Academic literature on the topic 'Polysaccharide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polysaccharide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polysaccharide"
Al-Wraikat, Majida, Yun Liu, Limei Wu, Zeshan Ali, and Jianke Li. "Structural Characterization of Degraded Lycium barbarum L. Leaves’ Polysaccharide Using Ascorbic Acid and Hydrogen Peroxide." Polymers 14, no. 7 (March 30, 2022): 1404. http://dx.doi.org/10.3390/polym14071404.
Full textKhalilova, Gulnoza Abduvahobovna, Abbaskhan Sabirkhanovich Turaev, Bakhtiyor Ikromovich Muhitdinov, Al'bina Vasil'yevna Filatova, Saida Bokizhonovna Haytmetova, and Nodirali Sokhobatalievich Normakhamatov. "ISOLATION, PHYSICO-CHEMICAL CHARACTERISTICS OF POLYSACCHARIDE ISOLATED FROM THE FRUIT BODY OF INONOTUS HISPIDUS." chemistry of plant raw material, no. 3 (September 27, 2021): 99–106. http://dx.doi.org/10.14258/jcprm.2021039028.
Full textWhang, Yoon Hee, Soo Kyung Kim, Hyeseon Yoon, Seuk Keun Choi, Yeong Ok Baik, Chankyu Lee, and Inhwan Lee. "Reduction of free polysaccharide contamination in the production of a 15-valent pneumococcal conjugate vaccine." PLOS ONE 15, no. 12 (December 10, 2020): e0243909. http://dx.doi.org/10.1371/journal.pone.0243909.
Full textSchifferle, R. E., H. J. Jennings, M. R. Wessels, E. Katzenellenbogen, R. Roy, and D. L. Kasper. "Immunochemical analysis of the types Ia and Ib group B streptococcal polysaccharides." Journal of Immunology 135, no. 6 (December 1, 1985): 4164–70. http://dx.doi.org/10.4049/jimmunol.135.6.4164.
Full textGuo, Qingbin, Xingyue Xiao, Laifeng Lu, Lianzhong Ai, Meigui Xu, Yan Liu, and H. Douglas Goff. "Polyphenol–Polysaccharide Complex: Preparation, Characterization, and Potential Utilization in Food and Health." Annual Review of Food Science and Technology 13, no. 1 (March 25, 2022): 59–87. http://dx.doi.org/10.1146/annurev-food-052720-010354.
Full textYang, Haiyan, Dawei Wang, Jia Deng, Jing Yang, Chun Shi, Fanglang Zhou, and Zhengjun Shi. "Activity and Structural Characteristics of Peach Gum Exudates." International Journal of Polymer Science 2018 (June 3, 2018): 1–5. http://dx.doi.org/10.1155/2018/4593735.
Full textLi, Jingyuan, Hong Xiang, Qian Zhang, and Xiaoqing Miao. "Polysaccharide-Based Transdermal Drug Delivery." Pharmaceuticals 15, no. 5 (May 14, 2022): 602. http://dx.doi.org/10.3390/ph15050602.
Full textSavidge, Rodney Arthur, and J. Ross Colvin. "Production of cellulose and soluble polysaccharides by Acetobacter xylinum." Canadian Journal of Microbiology 31, no. 11 (November 1, 1985): 1019–25. http://dx.doi.org/10.1139/m85-192.
Full textWang, Zi, Ju-Hong Chen, Ling-Shuai Wang, Juan Ding, Ming-Wen Zhao, and Rui Liu. "GlPP2C1 Silencing Increases the Content of Ganodermalingzhi Polysaccharide (GL-PS) and Enhances Slt2 Phosphorylation." Journal of Fungi 8, no. 9 (September 10, 2022): 949. http://dx.doi.org/10.3390/jof8090949.
Full textWang, Qiong, Mengmeng Xu, Liting Zhao, Lei Chen, and Zhongyang Ding. "Novel Insights into the Mechanism Underlying High Polysaccharide Yield in Submerged Culture of Ganoderma lucidum Revealed by Transcriptome and Proteome Analyses." Microorganisms 11, no. 3 (March 17, 2023): 772. http://dx.doi.org/10.3390/microorganisms11030772.
