Academic literature on the topic 'Polypropylene'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polypropylene.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Polypropylene"

1

Lukanina, Yulia, Anatoliy Khvatov, Natalya Kolesnikova, and Anatoliy Popov. "The Effect of Cooling Rate during Crystallization on the Melting Behavior of Polypropylenes of Different Chemical Structure." Chemistry & Chemical Technology 10, no. 4 (September 15, 2016): 479–83. http://dx.doi.org/10.23939/chcht10.04.479.

Full text
Abstract:
The melting behavior of polypropylenes of different chemical structure (isotactic homopolypropylene, propylene-based block and random copolymers and maleic anhydride grafted polypropylene) was studied by differential scanning calorimeter (DSC) and optical microscopy. Melting behavior and the crystal structure of polypropylene and its copolymers were observed depending on the crystallization rate, chemical nature of co-monomer unites and regularity of co-monomer units arrangement in the polypropylene main chain.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Chao-Yu, and Chia-Wei Chang. "Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites." Journal of Composites Science 5, no. 2 (February 8, 2021): 52. http://dx.doi.org/10.3390/jcs5020052.

Full text
Abstract:
Polypropylene has been widely used as dielectric material in organic thin-film capacitors due to their high breakdown strength, low dielectric loss and self-healing capability. However, polypropylene’s energy density is relatively low. Increasing the energy density of polypropylene by adding materials with a high dielectric constant is commonly used. Still, it often leads to an increase in dielectric loss, lower dielectric strength and other shortcomings. In this study, a thin 2D platelet of mica/graphene oxide composite material was made from exfoliated mica as a substrate and attached by graphene oxide. The mica/graphene oxide platelets were added to polypropylene to make a plastic dielectric composite. The non-conductive flat inorganic additive can increase the dielectric constant and dielectric strength of the composite without increasing dielectric loss. The tiny mica/graphene oxide platelets can significantly improve the dielectric properties of polypropylene. The results show that by adding a small amount (less than 1 wt%) mica/graphene oxide, the relative dielectric constant of polypropylene can increase to more than 3.7 without causing an increase in dielectric loss and the dielectric strength of polypropylene can also enhance.
APA, Harvard, Vancouver, ISO, and other styles
3

Mezey, Zoltán, and Tibor Czigány. "Mechanical Investigation of Hemp Fiber Reinforced Polypropylene with Different Types of MAPP Compatibilizer." Materials Science Forum 537-538 (February 2007): 223–30. http://dx.doi.org/10.4028/www.scientific.net/msf.537-538.223.

Full text
Abstract:
Mechanical properties of hemp fiber reinforced polypropylene were investigated. Hemp fibers were carded together with polypropylene fibers, and needle punched. Composites were prepared by hot pressing of the PP/hemp mats. Hemp content was varied between 0 and 50 % by weight, in 10% steps. A treatment with two different maleic anhydride grafted polypropylenes was applied in order to increase the fiber/matrix surface adhesion. Tensile, three-point bending and Charpy tests were carried out on the treated and untreated composites.
APA, Harvard, Vancouver, ISO, and other styles
4

Ristolainen, Noora, Ulla Vainio, Santeri Paavola, Mika Torkkeli, Ritva Serimaa, and Jukka Seppälä. "Polypropylene/organoclay nanocomposites compatibilized with hydroxyl-functional polypropylenes." Journal of Polymer Science Part B: Polymer Physics 43, no. 14 (2005): 1892–903. http://dx.doi.org/10.1002/polb.20485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prvulović, Slavica, Predrag Mošorinski, Ljubiša Josimović, Jasna Tolmač, Luka Djordjević, Mića Djurdjev, Mihalj Bakator, Branislava Radišić, and Dejan Bajić. "Influence of Cutting Regime Parameters on Determining the Main Cutting Resistance during Polypropylene Machining." Polymers 16, no. 11 (May 29, 2024): 1537. http://dx.doi.org/10.3390/polym16111537.

