Academic literature on the topic 'Polymorphism - Network Forming Liquids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polymorphism - Network Forming Liquids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polymorphism - Network Forming Liquids"
Hernandes, V. F., M. S. Marques, and José Rafael Bordin. "Phase classification using neural networks: application to supercooled, polymorphic core-softened mixtures." Journal of Physics: Condensed Matter 34, no. 2 (October 28, 2021): 024002. http://dx.doi.org/10.1088/1361-648x/ac2f0f.
Full textJin, Yi, Aixi Zhang, Sarah E. Wolf, Shivajee Govind, Alex R. Moore, Mikhail Zhernenkov, Guillaume Freychet, Ahmad Arabi Shamsabadi, and Zahra Fakhraai. "Glasses denser than the supercooled liquid." Proceedings of the National Academy of Sciences 118, no. 31 (July 30, 2021): e2100738118. http://dx.doi.org/10.1073/pnas.2100738118.
Full textBalyakin, I. A., R. E. Ryltsev, and N. M. Chtchelkatchev. "Liquid–Crystal Structure Inheritance in Machine Learning Potentials for Network-Forming Systems." JETP Letters 117, no. 5 (March 2023): 370–76. http://dx.doi.org/10.1134/s0021364023600234.
Full textTakéuchi, Yasushi. "Hydrodynamic Scaling and the Intermediate-Range Order in Network-Forming Liquids." Progress of Theoretical Physics Supplement 178 (2009): 181–86. http://dx.doi.org/10.1143/ptps.178.181.
Full textHong, N. V., N. V. Huy, and P. K. Hung. "The structure and dynamic in network forming liquids: molecular dynamic simulation." International Journal of Computational Materials Science and Surface Engineering 5, no. 1 (2012): 55. http://dx.doi.org/10.1504/ijcmsse.2012.049058.
Full textYang, Ke, Zhikun Cai, Madhusudan Tyagi, Mikhail Feygenson, Joerg C. Neuefeind, Jeffrey S. Moore, and Yang Zhang. "Odd–Even Structural Sensitivity on Dynamics in Network-Forming Ionic Liquids." Chemistry of Materials 28, no. 9 (April 25, 2016): 3227–33. http://dx.doi.org/10.1021/acs.chemmater.6b01429.
Full textLiu, Mengtan, Ryan D. McGillicuddy, Hung Vuong, Songsheng Tao, Adam H. Slavney, Miguel I. Gonzalez, Simon J. L. Billinge, and Jarad A. Mason. "Network-Forming Liquids from Metal–Bis(acetamide) Frameworks with Low Melting Temperatures." Journal of the American Chemical Society 143, no. 7 (February 11, 2021): 2801–11. http://dx.doi.org/10.1021/jacs.0c11718.
Full textZhu, W., Y. Xia, B. G. Aitken, and S. Sen. "Temperature dependent onset of shear thinning in supercooled glass-forming network liquids." Journal of Chemical Physics 154, no. 9 (March 7, 2021): 094507. http://dx.doi.org/10.1063/5.0039798.
Full textHong, N. V., N. V. Huy, and P. K. Hung. "The correlation between coordination and bond angle distribution in network-forming liquids." Materials Science-Poland 30, no. 2 (June 2012): 121–30. http://dx.doi.org/10.2478/s13536-012-0019-y.
Full textMaruyama, Kenji, Hirohisa Endo, and Hideoki Hoshino. "Voids and Intermediate-Range Order in Network-Forming Liquids: Rb20Se80 and BiBr3." Journal of the Physical Society of Japan 76, no. 7 (July 15, 2007): 074601. http://dx.doi.org/10.1143/jpsj.76.074601.
Full textDissertations / Theses on the topic "Polymorphism - Network Forming Liquids"
Sharma, Ruchi. "Computational studies of network-forming liquids: multiple time-scale behavior and water-like anomalies." Thesis, 2009. http://localhost:8080/iit/handle/2074/3690.