Full textDissertations / Theses on the topic "Polysaccharide"
Gillis, Richard Benjamin. "Protein polysaccharide complexes : permanent/nonpermanent interactions between polysaccharides and polypeptides." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/28240/.
Full textKarlsson, Camilla. "Structures of some bacterial polysaccharides with focus on pneumococcal polysaccharides and their associated C-polysaccharide /." Stockholm, 1998. http://diss.kib.ki.se/search/diss.se.cfm?19980515karl.
Full textTurquois, Tristan. "Interactions polysaccharide-polysaccharide : la synergie kappa carraghénane-galactomannane." Université Joseph Fourier (Grenoble), 1991. http://www.theses.fr/1991GRE10172.
Full textLiu, Shu. "Regioselective Synthesis of Polysaccharide-based Polyelectrolytes." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/91194.
Full textPh. D.
Chouana, Toufik. "Caractérisation structurale et activités biologiques des polysaccharides d'Astragalus gombo bunge." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC112/document.
Full textAstragalus gombo Bunge (Fabaceae) is a terrestrial plant occuring in the East Septentrional Sahara (Ouargla, Algeria). It is commonly used as fodder or in traditional medicine by local populations. Despite numerous publications focusing on polysaccharidic contents of Astragalus species and the designation of their putative or proved biological activities, no study has examined those of A. gombo. The objective of this thesis was firstly to investigate several organs of this plant for their polysaccharide contents. In a second step, the biological and rheological properties of these biopolymers have been studied to identify ways of adding value. Results led to the identification of pectic compounds and hemicelluloses in the rods of Astragalus gombo whereas a galactomannan was detected in its seeds. This galactomannan was a high molecular weight macromolecule composed of a β-(1→4)-D-mannan skeleton ramified by residues of D-galactopyranoses. The M/G ratio was of 1.7. The characterization of its rheological behavior was typic of that of a rheofluidifiant fluid with viscoelastic properties. The study of its biological properties showed its potential as prebiotic and antioxidant agent
Diedericks, Claudine Florett. "Functional properties of bambara groundnut (Vigna subterranea (L.) Verdc.) non-starch polysaccharides in model and food systems." Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/833.
Full textThe aim of this study was to evaluate bambara groundnut [BGN] non-starch polysaccharides [NSP] subject to the incorporation into model and food systems with a view to establish their functional and physicochemical properties. BGN insoluble dietary fibre [BGNIF] and soluble dietary fibre [BGNSF] were successfully extracted from four varieties (black-eye: BLE, red: RED, brown: BRN and brown-eye: BRE). Physicochemical properties evaluated revealed the high bulk density of all BGNIF and BGNSF varieties, which could contribute to cost-effective packaging. The microstructures of BGNIFs were irregular in shape with different sizes. The colour parameters (lightness, redness, yellowness, chroma and hue angle) differed significantly [p ≤ 0.05] across all BGNIF and BGNSF varieties; and indicated a yellowish-red colour for BGNIFs and a light yellow colour for BGNSFs. Negligible amounts of condensed tannins [CT] were found in BGNIFs (0.014 – 0.160 mg.g-1). Higher amounts polyphenols [PP] were present in BGNSFs (45.42 – 55.90 mg.g-1 gallic acid equivalents [GAE]) compared to the amount PP in BGNIFs (6.14 – 15.56 mg.g-1 GAE). Major sugars identified were arabinose/galactose, xylose and mannose in BGNIFs, and xylose and mannose in BGNSFs. The functional properties evaluated revealed high swelling capacity of BGNIFs (6.37 – 7.72 ml.g-1) and no significant [p > 0.05] difference in water retention capacity. Fat absorption capacity ranged from 1.38 – 1.52 g oil.g-1 dry weight for BGNIFs and 4.04 – 4.55 g oil.g-1 dry weight for