Dissertations / Theses on the topic 'Polynomial potentials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic 'Polynomial potentials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bridle, Ismail Hamzaan. "Non-polynomial scalar field potentials in the local potential approximation." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/410270/.
Full textHyder, Asif M. "Green's operator for Hamiltonians with Coulomb plus polynomial potentials." California State University, Long Beach, 2013.
Find full textCapraro, Patrick Leonardo [Verfasser]. "Feynman path integrals in configuration space, momentum space and phase space for perturbative and polynomial potentials / Patrick Leonardo Capraro." München : Verlag Dr. Hut, 2018. http://d-nb.info/1155058496/34.
Full textCapraro, Patrick [Verfasser]. "Feynman path integrals in configuration space, momentum space and phase space for perturbative and polynomial potentials / Patrick Leonardo Capraro." München : Verlag Dr. Hut, 2018. http://d-nb.info/1155058496/34.
Full textHoffmann, Jan. "Types with potential: polynomial resource bounds via automatic amortized analysis." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-139552.
Full textZeriahi, Ahmed. "Fonctions plurisousharmoniques extremales, approximation et croissance des fonctions holomorphes sur des ensembles algebriques." Toulouse 3, 1986. http://www.theses.fr/1986TOU30105.
Full textAlexandersson, Per. "On eigenvalues of the Schrödinger operator with a complex-valued polynomial potential." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-52064.
Full textHackl, Peter. "Optimal Design for Experiments with Potentially Failing Trials." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1994. http://epub.wu.ac.at/68/1/document.pdf.
Full textSeries: Forschungsberichte / Institut für Statistik
Hoffmann, Jan [Verfasser], and Martin [Akademischer Betreuer] Hofmann. "Types with potential : polynomial resource bounds via automatic amortized analysis / Jan Hoffmann. Betreuer: Martin Hofmann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2011. http://d-nb.info/1020143665/34.
Full textHaese-Hill, William. "Spectral properties of integrable Schrodinger operators with singular potentials." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19929.
Full textFreund, Robert M. "A Potential Reduction Algorithm With User-Specified Phase I - Phase II Balance, for Solving a Linear Program from an Infeasible Warm Start." Massachusetts Institute of Technology, Operations Research Center, 1991. http://hdl.handle.net/1721.1/5409.
Full textParain, Dominique. "Analyse des potentiels évoqués somesthésiques à l'aide de la double transformation de Karhunen-Loeve." Rouen, 1990. http://www.theses.fr/1990ROUES045.
Full textReinhold, Küstner. "Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation." Nice, 2003. http://www.theses.fr/2003NICE4054.
Full textWe determine the asymptotic pole distribution for three types of best approximants (Padé at infinity, rational in L2 on the unit circle, meromorphic in the unit disk in Lp on the unit circle, p>2) of the Cauchy transform of a complex measure under the hypothesis that the support S of the measure is of positive capacity and included in (-1 1), that the measure satisfies a density condition and that the argument of the measure is the restriction of a function of bounded variation ? The denominator polynomials of the approximants satisfay orthogonality relations ? By means of a theorem of Kestelman we obtain geometric constraints for the zeros which imply that every weak limit measure of the associated counting measures has support included in S. Then, with the help of results from potential theory in the plane, we show that the counting measures converge weakly to the logarithmic respectively hyperbolic equilibrium distribution of S
Findley, Elliot M. "Christoffel Function Asymptotics and Universality for Szegő Weights in the Complex Plane." Scholar Commons, 2009. https://scholarcommons.usf.edu/etd/1965.
Full textCruz, Neto Francisco Alves da. "O oscilador de Klein-Gordon (2+1)-D sujeito a interações externas." Universidade Federal do Maranhão, 2016. http://tedebc.ufma.br:8080/jspui/handle/tede/1557.
Full textMade available in DSpace on 2017-06-01T20:47:23Z (GMT). No. of bitstreams: 1 FranciscoAlvesCruzNeto.pdf: 1046066 bytes, checksum: 0650ecf7259dfb3ffcc88bf52c3e79ae (MD5) Previous issue date: 2016-07-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
The dynamics of scalar particle spin-zero in a plane has drawn attention recently due to new phenomena such as quantum Hall effect and topological insulators for bosonic systems. We study the dynamics of a particle spin-zero scalar Klein-Gordon an oscillator coupled to a potential mixture of potential nature scalar and vector Cornell type in the (2 + 1) dimensions. Applying the method of separation of variables, the radial equation may be expressed as a Schr¨odinger equation with an effective candidate compound the three-dimensional harmonic oscillator potential Cornell another. Using an appropriate change of variable radial equation can be expressed in terms of the differential equation of second order called biconfluente of Heun. Following proper procedure, that is, correctly applying the boundary conditions, the radial equation solution can be expressed in terms of polynomials Heun. From the boundary conditions the quantization condition is also obtained and show that for this fundamental state problem is defined by the quantum number n = 0 under restrictions of the values of potential parameters. We also analyze the solutions to some particular cases already discussed in the literature. In this context, when we consider the scalar potential of the linear type and vector Coulomb type, the ground state is also defined by the number n = 0 as opposed to what was reported in the literature. We also observed that when we consider only the vector Coulomb interaction type, in this case the ground state is defined by quantum number n = 1, in agreement with other studies reported in the literature.
A dinâmica de partículas escalares de spin-zero num plano tem chamado a atenção recentemente devido a novos fenômenos como por exemplo o efeito Hall quântico e isolantes topológicos para sistemas bosônicos. Neste trabalho estudamos a dinâmica de uma partícula escalar de spin-zero num potencial oscilador de Klein-Gordon acoplado a uma mistura de potenciais de natureza escalar e vetorial do tipo Cornell em (2+1) dimensões. Aplicando o método de separação de variáveis, a equação radial pode ser expressa como uma equação de Schrördinger com um potencial efetivo composto do oscilador harmônico tridimensional mais um potencial Cornell. Usando uma apropriada mudança de variável a equação radial pode ser expressa em termos da equação diferencial de segunda ordem chamada biconfluente de Heun. Seguindo o procedimento adequado, é dizer, aplicando corretamente as condições de contorno, a solução da equação radial pode ser expressa em termos dos polinômios de Heun. A partir das condições de contorno a condição de quantização também é obtida e mostramos que para este problema o estado fundamental é definido pelo número quântico n=0 mediante restrições dos valores dos parâmetros do potencial. Também analisamos as soluções para alguns casos particulares já discutidos na literatura. Neste contexto, quando consideramos o potencial escalar do tipo linear e vetor do tipo Coulomb, o estado fundamental também é definido pelo número n=0 em oposição ao que foi divulgado na literatura. Observamos ainda que quando consideramos apenas a interação vetorial do tipo Coulomb, neste caso o estado fundamental é definido pelo número quântico n=1, em concordância com outros trabalhos divulgados na literatura.
Singh, Pranav. "High accuracy computational methods for the semiclassical Schrödinger equation." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274913.
Full textHryniewicki, Maciej Konrad. "Accurate and Efficient Evaluation of the Second Virial Coefficient Using Practical Intermolecular Potentials for Gases." Thesis, 2011. http://hdl.handle.net/1807/29559.
Full textMoreira, Sara Barros. "Resource Analysis for Lazy Evaluation with Polynomial Potential." Master's thesis, 2020. https://hdl.handle.net/10216/131436.
Full textMoreira, Sara Barros. "Resource Analysis for Lazy Evaluation with Polynomial Potential." Dissertação, 2020. https://hdl.handle.net/10216/131436.
Full text"Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function." Sloan School of Management, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/2207.
Full textBandyopadhyay, Choiti. "The Role Of Potential Theory In Complex Dynamics." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2291.
Full text