Full text
Abstract:
This study examines the impact of cutting regimes on determining cutting resistance in the processing of polypropylene (PP) using the CNC lathe EMCO F5. The rationale for this research stems from polypropylene’s rarity among thermoplastics in possessing structural stability, allowing for its comparison to metals and practical application in products replacing metal parts. Leveraging its favorable mechanical properties, polypropylene finds utility in producing parts subject to dynamic loads, boasting high resistance to impact loads—particularly undesirable in machining. An advantageous characteristic of polypropylene is its affordability, rendering it an economical choice across numerous applications. Despite these merits, polypropylene’s exploration in cutting processing remains limited, underscoring the novelty of this research endeavor. The main method for determining cutting resistance involves measuring electric current strength during processing. This direct measurement, facilitated by input cutting regime parameters, is recorded by the PLC controller, with the current value extracted from the machine tool’s ammeter. The experimental approach entails varying cutting regime parameters—cutting speed (v), feed rate (s), and depth of cut (a)—across minimum and maximum values, recognized as pivotal factors influencing cutting force development and the attainment of the desired machined surface quality.
APA, Harvard, Vancouver, ISO, and other styles
6

Bahreini, Ebrahim, Seyed Foad Aghamiri, Manfred Wilhelm, and Mahdi Abbasi. "Influence of molecular structure on the foamability of polypropylene: Linear and extensional rheological fingerprint." Journal of Cellular Plastics 54, no. 3 (March 23, 2017): 515–43. http://dx.doi.org/10.1177/0021955x17700097.

Full text
Abstract:
The foaming structure and rheological properties of four different isotactic homo-polypropylenes with various molecular weights and an isotactic long chain branched polypropylene were investigated to find a suitable rheological fingerprint for PP foams. The molecular weight distribution and thermal properties were measured using GPC-MALLS and differential scanning calorimetry, respectively. Small amplitude oscillatory shear data and uniaxial extensional experiments were analyzed using the frameworks of van Gurp-Palmen plot (δ vs. | G*|) and the molecular stress function model, respectively. These analyses were used to find a correlation between the molecular structure, rheological properties and foaming structures of linear and long chain branching polypropylenes. Two linear viscoelastic characteristics, | G*| at δ = 60° and | η*| at ω = 5 rad/s were used as criteria for foamability of these polymers, where decreasing of both parameters by increasing the long chain branching content results in smaller cell size and higher cell density. The molecular stress function model was able to quantify the strain hardening properties of long chain branching blends using small amplitude oscillatory shear data and two nonlinear material parameters, 1 ≤ β ≤ 2.2 and 1 ≤ [Formula: see text] ≤ 600, where the minimum and maximum values of these parameters belong to the linear and long chain branched polypropylene, respectively. Increasing the long chain branched polypropylene content of the PP blends increased strain hardening, and therefore improved the foaming characteristics significantly by suppressing the coalescence of cells. Dilution of linear PP with only 10 wt% of long chain branched polypropylene enhanced the cell density from 5.7 × 106 to 2.7 × 107 cell/cm3 and reduced the average cell diameter from 58 to 26 µm, respectively, while their volume expansion ratio remained in the same range of 2–3. Increasing of long chain branching to 50 and 100 wt% enhanced the V.E.R. to 6.2 and 7.8, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Jianjun, Yueyue Jia, Zhiye Zhang, Xinlong Wang, and Lin Yang. "Effects of Chlorinated Polypropylene on the Conformation of Polypropylene in Polypropylene/Chlorinated Polypropylene/Polyaniline Composites." Journal of Spectroscopy 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/317813.

Full text
Abstract:
We investigated the changes in the conformation and crystalline structure of polypropylene (PP) using a combination of Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC) based on PP/chlorinated PP (CPP)/polyaniline (PANI) composites. The DSC heating thermograms and WAXD patterns of the PP/CPP/PANI composites showed that theβ-crystal was affected greatly by the CPP content. Characterization of the specific regularity in the infrared band variation showed that the conformational orders of the helical sequences in PP exhibited major changes that depended on the CPP content. Initially, the intensity ratio ofA840/A810increased with the CPP concentration and reached its maximum level when the CPP content was <13.22% before decreasing as the CPP content increased further. The effect of increased temperature on the conformation of PP was studied by in situ FTIR. Initially, the intensity ratio ofA999/A973decreased slowly with increasing the temperature up to 105°C before decreasing sharply with further increases in temperature and then decreasing slowly again when the temperature was higher than 128°C.
APA, Harvard, Vancouver, ISO, and other styles
8

Melinda, Annisa Prita, Eka Juliafad, and Fajri Yusmar. "Pemanfaatan Serat Polypropylene untuk Meningkatkan Kuat Tekan Mortar dan Kuat Tekan Pasangan Bata." CIVED 7, no. 3 (November 26, 2020): 176. http://dx.doi.org/10.24036/cived.v7i3.111906.

