Journal articles on the topic 'Polynomial Hamiltonians'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Polynomial Hamiltonians.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
SILVER, R. N., and H. RÖDER. "DENSITIES OF STATES OF MEGA-DIMENSIONAL HAMILTONIAN MATRICES." International Journal of Modern Physics C 05, no. 04 (August 1994): 735–53. http://dx.doi.org/10.1142/s0129183194000842.
Full textRÜHL, WERNER, and ALEXANDER TURBINER. "EXACT SOLVABILITY OF THE CALOGERO AND SUTHERLAND MODELS." Modern Physics Letters A 10, no. 29 (September 21, 1995): 2213–21. http://dx.doi.org/10.1142/s0217732395002374.
Full textSokolov, A. V. "Polynomial supersymmetry for matrix Hamiltonians." Physics Letters A 377, no. 9 (March 2013): 655–62. http://dx.doi.org/10.1016/j.physleta.2013.01.012.
Full textGosset, David, Jenish C. Mehta, and Thomas Vidick. "QCMA hardness of ground space connectivity for commuting Hamiltonians." Quantum 1 (July 14, 2017): 16. http://dx.doi.org/10.22331/q-2017-07-14-16.
Full textLu, Kang. "Completeness of Bethe Ansatz for Gaudin Models with gl(1|1) Symmetry and Diagonal Twists." Symmetry 15, no. 1 (December 21, 2022): 9. http://dx.doi.org/10.3390/sym15010009.
Full textUENO, YUICHI. "POLYNOMIAL HAMILTONIANS FOR QUANTUM PAINLEVÉ EQUATIONS." International Journal of Mathematics 20, no. 11 (November 2009): 1335–45. http://dx.doi.org/10.1142/s0129167x09005789.
Full textAharonov, Dorit, Michael Ben-Or, Fernando G. S. L. Brandão, and Or Sattath. "The Pursuit of Uniqueness: Extending Valiant-Vazirani Theorem to the Probabilistic and Quantum Settings." Quantum 6 (March 17, 2022): 668. http://dx.doi.org/10.22331/q-2022-03-17-668.
Full textBravyi, S., D. P. DiVincenzo, R. Oliveira, and B. M. Terhal. "The complexity of stoquastic local Hamiltonian problems." Quantum Information and Computation 8, no. 5 (May 2008): 361–85. http://dx.doi.org/10.26421/qic8.5-1.
Full textVigo-Aguiar, M. I., M. E. Sansaturio, and J. M. Ferrándiz. "Integrability of Hamiltonians with polynomial potentials." Journal of Computational and Applied Mathematics 158, no. 1 (September 2003): 213–24. http://dx.doi.org/10.1016/s0377-0427(03)00467-9.
Full textMingalev, Oleg V., Yurii N. Orlov, and Victor V. Vedenyapin. "Conservation laws for polynomial quantum Hamiltonians." Physics Letters A 223, no. 4 (December 1996): 246–50. http://dx.doi.org/10.1016/s0375-9601(96)00680-9.
Full textHussin, V., I. Marquette, and K. Zelaya. "Third-order ladder operators, generalized Okamoto and exceptional orthogonal polynomials." Journal of Physics A: Mathematical and Theoretical 55, no. 4 (January 6, 2022): 045205. http://dx.doi.org/10.1088/1751-8121/ac43cc.
Full textPalacián, Jesús, and Patricia Yanguas. "Equivariant N-Dof Hamiltonians Via Generalized Normal Forms." Communications in Contemporary Mathematics 05, no. 03 (June 2003): 449–80. http://dx.doi.org/10.1142/s0219199703001026.
Full textGÉRARD, C., and A. PANATI. "SPECTRAL AND SCATTERING THEORY FOR SOME ABSTRACT QFT HAMILTONIANS." Reviews in Mathematical Physics 21, no. 03 (April 2009): 373–437. http://dx.doi.org/10.1142/s0129055x09003645.
Full textHall, Laurence S. "Invariants Polynomial in Momenta for Integrable Hamiltonians." Physical Review Letters 54, no. 7 (February 18, 1985): 614–15. http://dx.doi.org/10.1103/physrevlett.54.614.
Full textMatushko, M. G., and V. V. Sokolov. "Polynomial forms for quantum elliptic Calogero–Moser Hamiltonians." Theoretical and Mathematical Physics 191, no. 1 (April 2017): 480–90. http://dx.doi.org/10.1134/s004057791704002x.
Full textBORESKOV, KONSTANTIN G., JUAN CARLOS LOPEZ VIEYRA, and ALEXANDER V. TURBINER. "SOLVABILITY OF THE F4 INTEGRABLE SYSTEM." International Journal of Modern Physics A 16, no. 29 (November 20, 2001): 4769–801. http://dx.doi.org/10.1142/s0217751x0100550x.
Full textBravyi, Sergey. "Monte Carlo simulation of stoquastic Hamiltonians." Quantum Information and Computation 15, no. 13&14 (October 2015): 1122–40. http://dx.doi.org/10.26421/qic15.13-14-3.