Full textWitman, Jennifer Elisabeth. "The T-Shaped Anisotropic Molecule Model: A Unique Perspective on the Glass Transition and Gelation in Low Valence, Directional, Network Forming Liquids." Thesis, 2010. https://thesis.library.caltech.edu/5715/4/04-_Appendices.pdf.
Full textGlass and gel formers exhibit unusual mechanical characteristics and amorphous phases which are highly dependent on their thermal history. We introduce a lattice model with T-shaped molecules that exhibits glassy and gel-like states without introducing artificial frustration. This system has a large number of degenerate energy minima separated by small barriers leading to a broad, kinetically-explored landscape. It particularly replicates valence-limited materials, which can form self-assembled materials with highly controlled physical properties. Despite its remarkable simplicity, this model reveals some of the fundamental kinetic and thermodynamic properties of the glass transition and of gel formation.
A dearth of low temperature experimental and simulation measurements has inhibited investigation in this field. We overcome this difficulty by using a modified Metropolis Monte Carlo method to quickly provide equilibrium samples. Then kinetic Monte Carlo techniques are used to explore the properties of the equilibrium system, providing a touchstone for the non-equilibrium glassy states.
Fully-dense simulation samples reveal a fragile-to-strong crossover (FSC) near the mean-field (MF) spinodal. At the FSC, the relaxation time returns to Arrhenius behavior with cooling. There is an inflection point in the configurational entropy. This behavior resolves the Kauzmann Paradox which is a result of extrapolation from above the inflection point. In contrast, we find that the configurational entropy remains finite as the temperature goes to zero. We also observe different kinetics as the system is quenched below the FSC, resulting in non-equilibrium, amorphous states with high potential energy persisting for long periods of time. Simulation samples remain at non-equilibrium conditions for observation times exceeding those permitting complete equilibration slightly above the FSC. This suggests the FSC would often be identified as the glass transition without indication that there is true arrest or a diverging length scale. Indeed, our simulations show these samples do equilibrate if sufficient time is allowed. To elucidate the complex, interdependent relation time and length scales at the FSC will require careful consideration of the spatial-dynamic heterogeneity.
Dynamic mean-field simulations at high density and in the solvated regime reveal a rich range of morphological features. They are consistent with simulated and experimental results in colloidal systems. Stability limits of decreasing length scales beneath the phase separation bimodal coincide into a single curve, which terminates at the fully-dense MF spinodal, suggesting that gelation and vitrification are the same phenomena. Our work indicates that gelation is, therefore, a result of phase separation arrested by a glass transition.
Book chapters on the topic "Polymorphism - Network Forming Liquids"
Marcus, Yizhak. "Network Forming Ionic Liquids." In Ionic Liquid Properties, 99–107. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30313-0_4.
Full textZhang, Hao, and Jack F. Douglas. "Similarities of the Collective Interfacial Dynamics of Grain Boundaries and Nanoparticles to Glass-Forming Liquids." In Liquid Polymorphism, 519–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118540350.ch19.
Full textYarger, J. L., C. A. Angell, S. S. Borick, and G. H. Wolf. "Polyamorphic Transitions in Network-Forming Liquids and Glasses." In ACS Symposium Series, 214–23. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0676.ch016.
Full textConference papers on the topic "Polymorphism - Network Forming Liquids"
Takéuchi, Yasushi. "Can Molecular Dynamics Simulations Trace the Long-Time Relaxations in Network-Glass-Forming Liquids?" In Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.016007.
Full textViola, Ilenia, Roberto Cingolani, and Giuseppe Gigli. "A Micro-Fluidic Real-Time Monitoring of the Dynamics of Polymeric Liquids." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58316.
Full textOcalan, Murat, John P. Edlebeck, and Shane P. Siebenaler. "Acoustic Leak Detection at a Distance: A Key Enabler for Real-Time Pipeline Monitoring With the Internet of Things." In 2016 11th International Pipeline Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ipc2016-64405.
Full text