BGNSFs. Variability in BGNIF (91.2%) and BGNSF (79.4%) physicochemical and functional properties could both be explained by two principal components (BGNIF component 1: PP, redness, yield; and component 2: xylose, yellowness and chroma; BGNSF component 1: yellowness, chroma, mannose content; and component 2: redness, fat absorption and fructose content). Following an IV optimal mixture design, an optimum white bread formulation was obtained using 59.5% water, 4.3% yeast and 8.5% BGNIF. Bread enriched with the four BGNIF varieties (BLE, RED, BRN and BRE) were tested for several physicochemical properties. Significant [p ≤ 0.05] differences existed between the control and BGNIF enriched loaves for crumb grain characteristics (including pore area distribution, feret angle, circularity, roundness and aspect ratio). Specific loaf volume of BGNIF enriched loaves ranged from 3.33 – 3.85 ml.g-1 and were significantly [p ≤ 0.05] lower compared to the control bread (4.16 ml.g-1). Favourable texture characteristics obtained with the BGNIF enriched breads were lower hardness, chewiness and gumminess compared to the control loaf. Crust and crumb colour parameters (lightness, redness, yellowness, chroma and hue angle) were significantly [p ≤ 0.05] different across all loaves. BRE BGNIF bread (3.43 ± 0.20) had the significantly [p ≤ 0.05] lowest crumb colour difference compared to the control bread; whilst BRN (1.72 ± 0.42) and BRE (2.44 ± 0.78) loaves had the lowest significant [p ≤ 0.05] crust colour difference compared to the control. Favourable chemical properties were the high total dietary fibre [TDF] (7.14 – 8.33%) content of all BGNIF enriched loaves compared to the control loaf (4.96%). Significant [p ≤ 0.05] differences were also observed for some loaves for moisture content, condensed tannins and polyphenol content. Variability in bread physicochemical properties was differentiated by three components (component 1: bread textural properties; component 2: specific loaf volume and bread lightness; component 3: crumb colour parameters) which accounted for a cumulative variation of 92.8%. All bread loaves were also sensorially acceptable as rated moderately like to like very much (>3 rating on a 5-point hedonic scale) by consumers for all parameters (appearance, crust and crumb colour, aroma, taste, texture and overall acceptability) evaluated. Furthermore, brown BGNSF was tested for stabilising effects in an orange beverage emulsion. BGNSF and orange oil were varied at two levels each based on a 22 augmented factorial design and the effects determined on the equilibrium backscattering [BS] flux as emulsion stability indicator. The BS profiles which resulted from the Turbiscan stability analysis revealed flocculation at low rates as the major destabilisation mechanism. The optimal formulation producing a stable emulsion was identified as low oil (6%) and high BGNSF (30%) concentrations. The objective of this study was therefore achieved and showed that positive physicochemical and functional properties are associated with BGNIF and BGNSF from black-eye, red, brown and brown-eye varieties. Furthermore, the incorporation of BGN fibres in white bread and a beverage emulsion was shown to contribute positive technological properties in these systems.
Mazzoccoli, Jason Paul. "ULTRASONICATION OF POLYSACCHARIDE MATERIALS." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1262572128.
Full textDepartment of Chemical Engineering Title from PDF (viewed on 2010-05-25) Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Fleet, Reda. "RAFT mediated polysaccharide copolymers." Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/1025.
Full textJones, Amanda Kay. "Hydrophobicity in polysaccharide gelation." Thesis, Cranfield University, 1992. http://dspace.lib.cranfield.ac.uk/handle/1826/4595.
Full textNjamela, Njamela. "Lignin polysaccharide networks in biomass and corresponding processed materials." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96636.
Full textENGLISH ABSTRACT: Lignocellulosic material is composed of three major macromolecule components i.e., cellulose, hemicelluloses and lignin. These components are chemically associated and directly linked to each other through covalent bonding which is scientifically denoted as lignin-carbohydrate complexes (LCCs) and their interaction is fundamentally important as to understand wood formation and reactivity during chemical and biological processing e.g. pulping and enzymatic hydrolysis. The association of lignin with polysaccharides (covalent linkages) has been surrounded by contradictions and controversy in several wood chemistry studies. These linkages exist in lignocellulosic materials from wood to herbaceous plants. In woody plants, they consist of ester and ether linkages through sugar hydroxyl to α-carbonyl of phenyl-propane unit on lignin. However, in herbaceous plants ferulic and p-coumaric acids are esterified to hemicelluloses and lignin respectively. In recent studies, the existence of the bonds has been shown by applying indirect analysis strategies which resulted to low yields and contaminations. The general aim of the current study was to isolate and fractionate LCCs from raw lignocellulosic materials (E. grandis and sugarcane bagasse) and corresponding processed materials (chemical pulps and water-insoluble residues (WIS)) in order to determine the chemical structure of the residual lignin associated with polysaccharides and how they affected industrial processing. The objective of the study is to compile a document that when the development of pulping and bio-ethanol bio-refinery will greatly depends on the detailed wood chemistry on how the components interact with each before and after hemicelluloses pre-extraction prior to pulping and steam explosion pre-treatment prior to enzymatic hydrolysis. The current study was focusing on understanding the effect LCCs isolated from two different industrial processing methods, i.e. pulping and enzymatic hydrolysis (EH). There were two lignocelluloses feedstocks used for pulping, i.e. Eucalyptus grandis and sugarcane bagasse whereas sugarcane bagasse was the only feedstock used for enzymatic hydrolysis. Hemicelluloses pre-extracted (mild alkali or dilute acid and autohydrolysis for sugarcane bagasse) pulps of Kraft or soda AQ from E. grandis and sugarcane bagasse were used to understand the effect of xylan pre-extraction prior to pulping on lignin-carbohydrate complexes has not been reported to the best knowledge of the primary author. Also prior to EH the material was subjected to two different treatment methods, i.e. steam explosion and ionic liquid fractionation in varying conditions. The study illustrated the types of extracted and fractionated LCCs from hemicelluloses pre-extracted pulps and WIS in comparison to the non-extracted pulps and reports from the literature. Lignin-carbohydrate complexes (LCCs) were isolated and fractionated by an inorganic method which yielded reasonable quantification quantities and no contamination and low yields for the hardwood compared to reports of using an enzymatic method. To the best knowledge of the authors, no work has been done on WIS material. The lignocelluloses were subjected to ball milling which was followed by a sequence of inorganic solvents swelling and dissolution into 2 fractions i.e. glucan-lignin and xylan-lignin-glucan. Characterisation of the isolated LCCs was made using a variety of analytical tools such as FTIR-PCA, HPLC, GPC and GC-MS. LCCs were evident when FTIR and HPLC studies were conducted. Residual lignin isolated from the lignocelluloses was assumed to be chemically bonded to carbohydrates and mostly to xylan. Approximately 60% and 30% of the lignin was linked to xylan while for the second and first fractions respectively. It is reported that lignin associated with xylan is more resistant and reduce the delignification process than when linked to glucan that is easily hydrolysable. With the FTIR and GPC analyses of LCC fractions, it was evident that the ester bonds of LCCs were destroyed through pre-extraction and pre-treatment, where this resulted to more cellulose being more accessible to alkaline pulping and enzymatic hydrolysis respectively. The linkages were either partially broken down or completely destroyed leading to significant changes of chemical structures. The polydispersity of the LCCs assisted in determining the structure of lignin, either existing as monolignols on the surfaces of fibres or a as complex two or three-dimensional structure that is linked to carbohydrates as the Mw increased or decreased. In general, these findings may have an important implication for the overall efficiency on bio-refinery. The molecular weights (Mw) of the extracted LCCs were measured by gel permeation chromatography. From the chromatograms, it was observed that the materials that were subjected to pre-processing prior to further processing, the Mw shifted to lower Mws regions. It was found that LCCs isolated from mild alkali pre-extracted pulps had high lignin syringyl to guaiacyl lignin contents than LCCs isolated from dilute acid pre-extracted pulps. High syringyl/guaiacyl ratio (S/G ratio) was an indication of low lignin content as a result of processing which will result to high product yields after downstream processing. The 5 average S/G ratio for the pulps from E. grandis and sugarcane bagasse was ranging between 1.1 to 19.01 and 1.4 to 18.16 respectively, while for the WIS-material generated from ionic liquid fractionated and steam exploded materials ranged from 3.29 to 9.27 and 3.5 to 13.3 respectively. The S/G ratios of the LCCs extracted from E. grandis and sugarcane bagasse pulps ranged from 0.42 to 2.39 and 0.041 to 0.31 was respectively while for the LCCs extracted from water-insoluble-solids (WIS) material generated from steam exploded material was from 4.87 to 10.40. The determination of S/G ratio is recommended for the LCC extraction and characterisation study as an evaluation of residual lignin in processed materials such as pulps and WIS. The obtained saccharifications were low, possibly due to the severity of the steam explosion pre-treatment and ionic liquid fractionation conditions which resulted on high accumulation of acetic acid and increased in cellulose crystallinity respectively. From quantitative analysis of the LCCs perspective it could be concluded that free lignin was present in mild alkali pre-extracted pulps than for the dilute acid pre-extracted pulps.
AFRIKAANSE OPSOMMING: Cellulose materiaal is saamgestel uit drie groot makromolekule komponente naamlik, sellulose, hemisellulose en lignien. Hierdie komponente is chemies verwante en direk met mekaar verbind deur kovalente binding wat wetenskaplik aangedui as lignien-koolhidraat komplekse (LCCs) en hul interaksie is fundamenteel belangrik as hout vorming en reaktiwiteit tydens chemiese en biologiese verwerking bv om te verstaan verpulping en ensiematiese hidrolise. Die vereniging van lignien met polisakkariede (kovalente verbindings) is omring deur teenstrydighede en omstredenheid in verskeie hout chemie studies. Hierdie skakeling bestaan in cellulose materiaal uit hout te kruidagtige plante. In houtagtige plante, hulle bestaan uit ester en eter bindings deur suiker hidroksiel te α-karboniel van feniel-propaan eenheid op lignien. Maar in kruidagtige plante ferulic en p-coumaric sure veresterd te hemisellulose en lignien onderskeidelik. In onlangse studies, het die bestaan van die bande is getoon deur die toepassing van indirekte analise strategieë wat gelei tot lae opbrengste en kontaminasie. Die algemene doel van die huidige studie was om te isoleer en fraksioneer LCCs van rou cellulose materiaal (E. grandis en suikerriet bagasse) en die ooreenstemmende verwerkte materiaal (chemiese pulp en water-oplosbare residue (WIS)) ten einde die chemiese struktuur van die te bepaal oorblywende lignien wat verband hou met polisakkariede en hoe hulle geaffekteerde industriële verwerking. Die doel van die studie is 'n dokument op te stel dat wanneer die ontwikkeling van verpulping en bio-etanol bio-raffinadery sal grootliks afhang van die gedetailleerde hout chemie oor hoe om die komponente met mekaar voor en na hemisellulose pre-onttrekking voor verpulping en stoom ontploffing pre-behandeling voor ensiematiese hidrolise. Die huidige studie was die fokus op die begrip van die effek LCCs geïsoleerd van twee verskillende industriële verwerking, maw verpulping en ensiematiese hidrolise (EH). Daar was twee lignocelluloses voerstowwe gebruik vir verpulping, dws Eucalyptus grandis en suikerriet bagasse terwyl suikerriet bagasse was die enigste grondstof gebruik vir ensiematiese hidrolise. Hemisellulose pre-onttrek (ligte alkali of verdunde suur en autohydrolysis vir suikerriet bagasse) pulp van Kraft of soda AQ van E. grandis en suikerriet bagasse is gebruik om die effek van Xylan pre-onttrekking te voor verstaan verpulping op lignien-koolhidraat komplekse het nie aan die berig is beste kennis van die primêre outeur. Ook voor EH die materiaal is onderworpe aan twee verskillende behandeling metodes, naamlik stoom ontploffing en ioniese vloeistof fraksionering in wisselende toestande. Die studie geïllustreer die tipes onttrek en gefractioneerd LCCs van hemisellulose pre-onttrek pulp en WIS in vergelyking met die nie-onttrek pulp en verslae van die literatuur. Lignien-koolhidraat komplekse (LCCs) is geïsoleer en gefraksioneer deur 'n anorganiese metode wat redelike kwantifisering hoeveelhede en geen besoedeling en lae opbrengste opgelewer vir die hardehout vergelyking met verslae van die gebruik van 'n ensiematiese metode. Na die beste kennis van die skrywers, het geen werk op WIS materiaal gedoen. Die lignocelluloses is onderworpe aan die bal maal wat gevolg is deur 'n reeks van anorganiese oplosmiddels swelling en ontbinding in 2 breuke dws glucan-lignien en Xylan-lignien-glucan. Karakterisering van die geïsoleerde LCCs is gemaak met behulp van 'n verskeidenheid van analitiese gereedskap soos FTIR-PCA, HPLC, GPC en GC-MS. LCCs was duidelik wanneer FTIR en HPLC studies is uitgevoer. Residuele lignien geïsoleerd van die lignocelluloses is aanvaar moet word chemies gebind aan koolhidrate en meestal te xylan. Ongeveer 60% en 30% van die lignien is gekoppel aan xylan terwyl dit vir die tweede en eerste breuke onderskeidelik. Dit is gerapporteer dat lignien wat verband hou met Xylan is meer bestand en die delignification proses as wanneer gekoppel aan glucane wat maklik hidroliseerbare verminder. Met die FTIR en GPC ontledings van LCC breuke, was dit duidelik dat die ester bande van LCCs is deur pre-ontginning en pre-behandeling, waar dit gelei tot meer sellulose om meer toeganklik te alkaliese verpulping en ensiematiese hidrolise onderskeidelik vernietig. Die skakeling is óf gedeeltelik afgebreek of heeltemal vernietig lei tot beduidende veranderinge van chemiese strukture. Die polydispersity van die LCCs bygestaan in die bepaling van die struktuur van lignien, hetsy bestaande as monolignols op die oppervlak van die vesel of 'n as komplekse twee of drie-dimensionele struktuur wat gekoppel is aan koolhidrate as die Mw vermeerder of verminder. In die algemeen, kan hierdie bevindinge het 'n belangrike implikasie vir die algehele doeltreffendheid op bio-raffinadery. Die molekulêre gewigte (Mw) die onttrek LCCs gemeet deur gelpermeasie- chromatografie. Van die chromatograms, was dit opgemerk dat die materiaal wat blootgestel is aan die pre-verwerking voor verdere verwerking, die Mw verskuif MWS streke te verlaag. Daar is gevind dat LCCs geïsoleerd van ligte alkali pre-onttrek pulp het hoë lignien syringyl lignien inhoud as LCCs geïsoleerd van verdunde suur vooraf onttrek pulp te guaiacyl. Hoë syringyl / guaiacyl verhouding (S/G-verhouding) was 'n aanduiding van 'n lae lignien inhoud as 'n resultaat van verwerking wat sal lei tot 'n hoë produk opbrengste ná stroomaf verwerking. Die gemiddelde S/G-verhouding vir die pulp van E. grandis en suikerriet bagasse was wat wissel tussen 1,1-19,01 en 1,4-18,16 onderskeidelik, terwyl dit vir die WIS-materiaal gegenereer uit ioniese vloeistof gefraksioneer en stoom ontplof materiaal het gewissel 3,29-9,27 en 3.5 13,3 onderskeidelik. Die S/G verhoudings van die LCCs onttrek uit E. grandis en suikerriet bagasse pulp gewissel 0,42-2,39 en ,041-,31 was onderskeidelik terwyl dit vir die LCCs onttrek uit water-oplosbare-vastestowwe (WIS) materiaal gegenereer uit stoom ontplof materiaal was van 4,87-10,40. Die bepaling van S/G-verhouding word aanbeveel vir die LCC ontginning en karakterisering studie as 'n evaluering van die oorblywende lignien in verwerkte materiaal soos pulp en WIS. Die verkry saccharifications was laag, moontlik as gevolg van die erns van die stoom ontploffing pre-behandeling en ioniese vloeistof fraksionering voorwaardes wat gelei op 'n hoë opeenhoping van asynsuur en vermeerder in sellulose kristalliniteit.
Books on the topic "Polysaccharide"
1937-, Franz G., and Blaschek Wolfgang 1949-, eds. Polysaccharide. Berlin: Springer-Verlag, 1991.
Find full textFranz, Gerhard, ed. Polysaccharide. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76613-8.
Full textBurchard, Walther, ed. Polysaccharide. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70099-6.
Full textEl-Nokaly, Magda A., and Helena A. Soini, eds. Polysaccharide Applications. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-1999-0737.
Full text1939-, Dumitriu Severian, ed. Polysaccharides: Structural diversity and functional versatility. 2nd ed. New York: Marcel Dekker, 2005.
Find full textJana, Sougata, Subrata Jana, and Abraham J. Domb, eds. Polysaccharide-based Biomaterials. Cambridge: Royal Society of Chemistry, 2022. http://dx.doi.org/10.1039/9781839166235.
Full textHuang, Jin, Peter R. Chang, Ning Lin, and Alain Dufresne, eds. Polysaccharide-Based Nanocrystals. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527689378.
Full textHabibi, Youssef, and Lucian A. Lucia, eds. Polysaccharide Building Blocks. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118229484.
Full textYee Liew, Soon, Wim Thielemans, Stefan Freunberger, and Stefan Spirk. Polysaccharide Based Supercapacitors. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50754-5.
Full textKalia, Susheel, and M. W. Sabaa, eds. Polysaccharide Based Graft Copolymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9.
Full textBook chapters on the topic "Polysaccharide"
Franz, G. "Polysaccharide: Eine Einführung." In Polysaccharide, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76613-8_1.
Full textBlaschek, W. "Isolierung und Analytik von Polysacchariden." In Polysaccharide, 17–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76613-8_2.
Full textBurchard, W. "Physikalisch Chemische Eigenschaften von Polysacchariden." In Polysaccharide, 49–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76613-8_3.
Full textNürnberg, E. "Einsatz von Polysacchariden in der Pharmazeutischen Technologie." In Polysaccharide, 83–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76613-8_4.
Full textWagner, H. "Polysaccharide mit spezifischem Einfluß auf das Immunsystem." In Polysaccharide, 117–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76613-8_5.
Full textKoehler, H. "Polysaccharide in der Lebensmitteltechnologie." In Polysaccharide, 139–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76613-8_6.
Full textBlaschek, W. "Cellulose." In Polysaccharide, 159–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76613-8_7.
Full textKoch, H., and H. Röper. "Stärke." In Polysaccharide, 177–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76613-8_8.
Full textMiyakawa, Shin. "Polysaccharide." In Encyclopedia of Astrobiology, 1326. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1257.
Full textMiyakawa, Shin. "Polysaccharide." In Encyclopedia of Astrobiology, 1999. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1257.
Full textConference papers on the topic "Polysaccharide"
Ghosh, Supratim, Burcu Guldiken, Maxime Saffon, and Michael Nickeson. "Improved emulsification behaviour of pea protein-polysaccharide complexes for beverage application." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/oniy9265.
Full textTarigan, Juliati Br, Diana A. Barus, and Nico Hot Asi Naibaho. "Synthesis of Carboxymethyl Polysaccharide from Arenga Pinnata Polysaccharide and Monochloroasetic." In International Conference on Chemical Science and Technology Innovation. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0008854100630068.
Full textSUNG, J. H., H. J. CHOI, and M. S. JHON. "BIOCOMPATIBLE POLYSACCHARIDE BASED ELECTRORHEOLOGICAL SUSPENSIONS." In Proceedings of the Ninth International Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702197_0076.
Full textLiu, Jie, Keyong Tang, Xuejing Zheng, and Yitong Dong. "Heat sealable soluble soybean polysaccharide based composite films containing gelatin and curcumin for oil packaging." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/rsfv1079.
Full textLee, Jae-Won, Hyo-Seok An, and Kuen Yong Lee. "Polysaccharide-Based Hydrogels for Tissue Engineering." In The World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2016. http://dx.doi.org/10.11159/nddte16.112.
Full textArefeva, Oksana A., Pavel E. Kuznetsov, Sergey A. Tolmachev, Machammad S. Kupadze, Boris N. Khlebtsov, and Svetlana M. Rogacheva. "Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245." In Saratov Fall Meeting 2002 Laser Physics and Photonics, Spectroscopy, and Molecular Modeling III; Coherent Optics of Ordered and Random Media III, edited by Dmitry A. Zimnyakov, Vladimir L. Derbov, Leonid A. Melnikov, and Lev M. Babkov. SPIE, 2003. http://dx.doi.org/10.1117/12.518617.
Full textMurungi, Pearl Isabellah, Aliyu Adebayo Sulaimon, Oscar Ssembatya, and Princess Nwankwo. "A Review of Natural Polysaccharides as Corrosion Inhibitors: Recent Progress and Future Opportunities." In SPE Nigeria Annual International Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/211964-ms.
Full textTerpstra, J. "Stabilizing self-levelling concrete with polysaccharide additive." In SCC'2005-China - 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete. RILEM Publications SARL, 2005. http://dx.doi.org/10.1617/2912143624.021.
Full textLevy, Ilan, Tzur Paldi, and Oded Shoseyov. "ENGINEERING CARBOHYDRATE-BINDING MODULES FOR POLYSACCHARIDE CROSSLINKING." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.477.
Full textAlmeida, Ekmagage Don N., Leela Rakesh, Stanley Hirschi, and Anja Mueller. "Solution Rheology of Saline and Polysaccharide Systems." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15906.
Full textReports on the topic "Polysaccharide"
Gutnick, David, and David L. Coplin. Role of Exopolysaccharides in the Survival and Pathogenesis of the Fire Blight Bacterium, Erwinia amylovora. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7568788.bard.
Full textKELLY, ROBERT M. POLYPEPTIDE AND POLYSACCHARIDE PROCESSING IN HYPERTHERMOPHILIC MICROORGANISMS. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/944546.
Full textDuval, Paul, and Christopher Chancellor. Safety Evaluation of Nitric Acid Reactions with Non-Polysaccharide Organic Materials. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1648067.
Full textThorbecke, G. J., and Zoltan Ovary. Effect of Adjuvants on Response to Pneumococcal Polysaccharide Injected Intraperitoneally. Platelet-Derived Immunoregulatory Activity. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada162996.
Full textBuller, C. S. Optimization and scale-up of fermentation process for production of microbial polysaccharide. Final technical progress report. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/188561.
Full textKoch, Lisa M., Casey Crooks, and Franz St. John. Development of a high-performance gel filtration chromatography polysaccharide sizing method to facilitate glycoside hydrolase functional analysis. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2024. http://dx.doi.org/10.2737/fpl-rn-427.
Full textEvans, Donald L., Avigdor Eldar, Liliana Jaso-Friedmann, and Herve Bercovier. Streptococcus Iniae Infection in Trout and Tilapia: Host-Pathogen Interactions, the Immune Response Towards the Pathogen and Vaccine Formulation. United States Department of Agriculture, February 2005. http://dx.doi.org/10.32747/2005.7586538.bard.
Full textTantsyrev, Anatoliy, Yuliya Titova, and Andrey Ivanov. Polysaccharide macromolecules as transport matrices of nano-size compositions, candidates for diagnostics, therapy and theranostics of cancer diseases. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p9855801.
Full textO'Neill, Malcolm. Identification and characterization of glycosyltransferases involved in the synthesis of the side chains of the cell wall pectic polysaccharide rhamnogalacturonan II. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1298875.
Full textTanjore, Deepti, Eric Sundstrom, Stephen Hubbard, Mona Mirisiaghi, Todd Pray, Rocco Mancinelli, and David Smernoff. Analysis and fermentation base-lining to validate cyanobacterial-based polysaccharide production as a viable feedstock for bio-product development (CRADA Final Report). Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1888252.
Full text