Full text
Abstract:
Kuat tekan mortar merupakan parameter utama untuk menentukan kualitas mortar. Kuat tekan didefinisikan sebagai perbandingan antara beban yang diberikan dan luas penampang sampel mortar yang diuji, yang dinyatakan dalam kg/cm². Sedangkan pengujian kuat tekan batu bata merah dilakukan untuk mendapatkan nilai kuat hancur,yang merupakan perbandingan antara beban maksimum yang diberikan sampai batu bata merah hancur. Penelitian ini merupakan penelitian eksperimental tentang kuat tekan mortar dan kuat tekan pasangan bata dengan penambahan serat Polypropylene. Sampel uji mortar adalah kubus berukuran 5 cm x 5 cm x 5 cm. Ada lima puluh sampel mortar yang dihasilkan dari pengujian ini. Lima sampel untuk setiap mortar dan mortar normal dengan penambahan persentase serat polypropylane yang berbeda. Persentase yang digunakan antara lain 0,5%, 1%, 1,5%, 3%, 8%, 13%, 18%, 23%, dan 28% dari berat semen. Beban maksimum yang dapat diangkut adalah 3656 kgf dengan kuat tekan rata-rata mortar normal 146,24 kg/cm2 dan beban maksimum yang dapat ditahan oleh mortar serat polypropylane 8% adalah 4082 kgf dengan kuat tekan 163,28 kg/cm2. Hasil penelitian menunjukkan bahwa penambahan serat polypropylene 8% meningkatkan kuat tekan mortar.
APA, Harvard, Vancouver, ISO, and other styles
9

YAMADA, Masaya. "Polypropylene." NIPPON GOMU KYOKAISHI 80, no. 8 (2007): 288–91. http://dx.doi.org/10.2324/gomu.80.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sano, Takezo, and Masahiro Kakugo. "Polypropylene." Kobunshi 37, no. 11 (1988): 808–9. http://dx.doi.org/10.1295/kobunshi.37.808.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Polypropylene"

1

Tang, Eunice Wai Chong. "Preparation and characterization of polypropylene-polypropylene (PP-PP) composites /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MECH%202003%20TANG.

Full text
Abstract:
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003.
Includes bibliographical references (leaves 91-95). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
2

Slánská, Petra. "Aplikace termochromních látek v polymerních materiálech." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2008. http://www.nusl.cz/ntk/nusl-216383.

Full text
Abstract:
V textilním průmyslu je v dnešní době veliká konkurence. Každá novinka může znamenat velký zisk. Tato diplomová práce se bude zabývat aplikací termochromních přísad (látka reagující na teplotu změnou své barvy) do polymerní matrice, konkrétně polypropylenu, a jeho další zpracování u výrobce technického polotovaru - výroba vláken. Po výrobě vzorků bude provedeno jejich testování. Porovnají se vlastnosti polypropylenu s a bez termochromních přísad a zhodnotí se, nakolik tyto přísady ovlivňují vlastnosti polypropylenu. Ze získaných výsledků se stanoví možnost využití termochromních přísad v textilním průmyslu.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Shi-Wei. "Controlling the structure and properties of toughened and reinforced isotactic polypropylene." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0231/document.

Full text
Abstract:
En tant que polymère de grande diffusion, les applications du polypropylène isotactique (PP) sont limitées par sa faible resistance au choc. D'après la relation structure - propriétés, sa résistance au choc peut être améliorée en contrôlant sa structure. Dans ces travaux, différents types d'agents nucléants ont été utilsés pour promouvoir la formation des cristaux de type bêta et de mélanges de deux PP de masses molaires différentes. Les propriétés mécaniques, le comportement à la rupture, et la morphologie cristalline ont été étudiés. Les influences du type et de la teneur en peroxyde et agent nucléant sur la morphologie cristalline et les propriétés mécaniques ont aussi été explorées. Un agent nucléant suporté sur des nanotubes de carbone multi-parois (MWCNT) a été utilisé pour modifier la structure cristalline du PP, ce qui a permis d'augumeter sa résistance au choc 7 fois comparée à celle du PP vierge et 3 fois comparée à celle du PP cristallisé en phase bêta. Cette importante augmentation en resistance au choc peut être attribuée à la formation des trans-cristaux de type bêta qui est favorisée par l?agent nucléant supporté sur les MWCNT
As a commodity polymer, the applications of isotactic polypropylene (PP) are limited by its low impact strength. Based on the structure-property relationship, its impact strength could be improved by controlling its structure. In this study, different kinds of nucleating agents were used to promote the formation of beta crystals of PP as well as mixtures of two PPs of different molar masses. The mechanical properties, fracture behaviour, and crystalline morphology were investigated. The effects of the type and content of the peroxide and nucleating agent on the crystalline structure and mechanical properties of the PP were also explored. A multi-walled carbon nanotude (MWCNT) supported nucleating agent was introduced to modify the crystalline structure of PP and the impact strength of the resulting PP was 7 times that of the pure PP and more than 3 times that of beta nucleated PP. The large increase in the impact strength was attributed to the formation of beta transcrystalline morphology which was promoted by the MWCT supported nucleating agent
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Xiaowei. "Adhesive bonding of polypropylene." Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Işık, Kıvanç Tanoğlu Metin. "Layered silicate/polypropylene nanocomposites/." [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/makinamuh/T000532.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cancelas, Sanz Aarón José. "High impact polypropylene : structure evolution and impact on reaction." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1210/document.

Full text
Abstract:
Les homopolymères à base de polypropylène isotactique (iPP en anglais) ont une rigidité plus élevée que le polyéthylène (PE), mais aussi une dureté limitée, en particulier à températures plus basses. Ceci peut être surmonté en incorporant un élastomère copolymère d'éthylène et de propylène directement dans la matrice semi-cristalline de iPP. De tels mélanges obtenus in situ dans des réacteurs successifs sont bien connus, et leur production nécessite un procédé multi-étapes. De façon succincte, un procédé industriel pour la synthèse de PP choc (hiPP, high impact PP en anglais) implique 2 zones de réaction (chaque zone peut être composée d'un ou plusieurs réacteurs). L’iPP est fabriqué dans la première zone. Les poudres encore actives sont ensuite dégazées et envoyées dans une seconde zone dans laquelle est incorporé un élastomère (généralement un copolymère de propylène et d'éthylène appelé caoutchouc éthylène-propylène (ethylene-propylene rubber (EPR) en anglais). L'homopolymère iPP peut être produit en phase gaz ou en suspension (slurry en anglais) dans un hydrocarbure, alors que l'EPR doit être fabriqué dans un réacteur en phase gaz. Dans la thèse actuelle, nous nous sommes concentrés sur les procédés intégralement en phase gaz. Par conséquent, la morphologie du polypropylène choc (hiPP) dépendra fortement de celle de l'iPP intermédiaire, qui, à son tour, dépendra de la morphologie du précatalyseur. Cependant, le même précatalyseur peut conduire à différentes morphologies d’iPP, selon le protocole d'injection suivi. L'injection de catalyseur est donc un aspect critique de la production du hiPP. Cet aspect a été étudié grâce à la réalisation d'un plan d'expériences de polymérisation du propylène. On a utilisé des catalyseurs supportés Ziegler-Natta (ZN), disponibles commercialement, dans un réacteur à cuve agitée et un réacteur phase gaz à flux stoppé. On a mis en évidence pourquoi la prépolymérisation et le mouillage du catalyseur par un hydrocarbure avant d'être introduits dans le réacteur assurent de hautes activités et un contrôle de la morphologie des particules de polymère tout en produisant l'iPP. Au cours de la production de l’hiPP, la thermodynamique de sorption de la phase gaz a un impact important sur la cinétique d'homopolymérisation et de copolymérisation du propylène. Par exemple, les hydrocarbures supérieurs améliorent la solubilité du propylène dans le polymère (phénomène de «co-solubilité») ce qui conduit à une augmentation de l'activité. De plus, la solubilité et la diffusivité des différents monomères (et de leurs mélanges) utilisés pour produire l’hiPP (propylène, éthylène et mélange éthylène / propylène) dans les poudres dépendent des températures et des pressions auxquelles le procédé est conduit. Les données expérimentales de ces quantités ont été obtenues et des modèles semi-empiriques généralement utilisés dans l'industrie des polyoléfines ont été utilisés pour comprendre leur dépendance à l'égard des conditions du procédé. Finalement, plusieurs poudres d’hiPP ont été obtenues dans le réacteur à cuve agitée avec un catalyseur ZN supporté, en suivant la voie intégrale phase gaz. La morphologie de la matrice iPP et les conditions de la copolymérisation telles que la quantité de copolymère, la température, la pression, la quantité relative d'éthylène par rapport au propylène et la présence d'hydrogène ont été systématiquement variées pour comprendre leur impact sur la répartition du caoutchouc dans la matrice PP. Ce facteur est, à son tour, crucial pour (1) un fonctionnement du procédé industriel optimal, et (2) les propriétés mécaniques recherchées de l'hiPP
Isotactic Polypropylene (iPP) homopolymers have higher stiffness than polyethylene (PE), but also limited toughness, especially at lower temperatures. This can be overcome by incorporating an elastomeric copolymer of ethylene and propylene directly in the semi crystalline iPP matrix. Such in situ reactor blends are well-known, and their production requires of multi-step reaction process. Very briefly, an industrial process for high impact polypropylene (hiPP) products involves 2 reaction zones (each zone can be composed of one or more reactors). iPP is made in the first zone, the still active powders are then degassed and sent to a second zone in which an elastomer (usually a copolymer of propylene and ethylene referred to as Ethylene-Propylene Rubber (EPR)) is made. The iPP homopolymer can be produced in the gas phase or slurry phase, whereas the EPR must be made in a gas phase reactor. In the current thesis, our focus was on an “all gas phase”process.Therefore, the morphology of hiPP will be greatly dependent on that of the intermediate iPP, which in turn, will depend on the precatalyst morphology. However, the same precatalyst can lead to different iPP morphologies, depending on the injection protocol followed. Therefore, catalyst injection is a critical aspect while producing hiPP. Such aspect has been studied by performance of a designed set of propylene polymerization reaction experiments. Commercially available supported Ziegler-Natta (ZN) catalysts along with a lab-scale stirred-bed reactor and a gas phase stopped flow reactor have been used. It is understood why prepolymerization and wetting the catalyst with hydrocarbon before being charged to the reactor ensure high activity and quality morphology while producing iPP. During the production of hiPP, sorption thermodynamics of the gas phase have a big impact on propylene homopolymerization and copolymerization kinetics. For instance, higher hydrocarbons enhance the propylene solubility in polymer (which is known as “cosolubility” phenomenon) which leads to an activity increase. In addition, the solubility and diffusivity of the different monomers used to produce hiPP (propylene, ethylene and ethylene/propylene mixtures) in the powders depend on the temperatures and pressures which the process is conducted at. Experimental data of these quantities was obtained and semi-empirical models generally used in the polyolefin industry were used to understand their dependence on the process conditions. Finally, several hiPP powders were made in the lab-scale stirred-bed reactor with a supported ZN catalyst, following the “all gas phase” route. The morphology of the iPP matrix and conditions during copolymerization such as amount of copolymer, temperature, pressure, relative amount of ethylene to propylene and the presence of hydrogen have been systematically varied to comprehend their impact on the rubber distribution among the PP matrix. The aforementioned factor is, in turn, crucial for (1) a correct industrial process operation, and (2) the mechanical properties sought-after in hiPP
APA, Harvard, Vancouver, ISO, and other styles
7

Yilmaz, Sule Seda. "Preparation And Characterization Of Organoclay-polypropylene Nanocomposites With Maleic Anhydride Grafted Polypropylene Compatibilizer." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613291/index.pdf.

Full text
Abstract:
The aim of this study was to improve the mechanical properties &ldquo
Moplen&rdquo
EP300L which is a heterophase copolymer. Polymer blends and nanocomposites were prepared by melt compounding method in a twin screw extruder. Nanofil®
5 (N5) and Nanofil®
8(N8) were used as the organoclays, and maleic anhydride grafted polypropylene (M) was used as the compatibilizer. The effects of additive concentrations and types of organoclays on the morphology, mechanical and thermal properties were investigated. Organoclay loading over 2 wt% prevented the intercalation mechanism resulting in large aggregates of clay, thus the material properties became poor even in the presence of compatibilizer. Compatibilizer addition improved the intercalation ability of the polymer, however a substantial increase in mechanical properties was not obtained up to 6 wt % loading of the compatibilizer. XRD analysis revealed that intercalated structures were formed with the addition of compatibilizer and organoclay. The nanocomposites that were prepared with N5 type organoclay showed delaminated structures at 6 wt % compatibilizer loading. v Nanofill ®
5 exhibited the highest improvements in mechanical properties, since the degree of organoclay dispersion was better in Nanofill ®
5 containing nanocomposites in comparison to Nanofill ®
8 containing ones. The DSC analysis indicated a insignificant reduction in the melting temperature of the ternary nanocomposites.
APA, Harvard, Vancouver, ISO, and other styles
8

Lepoutre, Priscilla. "The microstructure of polypropylene blends with ethylene vinyl alcohol copolymer and maleated polypropylene /." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Njoroge, Daniel [Verfasser]. "Thesis: Preparation and characterization of modified-graphene oxide/polypropylene nanocomposites : polypropylene nanocomposites / Daniel Njoroge." Berlin : epubli, 2016. http://www.epubli.de/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Köller, Frank. "Modifizierte Polypropylene durch Metallocen-Katalyse." [S.l. : s.n.], 1998. http://deposit.ddb.de/cgi-bin/dokserv?idn=961143738.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Polypropylene"

1

Karger-Kocsis, J., ed. Polypropylene. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4421-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hayes, Teresa L., Rebecca L. Friedman, and Richard J. Jorkasky. Polypropylene. Cleveland: Freedonia Group, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Services, Chemical Intelligence, ed. Polypropylene. Dunstable: Chemical Intelligence Services, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weizer, William P. Polypropylene. Cleveland, Ohio: Freedonia Group, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1940-, Karian Harutun G., ed. Handbook of polypropylene and polypropylene composites. New York: Marcel Dekker, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1940-, Karian Harutun G., ed. Handbook of polypropylene and polypropylene composites. New York: Marcel Dekker, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nayak, Rajkishore. Polypropylene Nanofibers. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61458-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karger-Kocsis, József, and Tamás Bárány, eds. Polypropylene Handbook. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12903-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nello, Pasquini, and Addeo Antonio, eds. Polypropylene handbook. 2nd ed. Cincinnati: Hanser Publishers, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ita, Paul A. World polypropylene. Cleveland: Freedonia Group, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Polypropylene"

1

Utracki, L. A. "Polypropylene." In Commercial Polymer Blends, 254–82. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5789-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bährle-Rapp, Marina. "Polypropylene." In Springer Lexikon Kosmetik und Körperpflege, 440. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_8206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Takashima, Yoshinori. "Polypropylene." In Encyclopedia of Polymeric Nanomaterials, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_254-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Whelan, Tony, and John Goff. "Polypropylene." In Injection Molding of Thermoplastic Materials - 2, 97–111. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-5502-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gooch, Jan W. "Polypropylene." In Encyclopedic Dictionary of Polymers, 570. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gooch, Jan W. "Polypropylene." In Encyclopedic Dictionary of Polymers, 570. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baker, Ian. "Polypropylene." In Fifty Materials That Make the World, 169–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78766-4_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Takashima, Yoshinori. "Polypropylene." In Encyclopedia of Polymeric Nanomaterials, 2043–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peacock, Andrew J., and Allison Calhoun. "Polypropylene." In Polymer Chemistry, 285–97. München: Carl Hanser Verlag GmbH & Co. KG, 2006. http://dx.doi.org/10.3139/9783446433434.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mishra, Munmaya, and Biao Duan. "Polypropylene." In The Essential Handbook of Polymer Terms and Attributes, 182–83. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-177.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Polypropylene"

1

Sandholzer, M., K. Bernreitner, and K. Klimke. "Polypropylene and polypropylene-elastomer blends for medical packaging." In PROCEEDINGS OF THE REGIONAL CONFERENCE GRAZ 2015 – POLYMER PROCESSING SOCIETY PPS: Conference Papers. Author(s), 2016. http://dx.doi.org/10.1063/1.4965575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abdouss, Majid, and Naser Sharifi Sanjani. "Oxidation of Polypropylene and Effects of Compatibilization of Oxidized Polypropylene." In Processing and Fabrication of Advanced Materials VIII. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811431_0111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dafalla, Muawia, and Ali Obaid. "The Role of Polypropylene Fibers and Polypropylene Geotextile in Erosion Control." In Second International Conference on Geotechnical and Earthquake Engineering. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413128.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mandolfino, Chiara, Enrico Lertora, and Carla Gambaro. "Neutral polypropylene laser welding." In ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming. Author(s), 2016. http://dx.doi.org/10.1063/1.4963496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sikora, Janusz W., and Agnieszka Krząkała. "MICROEXTRUSION OF FILLED POLYPROPYLENE." In 15th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control. Athens: Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, 2023. http://dx.doi.org/10.7712/140123.10202.18825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Qiu, Xunlin, Werner Wirges, Reimund Gerhard, and Heitor Cury Basso. "Are cellular polypropylene ferroelectrets ferroic?" In 2013 IEEE International Conference on Solid Dielectrics (ICSD). IEEE, 2013. http://dx.doi.org/10.1109/icsd.2013.6619905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sadik, Zineb, Fatima ezzahra Arrakhiz, and Hafida Idrissi-Saba. "Polypropylene material under simulated recycling." In the Fourth International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3234698.3234736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jones, Kyle. "Waterborne One-Component Polypropylene Coating." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cordin, M., U. J. Griesser, T. Bechtold, and T. Pham. "Properties of Lyocell-polypropylene composites." In PROCEEDINGS OF THE EUROPE/AFRICA CONFERENCE DRESDEN 2017 – POLYMER PROCESSING SOCIETY PPS. Author(s), 2019. http://dx.doi.org/10.1063/1.5084824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Avdeeva, Katerina, Alena Shumskaya, Zhanna Ignatovich, Alexander Rogachev, Vladimir Agabekov, Maxim Yarmolenko, Aleksey Mikhalko, Nataliya Dudchik, and Aleksey Oleynik. "Modified Polypropylene Fibrous Nonwoven Materials." In 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568574.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Polypropylene"

1

Pople, John A. Morphology of Thermoplastic Elastomers:Stereoblock Polypropylene. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Payer. L51962 Coating Failure Consequences to CP Shielding. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2002. http://dx.doi.org/10.55274/r0011268.

Full text
Abstract:
The objective of this project was to better understand the failure mechanisms of pipeline coatings, and to determine if the coating damage is conducive to external corrosion or SCC. The focus was on coatings where the failure mechanism and consequence of coating damage are not fully understood. The selected coating system for study was a 3-layer coating comprised of an inner layer of FBE; an intermediate adhesive layer of copolymer polypropylene; and an outer layer of extruded polypropylene.
APA, Harvard, Vancouver, ISO, and other styles
3

Wallner, Gernot M., and Markus Povacz. IEA-SHC Task 39 INFO Sheet C1 - Polypropylene absorber materials. IEA Solar Heating and Cooling Programme, May 2015. http://dx.doi.org/10.18777/ieashc-task39-2015-0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sweetser, Daniel M., and Nicole E. Zander. Parameter Study of Melt Spun Polypropylene Fibers by Centrifugal Spinning. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada607592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pople, John A. Rheo-Optics and X-Ray Scattering Study of Elastomeric Polypropylene. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/798896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Datta, A., J. P. De Souza, A. P. Sukhadia, and D. G. Baird. Processing Studies of Blends of Polypropylene with Liquid Crystalline Polymers. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada232961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pople, John A. Tensile Properties and Small-Angle Neutron Scattering Investigation of Stereoblock Elastomeric Polypropylene. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Coe, Joshua. New Sesame Equations of State for Polypropylene, Polyvinylchloride (PVC), and Nylon 66. Office of Scientific and Technical Information (OSTI), October 2023. http://dx.doi.org/10.2172/2007341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chase, George G., and Sesh K. Kodavanti. Thickening of Clay Slurries by Periodic Pressure Flow Through a Porous Polypropylene Tube. Fort Belvoir, VA: Defense Technical Information Center, October 1993. http://dx.doi.org/10.21236/ada462709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hurlbutt, Katey. Literature Review of Recycling Polypropylene and Polyamide 12 Powders for Selective Laser Sintering. Office of Scientific and Technical Information (OSTI), June 2024. http://dx.doi.org/10.2172/2372667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography