Academic literature on the topic 'Polynomial potentials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polynomial potentials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polynomial potentials"
Ichinose, Wataru. "On the Feynman path integral for the magnetic Schrödinger equation with a polynomially growing electromagnetic potential." Reviews in Mathematical Physics 32, no. 01 (August 5, 2019): 2050003. http://dx.doi.org/10.1142/s0129055x20500038.
Full textLévai, Géza. "Potentials from the Polynomial Solutions of the Confluent Heun Equation." Symmetry 15, no. 2 (February 9, 2023): 461. http://dx.doi.org/10.3390/sym15020461.
Full textQUESNE, C. "HIGHER-ORDER SUSY, EXACTLY SOLVABLE POTENTIALS, AND EXCEPTIONAL ORTHOGONAL POLYNOMIALS." Modern Physics Letters A 26, no. 25 (August 20, 2011): 1843–52. http://dx.doi.org/10.1142/s0217732311036383.
Full textNatanson, Gregory. "Quantization of rationally deformed Morse potentials by Wronskian transforms of Romanovski-Bessel polynomials." Acta Polytechnica 62, no. 1 (February 28, 2022): 100–117. http://dx.doi.org/10.14311/ap.2022.62.0100.
Full textTezuka, Hirokazu. "Confinement by polynomial potentials." Zeitschrift für Physik C Particles and Fields 65, no. 1 (March 1995): 101–4. http://dx.doi.org/10.1007/bf01571309.
Full textLehr, H., and C. A. Chatzidimitriou-Dreismann. "Complex scaling of polynomial potentials." Chemical Physics Letters 201, no. 1-4 (January 1993): 278–83. http://dx.doi.org/10.1016/0009-2614(93)85071-u.
Full textCasahorran, J. "Solitary waves and polynomial potentials." Physics Letters A 153, no. 4-5 (March 1991): 199–203. http://dx.doi.org/10.1016/0375-9601(91)90794-9.
Full textQUESNE, C. "RATIONALLY-EXTENDED RADIAL OSCILLATORS AND LAGUERRE EXCEPTIONAL ORTHOGONAL POLYNOMIALS IN kTH-ORDER SUSYQM." International Journal of Modern Physics A 26, no. 32 (December 30, 2011): 5337–47. http://dx.doi.org/10.1142/s0217751x11054942.
Full textBrandon, David, Nasser Saad, and Shi-Hai Dong. "On some polynomial potentials ind-dimensions." Journal of Mathematical Physics 54, no. 8 (August 2013): 082106. http://dx.doi.org/10.1063/1.4817857.
Full textVigo-Aguiar, M. I., M. E. Sansaturio, and J. M. Ferrándiz. "Integrability of Hamiltonians with polynomial potentials." Journal of Computational and Applied Mathematics 158, no. 1 (September 2003): 213–24. http://dx.doi.org/10.1016/s0377-0427(03)00467-9.
Full textDissertations / Theses on the topic "Polynomial potentials"
Bridle, Ismail Hamzaan. "Non-polynomial scalar field potentials in the local potential approximation." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/410270/.
Full textHyder, Asif M. "Green's operator for Hamiltonians with Coulomb plus polynomial potentials." California State University, Long Beach, 2013.
Find full textCapraro, Patrick Leonardo [Verfasser]. "Feynman path integrals in configuration space, momentum space and phase space for perturbative and polynomial potentials / Patrick Leonardo Capraro." München : Verlag Dr. Hut, 2018. http://d-nb.info/1155058496/34.
Full textCapraro, Patrick [Verfasser]. "Feynman path integrals in configuration space, momentum space and phase space for perturbative and polynomial potentials / Patrick Leonardo Capraro." München : Verlag Dr. Hut, 2018. http://d-nb.info/1155058496/34.
Full textHoffmann, Jan. "Types with potential: polynomial resource bounds via automatic amortized analysis." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-139552.
Full textZeriahi, Ahmed. "Fonctions plurisousharmoniques extremales, approximation et croissance des fonctions holomorphes sur des ensembles algebriques." Toulouse 3, 1986. http://www.theses.fr/1986TOU30105.
Full textAlexandersson, Per. "On eigenvalues of the Schrödinger operator with a complex-valued polynomial potential." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-52064.
Full textHackl, Peter. "Optimal Design for Experiments with Potentially Failing Trials." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1994. http://epub.wu.ac.at/68/1/document.pdf.
Full textSeries: Forschungsberichte / Institut für Statistik
Hoffmann, Jan [Verfasser], and Martin [Akademischer Betreuer] Hofmann. "Types with potential : polynomial resource bounds via automatic amortized analysis / Jan Hoffmann. Betreuer: Martin Hofmann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2011. http://d-nb.info/1020143665/34.
Full textHaese-Hill, William. "Spectral properties of integrable Schrodinger operators with singular potentials." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19929.
Full textBooks on the topic "Polynomial potentials"
Limit theorems of polynomial approximation with exponential weights. Providence, R.I: American Mathematical Society, 2008.
Find full textSaff, E. B., Douglas Patten Hardin, Brian Z. Simanek, and D. S. Lubinsky. Modern trends in constructive function theory: Conference in honor of Ed Saff's 70th birthday : constructive functions 2014, May 26-30, 2014, Vanderbilt University, Nashville, Tennessee. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textIbragimov, Zair. Topics in several complex variables: First USA-Uzbekistan Conference on Analysis and Mathematical Physics, May 20-23, 2014, California State University, Fullerton, California. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textAkemann, Gernot. Random matrix theory and quantum chromodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0005.
Full textOlshanski, Grigori. Enumeration of maps. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.26.
Full textBurda, Zdzislaw, and Jerzy Jurkiewicz. Phase transitions. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.14.
Full textBook chapters on the topic "Polynomial potentials"
Lubinsky, Doron S., and Edward B. Saff. "Polynomial approximation of potentials." In Strong Asymptotics for Extremal Polynomials Associated with Weights on ℝ, 40–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082419.
Full textDescalzi, O., and E. Tirapegui. "Polynomial Approximations for Nonequilibrium Potentials Near Instabilities." In Instabilities and Nonequilibrium Structures II, 297–306. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2305-8_23.
Full textZnojil, Miloslav. "Re-construction of Polynomial Potentials with a Perturbation-Interpolation Constraint." In Lecture Notes in Physics, 458–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-13969-1_29.
Full textZnojil, Miloslav. "Re-construction of polynomial potentials with a perturbation-interpolation constraint." In Lecture Notes in Physics, 458–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-57576-6_29.
Full textHeinemann, Christian, and Christiane Kraus. "Cahn-Hilliard systems with polynomial chemical potentials coupled with damage processes and homogeneous elasticity." In Phase Separation Coupled with Damage Processes, 51–90. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-05252-2_4.
Full textUwano, Yoshio. "Separability and the Birkhoff–Gustavson normalization of the perturbed harmonic oscillators with homogeneous polynomial potentials." In Superintegrability in Classical and Quantum Systems, 253–67. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/crmp/037/22.
Full textWermer, John. "Polynomial Hulls and Envelopes of Holomorphy." In Potential Theory, 339–42. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0981-9_42.
Full textMover, Sergio, Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, and Stefano Tonetta. "Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems." In Computer Aided Verification, 529–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81685-8_25.
Full textZheng, Zhiyong, Kun Tian, and Fengxia Liu. "A Generalization of NTRUencrypt." In Financial Mathematics and Fintech, 175–88. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_7.
Full textHoffmann, Jan, and Martin Hofmann. "Amortized Resource Analysis with Polynomial Potential." In Programming Languages and Systems, 287–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11957-6_16.
Full textConference papers on the topic "Polynomial potentials"
ABENDA, S., and YU FEDOROV. "INTEGRABLE ELLIPSOIDAL BILLIARDS WITH SEPARABLE POLYNOMIAL POTENTIALS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0114.
Full textMaiz, F., Moteb M. Alqahtani, and I. Ghnaim. "Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions." In THE SIXTH SAUDI INTERNATIONAL MEETING ON FRONTIERS OF PHYSICS 2018 (SIMFP2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5042401.
Full textMohankumar, K. V., and K. Kannan. "A New Approach in Kinetic Modeling Using Thermodynamic Framework for Chemically Reacting Systems and Oxidative Ageing in Polymer Composites." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64436.
Full textRen, Ping, and Clément Gosselin. "Trajectory Planning of Cable-Suspended Parallel Robots Using Interval Positive-Definite Polynomials." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71205.
Full textShibata, Daisuke, and Takayuki Utsumi. "Numerical Solutions of Poisson Equation by the CIP-Basis Set Method." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89150.
Full textDeshpande, Vishrut, Oliver Myers, Georges Fadel, and Suyi Li. "A New Analytical Approach for Bistable Composites." In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-68224.
Full textKoelzow, Felix, Muhammad Mohsin Khan, Christian Kontermann, and Matthias Oechsner. "Application of Damage Mechanics and Polynomial Chaos Expansion for Lifetime Prediction of High-Temperature Components Under Creep-Fatigue Loading." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16205.
Full textvan Zutphen, Hermione J., and Joost den Haan. "Practical Implementation of the Polynomial Representation of Potential Damping in Time Domain Simulations." In ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2005. http://dx.doi.org/10.1115/omae2005-67385.
Full textLal, Mayank, Suhada Jayasuriya, and Swaminathan Sethuraman. "Motion Planning of a Group of Agents Using the Homotopy Approach." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42677.
Full textMaignan, Aude, and Tony Scott. "Quantum Clustering Analysis: Minima of the Potential Energy Function." In 9th International Conference on Signal, Image Processing and Pattern Recognition (SPPR 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101914.
Full text