Full textCao, Yudong, and Daniel Nagaj. "Perturbative gadgets without strong interactions." Quantum Information and Computation 15, no. 13&14 (October 2015): 1197–222. http://dx.doi.org/10.26421/qic15.13-14-7.
Full textPalacián, Jesús, and Patricia Yanguas. "Reduction of Polynomial Planar Hamiltonians with Quadratic Unperturbed Part." SIAM Review 42, no. 4 (January 2000): 671–91. http://dx.doi.org/10.1137/s0036144599362327.
Full textShi, Jicong, and Yiton T. Yan. "Explicitly integrable polynomial Hamiltonians and evaluation of Lie transformations." Physical Review E 48, no. 5 (November 1, 1993): 3943–51. http://dx.doi.org/10.1103/physreve.48.3943.
Full textKelbert, E., A. Hyder, F. Demir, Z. T. Hlousek, and Z. Papp. "Green's operator for Hamiltonians with Coulomb plus polynomial potentials." Journal of Physics A: Mathematical and Theoretical 40, no. 27 (June 19, 2007): 7721–28. http://dx.doi.org/10.1088/1751-8113/40/27/020.
Full textUkolov, Yu A., N. A. Chekanov, A. A. Gusev, V. A. Rostovtsev, S. I. Vinitsky, and Y. Uwano. "A REDUCE program for the normalization of polynomial Hamiltonians." Computer Physics Communications 166, no. 1 (February 2005): 66–80. http://dx.doi.org/10.1016/j.cpc.2004.10.010.
Full textLetourneau, P., and L. Vinet. "Superintegrable Systems: Polynomial Algebras and Quasi-Exactly Solvable Hamiltonians." Annals of Physics 243, no. 1 (October 1995): 144–68. http://dx.doi.org/10.1006/aphy.1995.1094.
Full textManiraguha, Jean de Dieu, Krzysztof Marciniak, and Célestin Kurujyibwami. "Transforming Stäckel Hamiltonians of Benenti type to polynomial form." Advances in Theoretical and Mathematical Physics 26, no. 3 (2022): 711–34. http://dx.doi.org/10.4310/atmp.2022.v26.n3.a5.
Full textGu, Shouzhen, Rolando D. Somma, and Burak Şahinoğlu. "Fast-forwarding quantum evolution." Quantum 5 (November 15, 2021): 577. http://dx.doi.org/10.22331/q-2021-11-15-577.
Full textCervia, Michael J., Amol V. Patwardhan, and A. B. Balantekin. "Symmetries of Hamiltonians describing systems with arbitrary spins." International Journal of Modern Physics E 28, no. 05 (May 2019): 1950032. http://dx.doi.org/10.1142/s0218301319500320.
Full textMostafazadeh, Ali. "Parasupersymmetric Quantum Mechanics and Indices of Fredholm Operators." International Journal of Modern Physics A 12, no. 15 (June 20, 1997): 2725–39. http://dx.doi.org/10.1142/s0217751x9700150x.
Full textPalacián, Jesús, and Patricia Yanguas. "Reduction of polynomial Hamiltonians by the construction of formal integrals." Nonlinearity 13, no. 4 (May 8, 2000): 1021–54. http://dx.doi.org/10.1088/0951-7715/13/4/303.
Full textRivera, A. L., N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf. "Evolution under polynomial Hamiltonians in quantum and optical phase spaces." Physical Review A 55, no. 2 (February 1, 1997): 876–89. http://dx.doi.org/10.1103/physreva.55.876.
Full textRamani, A., B. Dorizzi, B. Grammaticos, and J. Hietarinta. "Linearization on a submanifold of integrable Hamiltonians with polynomial potentials." Physica D: Nonlinear Phenomena 18, no. 1-3 (January 1986): 171–79. http://dx.doi.org/10.1016/0167-2789(86)90174-0.
Full textBasios, V., N. A. Chekanov, B. L. Markovski, V. A. Rostovtsev, and S. I. Vinitsky. "GITA: A REDUCE program for the normalization of polynomial Hamiltonians." Computer Physics Communications 90, no. 2-3 (October 1995): 355–68. http://dx.doi.org/10.1016/0010-4655(95)00080-y.
Full textMastroianni, Rita, and Christos Efthymiopoulos. "Kolmogorov algorithm for isochronous Hamiltonian systems." Mathematics in Engineering 5, no. 2 (2022): 1–35. http://dx.doi.org/10.3934/mine.2023035.
Full textGharibian, Sevag, and Justin Yirka. "The complexity of simulating local measurements on quantum systems." Quantum 3 (September 30, 2019): 189. http://dx.doi.org/10.22331/q-2019-09-30-189.
Full textQi, Xiao-Liang, and Daniel Ranard. "Determining a local Hamiltonian from a single eigenstate." Quantum 3 (July 8, 2019): 159. http://dx.doi.org/10.22331/q-2019-07-08-159.
Full textDOLCINI, FABRIZIO, and ARIANNA MONTORSI. "INTEGRABLE EXTENDED HUBBARD HAMILTONIANS FROM SYMMETRIC GROUP EQUATIONS." International Journal of Modern Physics B 14, no. 17 (July 10, 2000): 1719–28. http://dx.doi.org/10.1142/s0217979200001540.
Full textBibikov, Pavel Vitalievich. "On Classification of Polynomial Hamiltonians With Nondegenerate Linearly Stable Singular Point." Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, no. 1 (2019): 86–88. http://dx.doi.org/10.26907/0021-3446-2019-1-86-88.
Full textBibikov, P. V. "On Classification of Polynomial Hamiltonians With Nondegenerate Linearly Stable Singular Point." Russian Mathematics 63, no. 1 (January 2019): 76–78. http://dx.doi.org/10.3103/s1066369x19010092.
Full textLeyvraz, F. "An approach for obtaining integrable Hamiltonians from Poisson-commuting polynomial families." Journal of Mathematical Physics 58, no. 7 (July 2017): 072902. http://dx.doi.org/10.1063/1.4996581.
Full textRowe, D. J. "An algebraic approach to problems with polynomial Hamiltonians on Euclidean spaces." Journal of Physics A: Mathematical and General 38, no. 47 (November 9, 2005): 10181–201. http://dx.doi.org/10.1088/0305-4470/38/47/009.
Full textIvanyos, G., A. B. Nagy, and L. Ronyai. "Constructions for quantum computing with symmetrized gates." Quantum Information and Computation 8, no. 5 (May 2008): 411–29. http://dx.doi.org/10.26421/qic8.5-4.
Full textBRIHAYE, YVES. "QUASI-EXACTLY SOLVABLE MATRIX SCHRÖDINGER OPERATORS." Modern Physics Letters A 15, no. 26 (August 30, 2000): 1647–53. http://dx.doi.org/10.1142/s0217732300002073.
Full textLIN, SHAO-SHIUNG, and SHI-SHYR ROAN. "ALGEBRAIC GEOMETRY AND HOFSTADTER TYPE MODEL." International Journal of Modern Physics B 16, no. 14n15 (June 20, 2002): 2097–106. http://dx.doi.org/10.1142/s0217979202011846.
Full textWahlberg, Patrik. "Propagation of polynomial phase space singularities for Schrödinger equations with quadratic Hamiltonians." MATHEMATICA SCANDINAVICA 122, no. 1 (February 20, 2018): 107. http://dx.doi.org/10.7146/math.scand.a-97187.
Full textGusev, A. A., N. A. Chekanov, V. A. Rostovtsev, S. I. Vinitsky, and Y. Uwano. "A Comparison of Algorithms for the Normalization and Quantization of Polynomial Hamiltonians." Programming and Computer Software 30, no. 2 (March 2004): 75–82. http://dx.doi.org/10.1023/b:pacs.0000021264.38623.52.
Full textZnojil, Miloslav. "Perturbation method for non-square Hamiltonians and its application to polynomial oscillators." Physics Letters A 341, no. 1-4 (June 2005): 67–80. http://dx.doi.org/10.1016/j.physleta.2005.04.061.
Full textDaubechies, Ingrid, and John R. Klauder. "Quantum‐mechanical path integrals with Wiener measure for all polynomial Hamiltonians. II." Journal of Mathematical Physics 26, no. 9 (September 1985): 2239–56. http://dx.doi.org/10.1063/1.526803.
Full textBAGCHI, BIJAN, A. BANERJEE, EMANUELA CALICETI, FRANCESCO CANNATA, HENDRIK B. GEYER, CHRISTIANE QUESNE, and MILOSLAV ZNOJIL. "${\mathcal{CPT}}$-CONSERVING HAMILTONIANS AND THEIR NONLINEAR SUPERSYMMETRIZATION USING DIFFERENTIAL CHARGE-OPERATORS ${\mathcal C}$." International Journal of Modern Physics A 20, no. 30 (December 10, 2005): 7107–28. http://dx.doi.org/10.1142/s0217751x05022901.
Full textCruise, Joseph R., and Alexander Seidel. "Sequencing the Entangled DNA of Fractional Quantum Hall Fluids." Symmetry 15, no. 2 (January 21, 2023): 303. http://dx.doi.org/10.3390/sym15020303.
Full textPalacián, J., P. Yanguas, and S. Ferrer. "Simple Periodic Orbits in Elliptical Galaxies Modelled by Hamiltonians in 1-1-1 Resonance." International Astronomical Union Colloquium 172 (1999): 411–12. http://dx.doi.org/10.1017/s0252921100072948.
Full textVedenyapin, V. V., and Yu N. Orlov. "Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation." Theoretical and Mathematical Physics 121, no. 2 (November 1999): 1516–23. http://dx.doi.org/10.1007/bf02557222.
Full text