈ ᵈⁱᵈ not cause off-flavor (EtOH). It was also found that the performance of edible coating from fungal stalk leftovers does not concede to the chitosan coatings sourced from animal or good quality mushrooms. Implications. The proposal helped attaining triple benefit: valorization of mushroom industry byproducts; improving public health by fortification of food products with vitamin D from natural non-animal source; and reducing food wastage by using shelf- life-extending antimicrobial edible coatings. New observations with scientific impact were found. The program resulted in 5 research papers. Several effective and straightforward procedures that can be adopted by mushroom growers and food industries were developed. BARD Report - Project 4784
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography